Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (624)

Search Parameters:
Keywords = point bars

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 642 KiB  
Article
The Goddess of the Flaming Mouth Between India and Tibet
by Arik Moran and Alexander Zorin
Religions 2025, 16(8), 1002; https://doi.org/10.3390/rel16081002 - 1 Aug 2025
Abstract
This article examines the evolution and potential cross-cultural adaptations of the “Goddess of the Flaming Mouth”, Jvālāmukhī (Skt.) or Kha ‘bar ma (Tib.), in Indic and Tibetan traditions. A minor figure in medieval Hindu Tantras, Jvālāmukhī is today best known through her tangible [...] Read more.
This article examines the evolution and potential cross-cultural adaptations of the “Goddess of the Flaming Mouth”, Jvālāmukhī (Skt.) or Kha ‘bar ma (Tib.), in Indic and Tibetan traditions. A minor figure in medieval Hindu Tantras, Jvālāmukhī is today best known through her tangible manifestation as natural flames in a West Himalayan temple complex in the valley of Kangra, Himachal Pradesh, India. The gap between her sparse portrayal in Tantric texts and her enduring presence at this local “seat of power” (śakti pīṭha) raises questions regarding her historical development and sectarian affiliations. To address these questions, we examine mentions of Jvālāmukhī’s Tibetan counterpart, Kha ‘bar ma, across a wide range of textual sources: canonical Buddhist texts, original Tibetan works of the Bön and Buddhist traditions, and texts on sacred geography. Regarded as a queen of ghost spirits (pretas) and field protector (kṣetrapāla) in Buddhist sources, her portrayal in Bön texts contain archaic motifs that hint at autochthonous and/or non-Buddhist origins. The assessment of Indic material in conjunction with Tibetan texts point to possible transformations of the goddess across these culturally proximate Himalayan settings. In presenting and contextualizing these transitions, this article contributes critical data to ongoing efforts to map the development, adaptation, and localization of Tantric deities along the Indo-Tibetan interface. Full article
19 pages, 8513 KiB  
Article
Multicriterial Heuristic Optimization of Cogeneration Supercritical Steam Cycles
by Victor-Eduard Cenușă and Ioana Opriș
Sustainability 2025, 17(15), 6927; https://doi.org/10.3390/su17156927 - 30 Jul 2025
Abstract
Heuristic optimization is used to find sustainable cogeneration steam power plants with steam reheat and supercritical main steam parameters. Design solutions are analyzed for steam consumer (SC) pressures of 3.6 and 40 bar and a heat flow rate of 40% of the fuel [...] Read more.
Heuristic optimization is used to find sustainable cogeneration steam power plants with steam reheat and supercritical main steam parameters. Design solutions are analyzed for steam consumer (SC) pressures of 3.6 and 40 bar and a heat flow rate of 40% of the fuel heat flow rate. The objective functions consisted in simultaneous maximization of global and exergetic efficiencies, power-to-heat ratio in full cogeneration mode, and specific investment minimization. For 3.6 bar, the indicators improve with the increase in the ratio between reheating and main steam pressure. The increase in SC pressure worsens the performance indicators. For an SC steam pressure of 40 bar and 9 feed water preheaters, the ratio between reheating and main steam pressure should be over 0.186 for maximum exergetic efficiency and between 0.10 and 0.16 for maximizing both global efficiency and power-to-heat ratio in full cogeneration mode. The average global efficiency for an SC requiring steam at 3.6 bar is 4.4 percentage points higher than in the case with 40 bar, the average specific investment being 10% lower. The Pareto solutions found in this study are useful in the design of sustainable cogeneration supercritical power plants. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

