Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (118,194)

Search Parameters:
Keywords = play

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3405 KiB  
Article
Allelic Variation of Helicobacter pylori vacA Gene and Its Association with Gastric Pathologies in Clinical Samples Collected in Jordan
by Mamoon M. Al-Hyassat, Hala I. Al-Daghistani, Lubna F. Abu-Niaaj, Sima Zein and Talal Al-Qaisi
Microorganisms 2025, 13(8), 1841; https://doi.org/10.3390/microorganisms13081841 (registering DOI) - 7 Aug 2025
Abstract
Helicobacter pylori is a well-established causative agent of gastritis, peptic ulcers, gastric adenocarcinoma, and primary gastric lymphoma. It colonizes the human stomach and expresses numerous virulent factors that influence disease progression. Among these factors is the cytotoxin vacA gene, which encodes the vacuolating [...] Read more.
Helicobacter pylori is a well-established causative agent of gastritis, peptic ulcers, gastric adenocarcinoma, and primary gastric lymphoma. It colonizes the human stomach and expresses numerous virulent factors that influence disease progression. Among these factors is the cytotoxin vacA gene, which encodes the vacuolating capacity of the cytotoxin and plays a key role in the bacterium’s pathogenic potential. This study investigated the allelic diversity of the vacA among H. pylori strains infecting patients in Jordan with various gastric conditions and examined potential associations between vacA s-and m- genotypes, histopathological and endoscopic findings, and the development of gastric diseases. Gastric biopsies were collected from 106 patients at two hospitals in Jordan who underwent endoscopic examination. The collected biopsies for each patient were subjected to histopathological assessment, urease detection using the Rapid Urease Test (RUT), a diagnostic test for H. pylori, and molecular detection of the vacA gene and its s and m alleles. The histopathology reports indicated that 83 of 106 patients exhibited gastric disorders, of which 81 samples showed features associated with H. pylori infection. The RUT was positive in 76 of 106 with an accuracy of 93.8%. Real-time polymerase chain reaction (RT-PCR) targeting the 16S rRNA gene confirmed the presence of H. pylori in 79 of 81 histologically diagnosed cases as infected (97.5%), while the vacA gene was detected only in 75 samples (~95%). To explore genetic diversity, PCR-amplified fragments underwent sequence analysis of the vacA gene. The m-allele was detected in 58 samples (73%), the s-allele was detected in 45 (57%), while both alleles were not detected in 13% of samples. The predominant genotype combination among Jordanians was vacA s2/m2 (50%), significantly linked to mild chronic gastritis, followed by s1/m2 (35%) and s1/m1 (11.8%) which are linked to severe gastric conditions including malignancies. Age-and gender-related differences in vacA genotype were observed with less virulent s2m2 and s1m2 genotypes predominating in younger adults specially males, while the more virulent m1 genotypes were found exclusively in females and middle-aged patients. Genomic sequencing revealed extensive diversity within H. pylori, likely reflecting its long-standing co-evolution with human hosts in Jordan. This genetic variability plays a key role in modulating virulence and influencing clinical outcomes. Comprehensive characterization of vacA genotypic variations through whole-genome sequencing is essential to enhance diagnostic precision, strengthen epidemiological surveillance, and inform targeted therapeutic strategies. While this study highlights the significance of the vacA m and s alleles, future research is recommended in order to investigate the other vacA allelic variations, such as the i, d, and c alleles, to achieve a more comprehensive understanding of H. pylori pathogenicity and associated disease severity across different strains. These investigations will be crucial for improving diagnostic accuracy and guiding the development of targeted therapeutic strategies. Full article
(This article belongs to the Special Issue Helicobacter pylori Infection: Detection and Novel Treatment)
Show Figures

Figure 1

21 pages, 1426 KiB  
Review
Physical Activity and Metabolic Disorders—What Does Gut Microbiota Have to Do with It?
by Aneta Sokal-Dembowska, Ewelina Polak-Szczybyło, Kacper Helma, Patrycja Musz, Maciej Setlik, Weronika Fic, Dawid Wachowiak and Sara Jarmakiewicz-Czaja
Curr. Issues Mol. Biol. 2025, 47(8), 630; https://doi.org/10.3390/cimb47080630 (registering DOI) - 7 Aug 2025
Abstract
Obesity, type 2 diabetes mellitus (T2DM) and steatohepatitis associated with metabolic dysfunction (MASLD) are on the rise and pose serious health challenges worldwide. In recent years, researchers have gained a better understanding of the important role of the gut microbiota in the development [...] Read more.
Obesity, type 2 diabetes mellitus (T2DM) and steatohepatitis associated with metabolic dysfunction (MASLD) are on the rise and pose serious health challenges worldwide. In recent years, researchers have gained a better understanding of the important role of the gut microbiota in the development and progression of these diseases. Intestinal dysbiosis can contribute to the occurrence of increased intestinal permeability, inflammation and reduced numbers of commensal bacteria. In obesity, these changes contribute to chronic low-grade inflammation and deregulated metabolism. In MASLD, gut microbiota dysbiosis can promote liver fibrosis and impair bile acid metabolism, while in T2DM, they are associated with impaired glycemic control and insulin resistance. Regular physical activity has a positive effect on the composition of the gut microbiota, increasing its diversity, modulating its metabolic functions, strengthening the intestinal barrier and reducing inflammation. These findings suggest that exercise and microbiota-targeted interventions may play an important role in the prevention and treatment of metabolic diseases. Full article
(This article belongs to the Special Issue Metabolic Interactions Between the Gut Microbiome and Organism)
Show Figures

