Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = pneumatic centralized

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4234 KB  
Article
A Four-Chamber Multimodal Soft Actuator and Its Application
by Jiabin Yang, Helei Zhu, Gang Chen, Jianbo Cao, Jiwei Yuan and Kaiwei Wu
Actuators 2025, 14(12), 602; https://doi.org/10.3390/act14120602 - 9 Dec 2025
Viewed by 244
Abstract
Soft robotics represents a rapidly advancing and significant subfield within modern robotics. However, existing soft actuators often face challenges including unwanted deformation modes, limited functional diversity, and a lack of versatility. This paper presents a four-chamber multimodal soft actuator with a centrally symmetric [...] Read more.
Soft robotics represents a rapidly advancing and significant subfield within modern robotics. However, existing soft actuators often face challenges including unwanted deformation modes, limited functional diversity, and a lack of versatility. This paper presents a four-chamber multimodal soft actuator with a centrally symmetric layout and independent pneumatic control. While building on existing multi-chamber concepts, the design incorporates a cruciform constraint layer and inter-chamber gaps to improve directional bending and reduce passive chamber deformation. An empirical model based on the vector superposition of single- and dual-chamber inflations is developed to describe the bending behavior. Experimental results show that the actuator can achieve omnidirectional bending with errors below 5% compared to model predictions. To demonstrate versatility, the actuator is implemented in two distinct applications: a three-finger soft gripper that can grasp objects of various shapes and perform in-hand twisting maneuvers, and a steerable crawling robot that mimics inchworm locomotion. These results highlight the actuator’s potential as a reusable and adaptable driving unit for diverse soft robotic tasks. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

19 pages, 4979 KB  
Article
Pediatric Lower Limb Rehabilitation Training System with Soft Exosuit and Quantitative Partial Body Weight Support
by Dezhi Liang, Shuk-Fan Tong, Hsuan-Yu Lu, Minghao Liu, Zhen Wang, Tian Xing, Hongliu Yu and Raymond Kai-Yu Tong
Machines 2025, 13(11), 1028; https://doi.org/10.3390/machines13111028 - 7 Nov 2025
Viewed by 660
Abstract
The pediatric period is a crucial window for motor function learning and growth. Individuals with central nervous system injuries like cerebral palsy commonly display severe crouch gait in the lower limbs. Hyperflexion of the knee joints promotes the forward trunk and increases reliance [...] Read more.
The pediatric period is a crucial window for motor function learning and growth. Individuals with central nervous system injuries like cerebral palsy commonly display severe crouch gait in the lower limbs. Hyperflexion of the knee joints promotes the forward trunk and increases reliance on the handle frame of a walker for support. In this study, we developed a quantitative partial body weight training system integrated with a soft pneumatic exosuit to assist the knee extension during the stance phase of the gait cycle. In the preliminary results for five pediatric cerebral palsy subjects, compared to the baseline condition, excessive knee flexion ameliorated with the assistance of the soft pneumatic exosuit. The peak knee extension and range of motion increased by 19.72° (±3.47°) and 15.46° (±5.06°), respectively. With exosuit assistance, the subjects demonstrated improved gait retraining compared to baseline. They were able to bear significantly more body weight on their affected limb, as evidenced by a 33.3% increase in the fraction of body weight measured by the force plate. Additionally, they relied less on the handrail for support during walking. With more extended knee joints to bear the load over gravity, the pediatric subjects transferred the reliance from external support and upper limbs back to the lower limbs as a more independent status during the loading response to terminal stance. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