15 pages, 11864 KiB  
Article
Rope-Riding Mobile Anchor for Robots Operating on Convex Facades
by Chaewon Kim, KangYup Lee, Jeongmo Yang and TaeWon Seo
Sensors 2025, 25(15), 4674; https://doi.org/10.3390/s25154674 - 29 Jul 2025
Viewed by 99
Abstract
The increasing presence of high-rise buildings with curved and convex facades poses significant challenges for facade-cleaning robots, particularly in terms of mobility and anchoring. To address this, we propose a rope-riding mobile anchor (RMA) system capable of repositioning the anchor point of a [...] Read more.
The increasing presence of high-rise buildings with curved and convex facades poses significant challenges for facade-cleaning robots, particularly in terms of mobility and anchoring. To address this, we propose a rope-riding mobile anchor (RMA) system capable of repositioning the anchor point of a cleaning robot on convex building surfaces. The RMA travels horizontally along a roof-mounted nylon rope using caterpillar tracks with U-shaped grooves, and employs a four-bar linkage mechanism to fix its position securely by increasing rope contact friction. This structural principle was selected for its simplicity, stability under heavy loads, and efficient actuation. Experimental results show that the RMA can support a payload of 50.5 kg without slippage under tensions up to 495.24 N, and contributes to reducing the power consumption of the cleaning robot during operation. These findings demonstrate the RMA’s effectiveness in extending the robot’s working range and enhancing safety and stability in facade-cleaning tasks on complex curved surfaces. Full article
Show Figures

Figure 1

19 pages, 4126 KiB  
Article
Flexural Performance of Steel–GFRP Strips–UHPC Composite Beam in Negative Moment Region
by Lei Cao, Deng Zhang, Dan Zeng, Jin Zhang, Youjie Zhang, Zhe Zhang and Rong Zhan
Buildings 2025, 15(15), 2652; https://doi.org/10.3390/buildings15152652 - 27 Jul 2025
Viewed by 288
Abstract
This study aims to clarify the longitudinal flexural cracking characteristics in hogging moment regions and propose a practical calculation method for the cracking load and ultimate bearing capacity for a steel–GFRP strips–UHPC composite deck structure. The longitudinal flexural behavior of two steel–GFRP strips–UHPC [...] Read more.
This study aims to clarify the longitudinal flexural cracking characteristics in hogging moment regions and propose a practical calculation method for the cracking load and ultimate bearing capacity for a steel–GFRP strips–UHPC composite deck structure. The longitudinal flexural behavior of two steel–GFRP strips–UHPC composite beams in the hogging moment region is determined through a three-point loading test method. Their failure modes and mechanisms, crack propagation and distribution characteristics are analyzed considering the influence of the reinforcement ratio. The variation of the law of mid-span displacement, maximum crack width, strains and interface slip with load are discussed. Calculation methods for the cracking load and ultimate bearing capacity of steel–GFRP strips–UHPC composite beams are proposed. The results show that with the increase of the reinforcement ratio, the cracking load and ultimate bending capacity are improved by 11.1% and 6.0%, respectively. However, the development of cracks is inhibited, as the crack width, average crack spacing and strain of the reinforcement bars are reduced as the reinforcement ratio increases. The maximum crack width changes linearly with the load as it is less than 0.2 mm. The theoretical cracking load and ultimate bearing capacity of the composite beams considering the tensile contribution of UHPC achieve good agreement with the experimental values. Full article
Show Figures