Figure 1

22 pages, 1909 KiB  
Review
Cassava (Manihot esculenta Crantz): Evolution and Perspectives in Genetic Studies
by Vinicius Campos Silva, Gustavo Reis de Brito, Wellington Ferreira do Nascimento, Eduardo Alano Vieira, Felipe Machado Navaes and Marcos Vinícius Bohrer Monteiro Siqueira
Agronomy 2025, 15(8), 1897; https://doi.org/10.3390/agronomy15081897 (registering DOI) - 7 Aug 2025
Abstract
Cassava (Manihot esculenta Crantz) is essential for global food security, especially in tropical regions. As an important genetic resource, its genetics plays a key role in crop breeding, enabling the development of more productive and pest- and disease-resistant varieties. Scientometrics, which quantitatively [...] Read more.
Cassava (Manihot esculenta Crantz) is essential for global food security, especially in tropical regions. As an important genetic resource, its genetics plays a key role in crop breeding, enabling the development of more productive and pest- and disease-resistant varieties. Scientometrics, which quantitatively analyzes the production and impact of scientific research, is crucial for understanding trends in cassava genetics. This study aimed to apply bibliometric methods to conduct a scientific mapping analysis based on yearly publication trends, paper classification, author productivity, journal impact factor, keywords occurrences, and omic approaches to investigate the application of genetics to the species from 1960 to 2022. From the quantitative data analyzed, 3246 articles were retrieved from the Web of Science platform, of which 654 met the inclusion criteria. A significant increase in scientific production was observed from 1993, peaking in 2018. The first article focused on genetics was published in 1969. Among the most relevant journals, Euphytica stood out with 36 articles, followed by Genetics and Molecular Research (n = 30) and Frontiers in Plant Science (n = 25). Brazil leads in the number of papers on cassava genetics (n = 143), followed by China (n = 110) and the United States (n = 75). The analysis of major methodologies (n = 185) reveals a diversified panorama during the study period. Morpho-agronomic descriptors persisted from 1978 to 2022; however, microsatellite markers were the most widely used, with 102 records. Genomics was addressed in 87 articles, and transcriptomics in 65. By clarifying the current landscape, this study supports cassava conservation and breeding, assists in public policy formulation, and guides future research in the field. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

15 pages, 771 KiB  
Review
Trichoderma: Dual Roles in Biocontrol and Plant Growth Promotion
by Xiaoyan Chen, Yuntong Lu, Xing Liu, Yunying Gu and Fei Li
Microorganisms 2025, 13(8), 1840; https://doi.org/10.3390/microorganisms13081840 (registering DOI) - 7 Aug 2025
Abstract
The genus Trichoderma plays a pivotal role in sustainable agriculture through its multifaceted contributions to plant health and productivity. This review explores Trichoderma’s biological functions, including its roles as a biocontrol agent, plant growth promoter, and stress resilience enhancer. By producing various [...] Read more.
The genus Trichoderma plays a pivotal role in sustainable agriculture through its multifaceted contributions to plant health and productivity. This review explores Trichoderma’s biological functions, including its roles as a biocontrol agent, plant growth promoter, and stress resilience enhancer. By producing various enzymes, secondary metabolites, and volatile organic compounds, Trichoderma effectively suppresses plant pathogens, promotes root development, and primes plant immune responses. This review details the evolutionary adaptations of Trichoderma, which has transitioned from saprotrophism to mycoparasitism and established beneficial symbiotic relationships with plants. It also highlights the ecological versatility of Trichoderma in colonizing plant roots and improving soil health, while emphasizing its role in mitigating both biotic and abiotic stressors. With increasing recognition as a biostimulant and biocontrol agent, Trichoderma has become a key player in reducing chemical inputs and advancing eco-friendly farming practices. This review addresses challenges such as strain selection, formulation stability, and regulatory hurdles and concludes by advocating for continued research to optimize Trichoderma’s applications in addressing climate change, enhancing food security, and promoting a sustainable agricultural future. Full article
(This article belongs to the Special Issue Advances in Plant–Soil–Microbe Interactions)
Show Figures