23 pages, 14097 KB  
Article
Comparative Analysis of Local Flow Fields of Typical Inner Jet Holes-Type Reverse Circulation Drill Bit for Pneumatic Hollow-Through DTH Hammer Based on CFD Simulation
by Jiwei Wen, Jiang Chen and Fengtao Zhang
Symmetry 2025, 17(10), 1625; https://doi.org/10.3390/sym17101625 - 1 Oct 2025
Viewed by 527
Abstract
The reverse circulation drill bit is the key component for the efficient and smooth implementation of the pneumatic hollow-through down-the-hole (DTH) hammer reverse circulation continuous coring (sampling) technology. To obtain the structural form of a reverse circulation drill bit with better reverse circulation [...] Read more.
The reverse circulation drill bit is the key component for the efficient and smooth implementation of the pneumatic hollow-through down-the-hole (DTH) hammer reverse circulation continuous coring (sampling) technology. To obtain the structural form of a reverse circulation drill bit with better reverse circulation performance, revealing its local flow fields by computational fluid dynamics (CFD) simulation is an effective approach. Taking the inner jet holes-type reverse circulation drill bit as the research object, three kinds of symmetrical and asymmetrical structures of inner jet holes were proposed. The CFD simulation results show that increasing the air volume supply and the number of inner jet holes leads to an increase in the velocity of air flow jet within the inner jet holes, an increase in the negative pressure formed in the central through channel below the inner jet holes, an enhancement of the reverse circulation performance and suction capacity formed by the reverse circulation drill bit, and an acceleration of the upward flow velocity of the rock cores (samples) located at the bottom of the borehole. Additionally, the reverse circulation performance formed by the reverse circulation drill bit with staggered arranged inner jet holes is superior to that of the reverse circulation drill bit with uniformly distributed inner jet holes. Under the same simulation conditions, the static pressure (i.e., negative pressure) and the upward flow velocity formed by the JB6 model are 2.34 kPa and 30.778 m/s higher than those formed by the JB3-3 model, while these two values formed by the JC6 model are 0.197 kPa and 3.689 m/s higher than those formed by the JB6 model, respectively. In conclusion, an asymmetric structural design would be more reasonable for the design of the inner jet holes-type reverse circulation drill bit. Full article
Show Figures

Figure 1

15 pages, 2611 KB  
Article
Design and Experiment of Air–Fertilizer Separator for Pneumatic Deep Fertilization in Paddy Fields
by Mingjin Xin, Wenrui Ding, Duo Chen, Man Zhang, Yujue Ao, Bowen Chi, Zhiwen Jiang, Yuqiu Song and Yunlong Guo
Agriculture 2025, 15(18), 1991; https://doi.org/10.3390/agriculture15181991 - 22 Sep 2025
Viewed by 618
Abstract
Supplemental fertilizer application is critical for improving rice yield. Pneumatic deep fertilization effectively improves fertilizer utilization, but high-speed airflow may disturb the soil and affect the location of the fertilizer particles. An air–fertilizer separator was developed in this study to separate the fertilizer [...] Read more.
Supplemental fertilizer application is critical for improving rice yield. Pneumatic deep fertilization effectively improves fertilizer utilization, but high-speed airflow may disturb the soil and affect the location of the fertilizer particles. An air–fertilizer separator was developed in this study to separate the fertilizer from the airflow before the two-phase flow rushes into the soil, and the airflow is directed away from the surface of the paddy soil. The structural and operating parameters of the air–fertilizer separator are determined in this paper. A quadratic orthogonal rotation combination experiment was conducted, taking structural parameters of the device as variables, and fertilizer injection speed, separation loss rate, and outlet airflow speed as performance indicators, to optimize the design parameters of the air–fertilizer separator. The variance analysis and surface response analysis of the experimental data are conducted, and the mathematical models between the indicators and the influencing factors are established. The optimal parameters were determined using multi-objective optimization, and the experimental verification was carried out. The optimal parameters for the air–fertilizer separator were obtained as an arc radius of the AFAST of 380 mm, central angle of arc trough of 45°, and depth of primary separation arc-trough of 12.5 mm. The validation experimental results show that the fertilizer injection speed is 21.45 m/s, the fertilizer separation loss rate is 10.22%, and the outlet airflow speed is 42.54 m/s. The experimental values are close to the predicted values, with errors of 1.2%, 1.7%, and 1.3%. The results of the study may provide a reference for the development of an air–fertilizer separator for pneumatic deep fertilization in paddy fields. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