Figure 1

25 pages, 3454 KiB  
Article
Dynamic Temperature–Vacuum Swing Adsorption for Sustainable Direct Air Capture: Parametric Optimisation for High-Purity CO2 Removal
by Maryam Nasiri Ghiri, Hamid Reza Nasriani, Leila Khajenoori, Samira Mohammadkhani and Karl S. Williams
Sustainability 2025, 17(15), 6796; https://doi.org/10.3390/su17156796 - 25 Jul 2025
Viewed by 439
Abstract
Direct air capture (DAC), as a complementary strategy to carbon capture and storage (CCS), offers a scalable and sustainable pathway to remove CO2 directly from the ambient air. This study presents a detailed evaluation of the amine-functionalised metal-organic framework (MOF) sorbent, mmen-Mg [...] Read more.
Direct air capture (DAC), as a complementary strategy to carbon capture and storage (CCS), offers a scalable and sustainable pathway to remove CO2 directly from the ambient air. This study presents a detailed evaluation of the amine-functionalised metal-organic framework (MOF) sorbent, mmen-Mg2(dobpdc), for DAC using a temperature–vacuum swing adsorption (TVSA) process. While this sorbent has demonstrated promising performance in point-source CO2 capture, this is the first dynamic simulation-based study to rigorously assess its effectiveness for low-concentration atmospheric CO2 removal. A transient one-dimensional TVSA model was developed in Aspen Adsorption and validated against experimental breakthrough data to ensure accuracy in capturing both the sharp and gradual adsorption kinetics. To enhance process efficiency and sustainability, this work provides a comprehensive parametric analysis of key operational factors, including air flow rate, temperature, adsorption/desorption durations, vacuum pressure, and heat exchanger temperature, on process performance, including CO2 purity, recovery, productivity, and specific energy consumption. Under optimal conditions for this sorbent (vacuum pressure lower than 0.15 bar and feed temperature below 15 °C), the TVSA process achieved ~98% CO2 purity, recovery over 70%, and specific energy consumption of about 3.5 MJ/KgCO2. These findings demonstrate that mmen-Mg2(dobpdc) can achieve performance comparable to benchmark DAC sorbents in terms of CO2 purity and recovery, underscoring its potential for scalable DAC applications. This work advances the development of energy-efficient carbon removal technologies and highlights the value of step-shape isotherm adsorbents in supporting global carbon-neutrality goals. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

15 pages, 549 KiB  
Article
Characteristics of 9-1-1 Calls Associated with an Increased Risk of Violence Against Paramedics in a Single Canadian Site
by Justin Mausz, Mandy Johnston, Alan M. Batt and Elizabeth A. Donnelly
Healthcare 2025, 13(15), 1806; https://doi.org/10.3390/healthcare13151806 - 25 Jul 2025
Viewed by 228
Abstract
Background/Objectives: Violence is a significant occupational health issue for paramedics, yet underreporting limits efforts to identify and mitigate risk. Leveraging a novel, point-of-event violence reporting system, we aimed to identify characteristics of 9-1-1 calls associated with an increased risk of violence in [...] Read more.
Background/Objectives: Violence is a significant occupational health issue for paramedics, yet underreporting limits efforts to identify and mitigate risk. Leveraging a novel, point-of-event violence reporting system, we aimed to identify characteristics of 9-1-1 calls associated with an increased risk of violence in a single paramedic service in Ontario, Canada. Methods: We retrospectively analyzed all electronic violence and patient care reports filed by paramedics in Peel Region and used logistic regression to identify call-level predictors of any violence and, more specifically, physical or sexual assault. Results: In total, 374 paramedics filed 974 violence reports, 40% of which documented an assault, corresponding to a rate of 4.18 violent encounters per 1000 9-1-1 calls. In adjusted models, the risk of violence was elevated for calls originating from non-residential locations (e.g., streets, hotels, bars), occurring during afternoon or overnight shifts, and involving young or working-age males. Presenting problems related to intoxication, mental health, or altered mental status were strongly associated with increased risk, with particularly high adjusted odds ratios for assault. Conclusions: These findings support the utility of near-miss and violence surveillance systems and highlight the need for multidisciplinary crisis response to high-risk calls, especially those involving mental health or substance use. Full article
Show Figures