Figure 1

21 pages, 3287 KiB  
Article
Experimental and Quantum Mechanical Studies of Efficient Re(VII)/Mo(VI) Separation by a Magnetic Amino-Functionalized Polymer
by Bojana Marković, Goran Janjić, Antonije Onjia, Tamara Tadić, Plamen Stefanov and Aleksandra Nastasović
Separations 2025, 12(8), 206; https://doi.org/10.3390/separations12080206 (registering DOI) - 7 Aug 2025
Abstract
A previously synthesized and functionalized magnetic glycidyl methacrylate-based nanocomposite, mPGMT-deta, was tested as a sorbent for Re(VII) oxoanions in Mo(VI)-containing solutions. The effect of pH on the removal efficiency and the separation factor was examined in the range of 2 to 9. A [...] Read more.
A previously synthesized and functionalized magnetic glycidyl methacrylate-based nanocomposite, mPGMT-deta, was tested as a sorbent for Re(VII) oxoanions in Mo(VI)-containing solutions. The effect of pH on the removal efficiency and the separation factor was examined in the range of 2 to 9. A maximum separation factor (βRe/Mo) of 8.85 was observed at pH 6. The nature of rhenium oxoanions binding to the active sites of mPGMT-deta was analyzed using density functional theory (DFT). The calculations indicated that the formation of MoO42−//hedetaH22+ adduct is electrostatically favored at pH 6, while the inclusion of solvation effects makes the formation of ReO4//hedetaH22+ adduct thermodynamically more favorable. Solvation played a dominant role in determining the selectivity of oxoanion sorption to the nanocomposite. The adsorption isotherm, kinetics, and thermodynamics of Re(VII) onto mPGMT-deta were determined. The equilibrium data were best-fitted using the Langmuir adsorption model (R2 = 0.999), with a maximum sorption capacity for Re(VII) of 0.43 mmol/g. The uptake kinetics of the sorption process obeyed the pseudo-second-order model, with the influence of diffusion and external mass transfer. Based on the thermodynamic parameters, Re(VII) sorption was spontaneous and endothermic. Full article
Show Figures