31 pages, 14518 KB  
Article
A Novel Laminar Jamming Mechanism for Variable-Stiffness Robotic Arms
by Freddy Caro, Marc G. Carmichael and Jinchen Ji
Actuators 2025, 14(9), 430; https://doi.org/10.3390/act14090430 - 1 Sep 2025
Viewed by 1991
Abstract
A central problem in human–robot interaction is the risk of severe injury in humans in the event of a collision with a rigid robot arm. The introduction of variable stiffness into a robot arm mitigates the effects of impact and generates a safe [...] Read more.
A central problem in human–robot interaction is the risk of severe injury in humans in the event of a collision with a rigid robot arm. The introduction of variable stiffness into a robot arm mitigates the effects of impact and generates a safe interaction in its compliant state. An approach to vary the stiffness of members in a robotic arm is Laminar Jamming. In this article, a new lock/unlock mechanism for Laminar Jamming is proposed. The solution consists of a pneumatic actuator that drives a trapezoidal pin to interfere mechanically with the layers, and, in turn, changing the stiffness of the Laminar Jamming Structure. Additionally, frames are placed along the structure to avoid local buckling of the layers. Experiments and finite element simulations were carried out to study the mechanical performance of this new mechanism. Experiments show that the proposed mechanism reached a maximum stiffness ratio of 3.65, which is 15% higher than the stiffness ratio of an equivalent flat clamp mechanism. Experiments also demonstrate that the proposed mechanism does not show the stick-slip phenomenon that exists in the flat clamp mechanism. Computational case studies were carried out to investigate the effects of the angle of the trapezoidal pin, the number of frames, the direction of the transverse force and the behavior at high deflections. Simulations show that the 30° trapezoidal pin has the highest stiffness for pressures larger than 500 kPa, three frames placed along the Laminar Jamming generate the maximum stiffness ratio, the stiffness slightly varies when the transverse force changes direction, and the stiffness decreases with increasing deflection. Full article
Show Figures

Figure 1

27 pages, 1605 KB  
Article
Using Hydro-Pneumatic Energy Storage for Improving Offshore Wind-Driven Green Hydrogen Production—A Preliminary Feasibility Study in the Central Mediterranean Sea
by Oleksii Pirotti, Diane Scicluna, Robert N. Farrugia, Tonio Sant and Daniel Buhagiar
Energies 2025, 18(16), 4344; https://doi.org/10.3390/en18164344 - 14 Aug 2025
Viewed by 1094
Abstract
This paper presents a preliminary feasibility study for integrating hydro-pneumatic energy storage (HPES) with off-grid offshore wind turbines and green hydrogen production facilities—a concept termed HydroGenEration (HGE). This study compares the performance of this innovative concept system with an off-grid direct wind-to-hydrogen plant [...] Read more.
This paper presents a preliminary feasibility study for integrating hydro-pneumatic energy storage (HPES) with off-grid offshore wind turbines and green hydrogen production facilities—a concept termed HydroGenEration (HGE). This study compares the performance of this innovative concept system with an off-grid direct wind-to-hydrogen plant concept without energy storage, both under central Mediterranean wind conditions. Numerical simulations were conducted at high temporal resolution, capturing 10-min fluctuations of open field measured wind speeds at an equivalent offshore wind turbine (WT) hub height over a full 1-year, seasonal cycle. Key findings demonstrate that the HPES system of choice, namely the Floating Liquid Piston Accumulator with Sea Water under Compression (FLASC) system, significantly reduces Proton Exchange Membrane (PEM) electrolyser (PEMEL) On/Off cycling (with a 66% reduction in On/Off events), while maintaining hydrogen production levels, despite the integration of the energy storage system, which has a projected round-trip efficiency of 75%. The FLASC-integrated HGE solution also marginally reduces renewable energy curtailment by approximately 0.3% during the 12-month timeframe. Economic analysis reveals that while the FLASC HPES system does introduce an additional capital cost into the energy chain, it still yields substantial operational savings exceeding EUR 3 million annually through extended PEM electrolyser lifetime and improved operational efficiency. The Levelized Cost of Hydrogen (LCOH) for the FLASC-integrated HGE system, which is estimated to be EUR 18.83/kg, proves more economical than a direct wind-to-hydrogen approach with a levelized cost of EUR 21.09/kg of H2 produced. This result was achieved through more efficient utilisation of wind energy interfaced with energy storage as it mitigated the natural intermittency of the wind and increased the lifecycle of the equipment, especially that of the PEM electrolysers. Three scenario models were created to project future costs. As electrolyser technologies advance, cost reductions would be expected, and this was one of the scenarios envisaged for the future. These scenarios reinforce the technical and economic viability of the HGE concept for offshore green hydrogen production, particularly in the Mediterranean, and in regions having similar moderate wind resources and deeper seas for offshore hybrid sustainable energy systems. Full article
Show Figures