Figure 1

23 pages, 5436 KiB  
Article
Flexural Testing of Steel-, GFRP-, BFRP-, and Hybrid Reinforced Beams
by Yazeed Elbawab, Youssef Elbawab, Zeina El Zoughby, Omar ElKadi, Mohamed AbouZeid and Ezzeldin Sayed-Ahmed
Polymers 2025, 17(15), 2027; https://doi.org/10.3390/polym17152027 - 25 Jul 2025
Viewed by 331
Abstract
The construction industry is exploring alternatives to traditional steel reinforcement in concrete due to steel’s corrosion vulnerability. Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP), known for their high tensile strength and corrosion resistance, are viable options. This study evaluates [...] Read more.
The construction industry is exploring alternatives to traditional steel reinforcement in concrete due to steel’s corrosion vulnerability. Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP), known for their high tensile strength and corrosion resistance, are viable options. This study evaluates the flexural performance of concrete beams reinforced with GFRP, BFRP, and hybrid systems combining these materials with steel, following ACI 440.1R-15 guidelines. Twelve beams were assessed under three-point bending to compare their flexural strength, ductility, and failure modes against steel reinforcement. The results indicate that GFRP and BFRP beams achieve 8% and 12% higher ultimate load capacities but 38% and 58% lower deflections at failure than steel, respectively. Hybrid reinforcements enhance both load capacity and deflection performance (7% to 17% higher load with 11% to 58% lower deflection). However, GFRP and BFRP beams show reduced energy absorption, suggesting that hybrid systems could better support critical applications like seismic and impact-prone structures by improving ductility and load handling. In addition, BFRP beams predominantly failed due to debonding and concrete crushing, while GFRP beams failed due to bar rupture, reflecting key differences in their flexural failure mechanisms. Full article
(This article belongs to the Special Issue Fibre-Reinforced Polymer Laminates: Structure and Properties)
Show Figures

Figure 1

12 pages, 961 KiB  
Article
Changes in the Position of Anatomical Points, Cranio-Cervical Posture, and Nasopharyngeal Airspace Dimensions in Complete Denture Wearers—A Cephalometric Pilot Study
by Andrea Maria Chisnoiu, Mihaela Hedeșiu, Oana Chira, Iris Bara, Simona Iacob, Andreea Kui, Smaranda Buduru, Mihaela Păstrav, Mirela Fluerașu and Radu Chisnoiu
Dent. J. 2025, 13(8), 335; https://doi.org/10.3390/dj13080335 - 22 Jul 2025
Viewed by 161
Abstract
Objectives: The objective of this study was to evaluate changes in anatomical point position, cranio-cervical posture, and respiratory dimensions following conventional bimaxillary total prosthetic rehabilitation. Methods: A prospective, longitudinal, observational, analytical study was conducted on 12 patients, aged 55 to 75 years, [...] Read more.
Objectives: The objective of this study was to evaluate changes in anatomical point position, cranio-cervical posture, and respiratory dimensions following conventional bimaxillary total prosthetic rehabilitation. Methods: A prospective, longitudinal, observational, analytical study was conducted on 12 patients, aged 55 to 75 years, at the Department of Dental Prosthetics at the University of Medicine and Pharmacy in Cluj-Napoca. All patients had complete bimaxillary edentulism and received removable dentures as treatment. Clinical and cephalometric analyses were performed before and after prosthetic treatment to compare changes. The cephalometric analysis was based on the guidelines of Tweed and Rocabado for evaluation. Quantitative data were described using the mean and standard deviation for normal distribution and represented by bar graphs with error bars. A paired samples t-test was used to determine differences between groups, with a significance threshold of 0.05 for the bilateral p-value. Results: When analyzing changes in cranial base inclination, the corresponding angles exhibited an increase, indicating cephalic extension. A statistically significant difference in the anteroposterior diameter of the oropharyngeal lumen with and without bimaxillary complete dentures was identified (p < 0.05). For hyperdivergent patients, modifications in the position of anatomical features on cephalometry slightly reduced the VDO and had a slight compensatory effect on skeletal typology. In contrast, for hypodivergent patients, modifications to the position of anatomical landmarks also had a compensatory effect on skeletal typology, increasing the VDO. Conclusion: Changes in the position of anatomical features on cephalometry generally have a compensatory effect on skeletal typology after complete denture placement. Complete prosthetic treatment with removable dentures can significantly influence respiratory function by reducing the oropharyngeal lumen and body posture by cephalic extension and attenuation of the lordotic curvature of the cervical spine. Full article
(This article belongs to the Special Issue Women's Research in Dentistry)
Show Figures

Figure 1

30 pages, 24914 KiB  
Article
Algorithm to Find and Analyze All Configurations of Four-Bar Linkages with Different Geometric Loci Degenerate Forms
by Giorgio Figliolini, Chiara Lanni and Luciano Tomassi
Symmetry 2025, 17(8), 1171; https://doi.org/10.3390/sym17081171 - 22 Jul 2025
Viewed by 214
Abstract
A general algorithm to determine the coupler link geometric loci, such as centrodes, inflection and return circles, as well as circling-point and centering-point curves, is formulated to analyze any type of four-bar linkages with the main target to find all mechanism configurations, in [...] Read more.
A general algorithm to determine the coupler link geometric loci, such as centrodes, inflection and return circles, as well as circling-point and centering-point curves, is formulated to analyze any type of four-bar linkages with the main target to find all mechanism configurations, in which at least one of the above-mentioned loci degenerates. Thus, different types of four-bar linkages, such as crank-rocker, double-crank, double-rocker and triple-rocker, are classified according to Grashof’s law, in order to distinguish and analyze their corresponding geometric loci. In particular, the proposed algorithm is based on four diagrams of the angular velocity ratios versus the mechanism driving angle, which consider the links pairs of input/output, input/coupler, and output/coupler, along with those of coupler/input and coupler/output for their relative motion. These diagrams allow the determination of all mechanism configurations according to Freudenstein’s theorems, where the aforementioned geometric loci degenerate into straight lines, including the line at infinity, ϕ-curves, and/or equilateral hyperbolas. This algorithm has been implemented in Matlab in order to run several examples regarding different four-bar linkages, according to Grashof’s law, and analyzing the degenerate forms of their inflection and return circles, as well as the circling-point and centering-point curves, that are also validated by using the collineation axis. Full article
Show Figures

Figure 1

18 pages, 5009 KiB  
Article
Preparation of Glass Fiber Reinforced Polypropylene Bending Plate and Its Long-Term Performance Exposed in Alkaline Solution Environment
by Zhan Peng, Anji Wang, Chen Wang and Chenggao Li
Polymers 2025, 17(13), 1844; https://doi.org/10.3390/polym17131844 - 30 Jun 2025
Viewed by 292
Abstract
Glass fiber reinforced polypropylene composite plates have gradually attracted more attention because of their repeated molding, higher toughness, higher durability, and fatigue resistance compared to glass fiber reinforced thermosetting composites. In practical engineering applications, composite plates have to undergo bending effect at different [...] Read more.
Glass fiber reinforced polypropylene composite plates have gradually attracted more attention because of their repeated molding, higher toughness, higher durability, and fatigue resistance compared to glass fiber reinforced thermosetting composites. In practical engineering applications, composite plates have to undergo bending effect at different angles in corrosive environment of concrete, including bending bars from 0~90°, and stirrups of 90°, which may lead to long-term performance degradation. Therefore, it is important to evaluate the long-term performance of glass fiber reinforced polypropylene composite bending plates in an alkali environment. In the current paper, a new bending device is developed to prepare glass fiber reinforced polypropylene bending plates with the bending angles of 60° and 90°. It should be pointed out that the above two bending angles are simulated typical bending bars and stirrups, respectively. The plate is immersed in the alkali solution environment for up to 90 days for long-term exposure. Mechanical properties (tensile properties and shear properties), thermal properties (dynamic mechanical properties and thermogravimetric analysis) and micro-morphology analysis (surface morphology analysis) were systematically designed to evaluate the influence mechanism of bending angle and alkali solution immersion on the long-term mechanical properties. The results show the bending effect leads to the continuous failure of fibers, and the outer fibers break under tension, and the inner fibers buckle under compression, resulting in debonding of the fiber–matrix interface. Alkali solution (OH ions) corrode the surface of glass fiber to form soluble silicate, which is proved by the mass fraction of glass fiber decreased obviously from 79.9% to 73.65% from thermogravimetric analysis. This contributes to the highest degradation ratio of tensile strength was 71.6% (60° bending) and 65.6% (90° bending), respectively, compared to the plate with bending angles of 0°. A high curvature bending angle (such as 90°) leads to local buckling of fibers and plastic deformation of the matrix, forming microcracks and fiber–resin interface bonding at the bending area, which accelerates the chemical erosion and debonding process in the interface area, bringing about an additional maximum 10.56% degradation rate of the shear strength. In addition, the alkali immersion leads to the obvious degradation of storage modulus and thermal decomposition temperature of composite plate. Compared with the other works on the long-term mechanical properties of glass fiber reinforced polypropylene, it can be found that the long-term performance of glass fiber reinforced polypropylene composites is controlled by the corrosive media type, bending angle and immersion time. The research results will provide durability data for glass fiber reinforced polypropylene composites used in concrete as stirrups. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