Figure 1

18 pages, 4182 KB  
Article
Structural Design of a Multi-Stage Variable Stiffness Manipulator Based on Low-Melting-Point Alloys
by Moufa Ye, Lin Guo, An Wang, Wei Dong, Yongzhuo Gao and Hui Dong
Technologies 2025, 13(8), 338; https://doi.org/10.3390/technologies13080338 - 5 Aug 2025
Cited by 1 | Viewed by 985
Abstract
Soft manipulators have garnered significant research attention in recent years due to their flexibility and adaptability. However, the inherent flexibility of these manipulators imposes limitations on their load-bearing capacity and stability. To address this, this study compares various variable stiffness technologies and proposes [...] Read more.
Soft manipulators have garnered significant research attention in recent years due to their flexibility and adaptability. However, the inherent flexibility of these manipulators imposes limitations on their load-bearing capacity and stability. To address this, this study compares various variable stiffness technologies and proposes a novel design concept: leveraging the phase-change characteristics of low-melting-point alloys (LMPAs) with distinct melting points to fulfill the variable stiffness requirements of soft manipulators. The pneumatic structure of the manipulator is fabricated via 3D-printed molds and silicone casting. The manipulator integrates a pneumatic working chamber, variable stiffness chambers, heating devices, sensors, and a central channel, achieving multi-stage variable stiffness through controlled heating of the LMPAs. A steady-state temperature field distribution model is established based on the integral form of Fourier’s law, complemented by finite element analysis (FEA). Subsequently, the operational temperatures at which the variable stiffness mechanism activates, and the bending performance are experimentally validated. Finally, stiffness characterization and kinematic performance experiments are conducted to evaluate the manipulator’s variable stiffness capabilities and flexibility. This design enables the manipulator to switch among low, medium, and high stiffness levels, balancing flexibility and stability, and provides a new paradigm for the design of soft manipulators. Full article
Show Figures

Figure 1

16 pages, 3616 KB  
Article
Alleviating Soil Compaction in an Asian Pear Orchard Using a Commercial Hand-Held Pneumatic Cultivator
by Hao-Ting Lin and Syuan-You Lin
Agronomy 2025, 15(7), 1743; https://doi.org/10.3390/agronomy15071743 - 19 Jul 2025
Viewed by 1133
Abstract
Soil compaction is a critical challenge in perennial fruit production, limiting root growth, water infiltration, and nutrient uptake—factors essential for climate-resilient and sustainable orchard systems. In subtropical Asian pear (Pyrus pyrifolia Nakai) orchards under the annual top-working system, intensive machinery traffic exacerbates [...] Read more.
Soil compaction is a critical challenge in perennial fruit production, limiting root growth, water infiltration, and nutrient uptake—factors essential for climate-resilient and sustainable orchard systems. In subtropical Asian pear (Pyrus pyrifolia Nakai) orchards under the annual top-working system, intensive machinery traffic exacerbates subsurface hardpan formation and tree performance. This study evaluated the effectiveness of pneumatic subsoiling, a minimally invasive method using high-pressure air injection, in alleviating soil compaction without disturbing orchard surface integrity. Four treatments varying in radial distance from the trunk and pneumatic application were tested in a mature orchard in central Taiwan. Pneumatic subsoiling 120 cm away from the trunk significantly reduced soil penetration resistance by 15.4% at 34 days after treatment (2,302,888 Pa) compared to the control (2,724,423 Pa). However, this reduction was not sustained at later assessment dates, and no significant improvements in vegetative growth, fruit yield, and fruit quality were observed within the first season post-treatment. These results suggest that while pneumatic subsoiling can modify subsurface soil physical conditions with minimal surface disturbance, its agronomic benefits may require longer-term evaluation under varying moisture and management regimes. Overall, this study highlights pneumatic subsoiling may be a potential low-disturbance strategy to contribute to longer-term soil physical resilience. Full article
Show Figures