21 pages, 5118 KiB  
Article
A System for the Real-Time Detection of the U-Shaped Steel Bar Straightness on a Production Line
by Yen-Jen Chen, Yu-Hsiu Yeh and Jen-Fu Yang
Sensors 2025, 25(13), 3972; https://doi.org/10.3390/s25133972 - 26 Jun 2025
Viewed by 254
Abstract
This study develops an algorithm and a system for steel straightness detection, which combines object detection, edge detection, line detection, clustering, stitching, and bending recognition. The algorithm detects the contour of U-shaped steel bars with widths of 100 mm, named U100, or 150 [...] Read more.
This study develops an algorithm and a system for steel straightness detection, which combines object detection, edge detection, line detection, clustering, stitching, and bending recognition. The algorithm detects the contour of U-shaped steel bars with widths of 100 mm, named U100, or 150 mm, named U150, and lengths of 8, 10, 12 m. The algorithm uses object detection to extract the center point of the U-shaped bottom as a reference point and line detection to extract lines in the contour. The algorithm selects one-stage or two-stage edge detection based on the light source. Two-stage edge detection enhances the contour features when the light source is insufficient. After contour detection, some parts of the contour disappear due to the light source. The algorithm stitches all lines with an angle difference within θ degrees into one straight line L based on the angle of the longest line. If the length of L exceeds the threshold value MLL, the steel bar is straight; otherwise, it is bent. θ and MLL are used to set the acceptable bending degree. The experiment results show that the algorithm detects 123,128 steel bars in 193 h with an average accuracy of 99.64% for straight steel and an average recall of 95.70% for bent steel. The contribution of this study is the development of a real-time algorithm and its corresponding system for steel straightness determination in a steel factory, ensuring accurate and efficient assessment of steel quality in an industrial setting. Full article
(This article belongs to the Special Issue IoT-Based Smart Environments, Applications and Tools)
Show Figures

Figure 1

24 pages, 1893 KiB  
Article
Scoring and Ranking Methods for Evaluating the Techno-Economic Competitiveness of Hydrogen Production Technologies
by Yehia F. Khalil
Sustainability 2025, 17(13), 5770; https://doi.org/10.3390/su17135770 - 23 Jun 2025
Viewed by 433
Abstract
This research evaluates four hydrogen (H2) production technologies via water electrolysis (WE): alkaline water electrolysis (AWE), proton exchange membrane electrolysis (PEME), anion exchange membrane electrolysis (AEME), and solid oxide electrolysis (SOE). Two scoring and ranking methods, the MACBETH method and the [...] Read more.
This research evaluates four hydrogen (H2) production technologies via water electrolysis (WE): alkaline water electrolysis (AWE), proton exchange membrane electrolysis (PEME), anion exchange membrane electrolysis (AEME), and solid oxide electrolysis (SOE). Two scoring and ranking methods, the MACBETH method and the Pugh decision matrix, are utilized for this evaluation. The scoring process employs nine decision criteria: capital expenditure (CAPEX), operating expenditure (OPEX), operating efficiency (SOE), startup time (SuT), environmental impact (EI), technology readiness level (TRL), maintenance requirements (MRs), supply chain challenges (SCCs), and levelized cost of H2 (LCOH). The MACBETH method involves pairwise technology comparisons for each decision criterion using seven qualitative judgment categories, which are converted into quantitative scores via M-MACBETH software (Version 3.2.0). The Pugh decision matrix benchmarks WE technologies using a baseline technology—SMR with CCS—and a three-point scoring scale (0 for the baseline, +1 for better, −1 for worse). Results from both methods indicate AWE as the leading H2 production technology, which is followed by AEME, PEME, and SOE. AWE excels due to its lowest CAPEX and OPEX, highest TRL, and optimal operational efficiency (at ≈7 bars of pressure), which minimizes LCOH. AEME demonstrates balanced performance across the criteria. While PEME shows advantages in some areas, it requires improvements in others. SOE has the most areas needing enhancement. These insights can direct future R&D efforts toward the most promising H2 production technologies to achieve the net-zero goal. Full article
(This article belongs to the Special Issue Transitioning to Sustainable Energy: Opportunities and Challenges)
Show Figures

Figure 1

22 pages, 5603 KiB  
Article
Quantitative Assessment of Local Siltation Dynamics in Multi-Anabranching River System: Case Studies of Representative Port in the Lower Yangtze River and Engineering Interventions
by Ke Zheng, Yuncheng Wen, Fanyi Zhang, Xiaojun Wang, Mingyan Xia, Zelin Cheng and Yongjun Zhou
Water 2025, 17(13), 1860; https://doi.org/10.3390/w17131860 - 23 Jun 2025
Viewed by 281
Abstract
The Ma’anshan section of the lower Yangtze River features a complex multi-anabranching system, where the river divides into several branches around mid-channel sandbars, with distinct point bars alternately developing along both banks. Within this morphologically active system, Zhengpu Harbor suffered severe operational disruptions [...] Read more.
The Ma’anshan section of the lower Yangtze River features a complex multi-anabranching system, where the river divides into several branches around mid-channel sandbars, with distinct point bars alternately developing along both banks. Within this morphologically active system, Zhengpu Harbor suffered severe operational disruptions by accelerated siltation at its approach channel, primarily due to its vulnerable location downstream of the expanding Niutun River point-bar on the left bank. To systematically diagnose the mechanisms of siltation, this study integrates multi-method investigations: decadal-scale morphodynamic analysis using long-term bathymetric surveys, numerical modeling to quantify engineering impacts on flow dynamics, and multiple linear regression analysis for the contributions of key influencing factors. The result identifies three primary drivers of siltation, collectively responsible for 70% of the sediment accumulation, including the rightward shift of the thalweg in the Ma’anshan left branch, reduced flow diversion of the left Branch of Central bar, and the expansion of the Niutun River point bar. River engineering structures, such as bridges, contribute approximately 12%, while changes in upstream flow-sediment supply account for approximately 18%. To mitigate siltation at Zhengpu Harbor’s approach channel, this study proposes targeted engineering interventions to enhance local hydrodynamic conditions. The spur dikes were designed to enhance the morphological stabilization of the Central bar head to regulate flow distribution. A diversion channel could also be excavated at the tail of the Niutun River shoal, and emergency dredging was recommended at the harbor front. Numerical modeling indicates that these measures will increase flow velocity by over 0.1 m/s at the harbor front, mitigating the siltation situation. The study concludes that the proposed engineering measures can reduce annual siltation by approximately 30% under normal-year hydrological conditions, demonstrating their feasibility in mitigating siltation trends in multi-anabranching river systems. This research provides a reference for addressing siltation issues in harbors within complex anabranching river systems. Full article
Show Figures