Figure 1

10 pages, 610 KB  
Article
Pneumatic Displacement and Anti-VEGF Therapy for Submacular Hemorrhage in Neovascular Age-Related Macular Degeneration: A Retrospective Study
by Hikaru Ota, Jun Takeuchi, Ryo Nonogaki, Kazuma Tamura and Taro Kominami
J. Clin. Med. 2025, 14(9), 3154; https://doi.org/10.3390/jcm14093154 - 2 May 2025
Viewed by 1412
Abstract
Background/Objectives: Submacular hemorrhage (SMH) associated with neovascular age-related macular degeneration (nAMD) can lead to significant vision loss, and the optimal management strategy remains uncertain. This study aimed to evaluate the efficacy and safety of pneumatic displacement (PD) without tissue plasminogen activator (t-PA) for [...] Read more.
Background/Objectives: Submacular hemorrhage (SMH) associated with neovascular age-related macular degeneration (nAMD) can lead to significant vision loss, and the optimal management strategy remains uncertain. This study aimed to evaluate the efficacy and safety of pneumatic displacement (PD) without tissue plasminogen activator (t-PA) for SMH secondary to nAMD. Methods: A retrospective analysis was conducted on 22 eyes with SMH secondary to nAMD treated with PD without t-PA. Best-corrected visual acuity (BCVA), central retinal thickness (CRT), number of intravitreal injections, and postoperative complications were assessed at baseline and follow-up. Multiple logistic regression analyses were used to identify factors associated with visual outcomes. Results: In the 22 eyes that completed the 6-month follow-up, BCVA (logMAR) was 0.88 ± 0.46 at baseline and 0.76 ± 0.63 at 6 months (p = 0.24). In the 15 eyes with 12-month follow-up, BCVA improved significantly from 0.92 ± 0.47 at baseline to 0.56 ± 0.51 at 12 months (p = 0.01). CRT significantly decreased at 3 months (p < 0.01). During this period, patients received an average of 8.13 ± 2.90 intravitreal anti-vascular endothelial growth factor (VEGF) injections. A shorter duration from symptom onset to treatment was associated with better visual outcomes (p = 0.02). Postoperative vitreous hemorrhage occurred in 31.8% of cases. Conclusions: PD without t-PA, in combination with anti-VEGF therapy, improved visual outcomes over 12 months. Early intervention and continuous anti-VEGF administration appear to be key factors in optimizing treatment outcomes. Further studies are needed to establish standardized treatment protocols for SMH associated with nAMD. Full article
Show Figures

Figure 1

21 pages, 3679 KB  
Article
Simulation Modeling of Energy Efficiency of Electric Dump Truck Use Depending on the Operating Cycle
by Aleksey F. Pryalukhin, Boris V. Malozyomov, Nikita V. Martyushev, Yuliia V. Daus, Vladimir Y. Konyukhov, Tatiana A. Oparina and Ruslan G. Dubrovin
World Electr. Veh. J. 2025, 16(4), 217; https://doi.org/10.3390/wevj16040217 - 5 Apr 2025
Cited by 20 | Viewed by 1943
Abstract
Open-pit mining involves the use of vehicles with high load capacity and satisfactory mobility. As experience shows, these requirements are fully met by pneumatic wheeled dump trucks, the traction drives of which can be made using thermal or electric machines. The latter are [...] Read more.
Open-pit mining involves the use of vehicles with high load capacity and satisfactory mobility. As experience shows, these requirements are fully met by pneumatic wheeled dump trucks, the traction drives of which can be made using thermal or electric machines. The latter are preferable due to their environmental friendliness. Unlike dump trucks with thermal engines, which require fuel to be injected into them, electric trucks can be powered by various options of a power supply: centralized, autonomous, and combined. This paper highlights the advantages and disadvantages of different power supply systems depending on their schematic solutions and the quarry parameters for all the variants of the power supply of the dumper. Each quantitative indicator of each factor was changed under conditions consistent with the others. The steepness of the road elevation in the quarry and its length were the factors under study. The studies conducted show that the energy consumption for dump truck movement for all variants of a power supply practically does not change. Another group of factors consisted of electric energy sources, which were accumulator batteries and double electric layer capacitors. The analysis of energy efficiency and the regenerative braking system reveals low efficiency of regeneration when lifting the load from the quarry. In the process of lifting from the lower horizons of the quarry to the dump and back, kinetic energy is converted into heat, reducing the efficiency of regeneration considering the technological cycle of works. Taking these circumstances into account, removing the regenerative braking systems of open-pit electric dump trucks hauling soil or solid minerals from an open pit upwards seems to be economically feasible. Eliminating the regenerative braking system will simplify the design, reduce the cost of a dump truck, and free up usable volume effectively utilized to increase the capacity of the battery packs, allowing for longer run times without recharging and improving overall system efficiency. The problem of considering the length of the path for energy consumption per given gradient of the motion profile was solved. Full article
Show Figures

Figure 1

17 pages, 4328 KB  
Article
Parameter Optimization and Surface Roughness Prediction for the Robotic Adaptive Hydraulic Polishing of NAK80 Mold Steel
by Dequan Shi, Xiongyawei Zeng, Xuhui Wang and Huajun Zhang
Processes 2025, 13(4), 991; https://doi.org/10.3390/pr13040991 - 26 Mar 2025
Cited by 4 | Viewed by 970
Abstract
Pneumatic polishing tools are commonly used in traditional robot mold polishing systems, but they have problems with the stable control of mold surface roughness due to low precision and poor adaptability in polishing force adjustment. The integration of an adaptive hydraulic polishing (AHP) [...] Read more.
Pneumatic polishing tools are commonly used in traditional robot mold polishing systems, but they have problems with the stable control of mold surface roughness due to low precision and poor adaptability in polishing force adjustment. The integration of an adaptive hydraulic polishing (AHP) tool and robot system effectively solves the above problems, providing a robust solution for the high-precision polishing of various molds. This study systematically investigates the robotic polishing of NAK80 mold steel using an AHP-equipped robotic platform with 3M abrasive discs of progressively refined grit sizes (P180, P400, P800). Through single-factor experiments and response surface methodology, the effects of polishing force, rotational speed, and feeding speed on surface roughness were quantitatively analyzed. The relationship between surface roughness and the polishing parameters was derived to elucidate the roughness evolution before and after over-polishing. Orthogonal experiments combined with range analysis identified optimal parameter combinations for P180 (20 N polishing force, 5000 RPM rotational speed, and 5 mm·s−1 feeding speed) and P400 abrasives (10 N polishing force, 4000 RPM rotational speed, and 5 mm·s−1 feeding speed), achieving minimum surface roughness values of 0.08 µm and 0.044 µm, respectively. For P800 abrasives, a central composite design was used to develop a roughness prediction model with a ≤7.14% relative error, and the optimal parameters are a 20 N polishing force, a 5000 RPM rotational speed, and a 5 mm·s−1 feeding speed. The sequential application of the optimized parameters across all the grit sizes can reduce the surface roughness from an initial 0.4 µm to a final 0.017 µm, representing a 95.75% improvement in the surface finish. Full article
Show Figures