Figure 1

30 pages, 13022 KiB  
Article
Dynamic Mechanical Characteristics and Fracture Size Effect of Coal Sandstone Under High-Temperature and High-Strain Rate Coupling Action
by Ming Li, Fuqiang Zhu, Yiwen Mao, Fangwei Fan, Boyuan Wu and Jishuo Deng
Fractal Fract. 2025, 9(6), 381; https://doi.org/10.3390/fractalfract9060381 - 15 Jun 2025
Cited by 2 | Viewed by 469
Abstract
The deformation control of surrounding rock in the combustion air zone is crucial for the safety and efficiency of underground coal gasification (UCG) projects. Coal-bearing sandstone, a common surrounding rock in UCG chambers, features a brittle structure composed mainly of quartz, feldspar, and [...] Read more.
The deformation control of surrounding rock in the combustion air zone is crucial for the safety and efficiency of underground coal gasification (UCG) projects. Coal-bearing sandstone, a common surrounding rock in UCG chambers, features a brittle structure composed mainly of quartz, feldspar, and clay minerals. Its mechanical behavior under high-temperature and dynamic loading is complex and significantly affects rock stability. To investigate the deformation and failure mechanisms under thermal–dynamic coupling, this study conducted uniaxial impact compression tests using a high-temperature split Hopkinson pressure bar (HT-SHPB) system. The focus was on analyzing mechanical response, energy dissipation, and fragmentation characteristics under varying temperature and strain rate conditions. The results show that the dynamic elastic modulus, compressive strength, fractal dimension of fragments, energy dissipation density, and energy consumption rate all increase initially with temperature and then decrease, with inflection points observed at 400 °C. Conversely, dynamic peak strain first decreases and then increases with rising temperature, also showing a turning point at 400 °C. This indicates a shift in the deformation and failure mode of the material. The findings provide critical insights into the thermo-mechanical behavior of coal-bearing sandstone under extreme conditions and offer a theoretical basis for designing effective deformation control strategies in underground coal gasification projects. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

14 pages, 1694 KiB  
Article
An Assessment of Anion Exchange Membranes for CO2 Capture Processes: A Focus on Fumasep® and Sustainion®
by Kseniya Papchenko, Sandra Kentish and Maria Grazia De Angelis
Polymers 2025, 17(11), 1581; https://doi.org/10.3390/polym17111581 - 5 Jun 2025
Viewed by 813
Abstract
Anion exchange membranes are utilised in cutting-edge energy technologies including electrolysers and fuel cells. Recently, these membranes have also emerged as a promising tool in CO2 capture techniques, such as moisture-driven direct air capture and the separation of CO2 from other [...] Read more.
Anion exchange membranes are utilised in cutting-edge energy technologies including electrolysers and fuel cells. Recently, these membranes have also emerged as a promising tool in CO2 capture techniques, such as moisture-driven direct air capture and the separation of CO2 from other gases, leveraging the moisture-induced sorption/desorption and diffusion of CO2 in its ionic forms. In this study, we examine the absorption and permeation of CO2 and CH4 in two commercially available anion exchange membranes, Fumasep® and Sustainion®, under dry conditions. With the exception of CO2 sorption in Fumasep®, these measurements have not been previously reported. These new data points are crucial for evaluating the fundamental separation capabilities of these materials and for devising innovative CO2 capture strategies, as well as for the simulation of novel combined processes. In a dry state, both materials demonstrate similar CO2 absorption levels, with a higher value for Sustainion®. The CO2 solubility coefficient decreases with pressure, as is typical for glassy polymers. Fumasep® exhibits higher CO2/CH4 ideal solubility selectivity, equal to ~10 at sub-ambient pressures, and higher diffusivity. The CO2 diffusion coefficient increases with the CO2 concentration in both membranes due to swelling of the matrix, varying between 0.7 and 2.2 × 10−8 cm2/s for Fumasep® and between 1.6 and 9.0 × 10−9 cm2/s for Sustainion®. CO2 permeability exhibits a minimum at a pressure of approximately 2–3 bar. The CO2 permeability in the dry state is higher in Fumasep® than in Sustainion®: 3.43 and 0.72 Barrer at a 2-bar transmembrane pressure, respectively. The estimated perm-selectivity was found to reach values of up to 40 at sub-ambient pressures. The CO2 permeability and CO2/CH4 estimated perm-selectivity in both polymers are of a similar order of magnitude to those measured in fluorinated ion exchange membranes such as Nafion®. Full article
Show Figures

Figure 1

Back to TopTop