Figure 1

25 pages, 7530 KB  
Article
Establishment of a Discrete Element Model for Wheat Particles Based on the Ellipsoidal Method and CFD–DEM Coupling
by Boxuan Gu, Can Hu, Jianfei Xing, Xiaowei He, Xufeng Wang, Kai Ren and Long Wang
Agriculture 2025, 15(4), 369; https://doi.org/10.3390/agriculture15040369 - 10 Feb 2025
Cited by 2 | Viewed by 1620
Abstract
The precision of simulation plays a pivotal role in determining the design parameters of the pressure pipe and distributor in a pneumatic centralized seeding system. This study adopted the discrete element method (DEM) to investigate wheat seed models and their motion characteristics within [...] Read more.
The precision of simulation plays a pivotal role in determining the design parameters of the pressure pipe and distributor in a pneumatic centralized seeding system. This study adopted the discrete element method (DEM) to investigate wheat seed models and their motion characteristics within a pneumatic precision seed-metering device. Using Xinchun No. 6 wheat as the experimental subject, multi-sphere combination models (5, 7, 9, and 11 balls) were employed to describe the seed particle morphology. Moreover, by utilizing the coupling method of the Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD), along with bench tests, the air suspension velocity of seeds and the motion characteristics of the seed-supplying device were analyzed under different particle models. The physical properties of the wheat seeds were measured during the experiments. The simulation results indicated that, as the seed supply rate increased, the airflow velocity distribution within the model became more uniform, enhancing the stability of the suspension velocity. Comparisons between experiments and simulations validated the reliability of the particle models, with the minimum relative error in the suspension velocity determined as 0.21% for the 9-balls model. In addition, compared to the other models, the 9- and 5-balls models more accurately simulated the dynamic behavior of seeds within the seed-supplying device. For the 9-balls model, the relative error of particle velocity in the seed-supplying device is 1.39%, and, in the simulation of displacements in the X and Y directions of the seed-supplying device, the average error is 9.51%. The effectiveness of the multi-sphere combination models was verified, indicating their ability to accurately reflect the dynamic behavior of wheat seeds and improve the design and optimization efficiency of pneumatic precision seed-metering devices. Full article
Show Figures

Figure 1

21 pages, 2228 KB  
Article
Characteristics of High-Temperature Torrefied Wood Pellets for Use in a Blast Furnace Injection System
by Richard Deutsch, Norbert Kienzl, Hugo Stocker, Christoph Strasser and Gernot Krammer
Energies 2025, 18(3), 458; https://doi.org/10.3390/en18030458 - 21 Jan 2025
Cited by 1 | Viewed by 1691
Abstract
As the iron and steel industry needs to cut its CO2 emissions drastically, much effort has been put into establishing new—less greenhouse-gas-intensive—production lines fueled by hydrogen and electricity. Blast furnaces, as a central element of hot iron production, are expected to lose [...] Read more.
As the iron and steel industry needs to cut its CO2 emissions drastically, much effort has been put into establishing new—less greenhouse-gas-intensive—production lines fueled by hydrogen and electricity. Blast furnaces, as a central element of hot iron production, are expected to lose importance, at least in European production strategies. Yet, blast furnaces could play a significant role in the transitional phase, as they allow for the implementation of another CO2-reducing fuel, carbonized wood reducing agents, as a substitute for coal in auxiliary injection systems, which are currently widely used. Wood carbonization yields vastly differing fuel types depending on the severity of the treatment process, mainly its peak temperature. The goal of this study is to define the lowest treatment temperature, i.e., torrefaction temperature, which results in a biogenic reducing agent readily employable in existing coal injection systems, focusing on their conveying properties. Samples of different treatment temperatures ranging from 285 to 340 °C were produced and compared to injection coal regarding their chemical and mechanical properties. The critical conveyability in a standard dense-phase pneumatic conveying system was demonstrated with a sample of pilot-scale high-temperature torrefaction. Full article
Show Figures

Figure 1

21 pages, 12168 KB  
Article
An Octopus-Inspired Soft Pneumatic Robotic Arm
by Emmanouil Papadakis, Dimitris P. Tsakiris and Michael Sfakiotakis
Biomimetics 2024, 9(12), 773; https://doi.org/10.3390/biomimetics9120773 - 19 Dec 2024
Cited by 8 | Viewed by 6782
Abstract
This paper addresses the design, development, control, and experimental evaluation of a soft robot arm whose actuation is inspired by the muscular structure of the octopus arm, one of the most agile biological manipulators. The robot arm is made of soft silicone and [...] Read more.
This paper addresses the design, development, control, and experimental evaluation of a soft robot arm whose actuation is inspired by the muscular structure of the octopus arm, one of the most agile biological manipulators. The robot arm is made of soft silicone and thus possesses enhanced compliance, which is beneficial in a variety of applications where the arm may come into contact with delicate features of its environment. The arm is composed of three elongated segments arranged in series, each one of which contains several pneumatically actuated chambers embedded in its silicone body, which may induce various types of deformations of the segment. By combining the segment deformations, and by imitating the antagonistic muscle group functionality of the octopus, the robot arm can bend in various directions, increase or decrease its length, as well as twist around its central axis. This is one of the few octopus-inspired soft robotic arms where twisting is replicated in its motion characteristics, thus greatly expanding the arm’s potential applications. We present the design process and the development steps of the soft arm, where the molding of two-part silicone of low hardness in 3d-printed molds is employed. In addition, we present the control methodology and the experimental evaluation of both a standalone segment and the entire three-segment arm. This experimental evaluation involves model-free closed-loop control schemes, exploiting visual feedback from a pair of external cameras in order to reconstruct in real time the shape of the soft arm and the pose of its tip. Full article
(This article belongs to the Special Issue Bio-Inspired Soft Robotics: Design, Fabrication and Applications)
Show Figures

Figure 1

18 pages, 7360 KB  
Article
An Adjustable Pneumatic Planter with Reduced Source Vibration for Better Precision in Field Seeding
by Jyotirmay Mahapatra, Prem Shanker Tiwari, Krishna Pratap Singh, Balaji Murhari Nandede, Ramesh K. Sahni, Vikas Pagare, Jagjeet Singh, D. J. Shrinivasa and Sandip Mandal
Sensors 2024, 24(11), 3399; https://doi.org/10.3390/s24113399 - 25 May 2024
Cited by 5 | Viewed by 4021
Abstract
The growing demand for agricultural output and limited resources encourage precision applications to generate higher-order output by utilizing minimal inputs of seed, fertilizer, land, and water. An electronically operated planter was developed, considering problems like ground-wheel skidding, field vibration, and the lack of [...] Read more.
The growing demand for agricultural output and limited resources encourage precision applications to generate higher-order output by utilizing minimal inputs of seed, fertilizer, land, and water. An electronically operated planter was developed, considering problems like ground-wheel skidding, field vibration, and the lack of ease in field adjustments of ground-wheel-driven seed-metering plates. The seed-metering plate of each unit of the developed planter is individually driven by a brushless direct current (BLDC) motor, and a BLDC motor-based aspirator is attached for pneumatic suction of seeds. The revolutions per minute (RPM) of the seed-metering plate are controlled by a microcontroller as per the received data relating to RPM from the ground wheel and the current RPM of the seed-metering plate. A feedback loop with proportional integral derivative (PID) control is responsible for reducing the error. Additionally, each row unit is attached to a parallelogram-based depth control system that can provide depth between 0 and 100 mm. The suction pressure in each unit is regulated as per seed type using the RPM control knob of an individual BLDC motor-based aspirator. The row-to-row spacing can be changed from 350 mm to any desired spacing. The cotton variety selected for the study was RCH 659, and the crucial parameters like orifice size, vacuum pressure, and forward speed were optimized in the laboratory with the adoption of a central composite rotatable design. An orifice diameter of 2.947 mm with vacuum pressure of 3.961 kPa and forward speed of 4.261 km/h was found optimal. A quality feed index of 93% with a precision index of 8.01% was observed from laboratory tests under optimized conditions. Quality feed index and precision index values of 88.8 and 12.75%, respectively, were obtained from field tests under optimized conditions. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Graphical abstract

Back to TopTop