Figure 1

13 pages, 301 KiB  
Review
The Impact of Genital Infections on Women’s Fertility
by Sara Occhipinti, Carla Ettore, Giosuè Giordano Incognito, Chiara Gullotta, Dalila Incognito, Roberta Foti, Giuseppe Nunnari and Giuseppe Ettore
Acta Microbiol. Hell. 2025, 70(3), 33; https://doi.org/10.3390/amh70030033 (registering DOI) - 7 Aug 2025
Abstract
Sexually transmitted infections (STIs) are a significant global health concern, affecting millions of people worldwide, particularly sexually active adolescents and young adults. These infections, caused by various pathogens, including bacteria, viruses, parasites, and fungi, can have profound implications for women’s reproductive health and [...] Read more.
Sexually transmitted infections (STIs) are a significant global health concern, affecting millions of people worldwide, particularly sexually active adolescents and young adults. These infections, caused by various pathogens, including bacteria, viruses, parasites, and fungi, can have profound implications for women’s reproductive health and fertility. This review explores the role of vaginal and uterine infections in women’s infertility, focusing on the most common pathogens and their impact on reproductive outcomes. Bacterial infections, such as those caused by intracellular bacteria (Mycoplasma, Ureaplasma, and Chlamydia), Neisseria gonorrhoeae, and bacterial vaginosis, are among the most prevalent causes of infertility in women. Studies have shown that these infections can lead to pelvic inflammatory disease, tubal occlusion, and endometrial damage, all of which can impair fertility. Mycobacterium tuberculosis, in particular, is a significant cause of genital tuberculosis and infertility in high-incidence countries. Viral infections, such as Human papillomavirus (HPV) and Herpes simplex virus (HSV), can also affect women’s fertility. While the exact role of HPV in female infertility remains unclear, studies suggest that it may increase the risk of endometrial implantation issues and miscarriage. HSV may be associated with unexplained infertility. Parasitic infections, such as trichomoniasis and schistosomiasis, can directly impact the female reproductive system, leading to infertility, ectopic pregnancy, and other complications. Fungal infections, such as candidiasis, are common but rarely have serious outcomes related to fertility. The vaginal microbiome plays a crucial role in maintaining reproductive health, and alterations in the microbial balance can increase susceptibility to STIs and infertility. Probiotics have been proposed as a potential therapeutic strategy to restore the vaginal ecosystem and improve fertility outcomes, although further research is needed to establish their efficacy. In conclusion, vaginal and uterine infections contribute significantly to women’s infertility, with various pathogens affecting the reproductive system through different mechanisms. Early diagnosis, appropriate treatment, and preventive measures are essential to mitigate the impact of these infections on women’s reproductive health and fertility. Full article
13 pages, 1941 KiB  
Article
When Two Worlds Collide: The Contribution and Association Between Genetics (APOEε4) and Neuroinflammation (IL-1β) in Alzheimer’s Neuropathogenesis
by Jagadeesh Narasimhappagari, Ling Liu, Meenakshisundaram Balasubramaniam, Srinivas Ayyadevara and W. Sue T. Griffin
Cells 2025, 14(15), 1216; https://doi.org/10.3390/cells14151216 (registering DOI) - 7 Aug 2025
Abstract
Introduction: Here we consider the collision of a genetic factor and an essential instigator in Alzheimer’s neuropathogenesis: (i) the Alzheimer’s gene (APOEε4), which downregulates lysosomal autophagy and induces synthesis of (ii) the instigator, interleukin-1β (IL-1β), which drives synthesis of βAPP for Aβ plaques [...] Read more.
Introduction: Here we consider the collision of a genetic factor and an essential instigator in Alzheimer’s neuropathogenesis: (i) the Alzheimer’s gene (APOEε4), which downregulates lysosomal autophagy and induces synthesis of (ii) the instigator, interleukin-1β (IL-1β), which drives synthesis of βAPP for Aβ plaques and of MAPKp38 for phosphorylation of tau for formation of neurofibrillary tangles (NFTs), the two cardinal features of AD. Methods: RT-PCR, immunoblotting and immunohistochemistry techniques were used to assess the levels of IL-1β and its signaling cascade in ADε4,4, ε3,3, and age-matched controls (AMC3,3) in hippocampal regions of the brain. Results: IL-1β and its downstream signaling proteins TLR-2, MyD88, NFκB, COX-1, and COX-2 were greater in tissues from ADε4,4 than ADε3,3 or AMC3,3. Cathepsin B, D, and L levels, which play a pivotal role and are necessary for lysosomal autophagy, were lower in ADε4,4 than in ADε3,3 or AMC ε3,3. IL-1β and its downstream signaling cascade TLR-2, MyD88, NFκB, COX-1, and COX-2 expression levels were high in SH-SY5Y and T98G cells transfected with APOεE4. Conclusions: APOEε4 causes Alzheimer’s by downregulating autophagy, thus inducing IL-1β for Aβ plaque and neurofibrillary tangle formation. Full article
(This article belongs to the Special Issue Advanced Research in Neurogenesis and Neuroinflammation)
Show Figures

Figure 1

28 pages, 14802 KiB  
Article
Freezing Fog Microphysics and Visibility Based on CFACT Feb 19 Case
by Onur Durmus, Ismail Gultepe, Orhan Sen, Zhaoxia Pu, Eric R. Pardyjak, Sebastian W. Hoch, Alexei Perelet, Anna G. Hallar, Gerardo Carrillo-Cardenas and Simla Durmus
Remote Sens. 2025, 17(15), 2728; https://doi.org/10.3390/rs17152728 (registering DOI) - 7 Aug 2025
Abstract
The objective of this study is to analyze microphysical parameters affecting visibility parameterizations of a freezing fog case that occurred on 19 February 2022, during the Cold Fog Amongst Complex Terrain (CFACT) project conducted in a high-elevation alpine valley in Utah, USA. Observations [...] Read more.
The objective of this study is to analyze microphysical parameters affecting visibility parameterizations of a freezing fog case that occurred on 19 February 2022, during the Cold Fog Amongst Complex Terrain (CFACT) project conducted in a high-elevation alpine valley in Utah, USA. Observations are collected using visibility, droplet spectra, ice crystal spectra, and aerosol spectral instruments, as well as in-situ meteorological instruments. Particle phase is determined from relative humidity with respect to water (RHw) as well as ground cloud imaging probe (GCIP), ceilometer (CL61) depolarization ratio, and icing accumulation on the platforms. Results showed that freezing droplet density can affect visibility (Vis) up to 100 m during Vis less than 1 km. In addition, increasing volume can lead to up to a 2 μm increase in droplet radius due to a change in the chemical composition of aerosols from Sodium Chloride (NaCl) to Ammonium Nitrate (NH4NO3). Overall, comparisons suggested that Vis parameterizations are highly variable, and freezing fog conditions resulted in lower Vis values compared to warm fog microphysical parameterizations. Furthermore, riming of freezing fog conditions can lead to more than 50% uncertainty in Vis. It is concluded that changing aerosol composition and freezing fog droplet density and riming can play a major role in Vis simulations. Full article
Show Figures

Figure 1

14 pages, 2183 KiB  
Article
Interannual Variations in Soil Bacterial Community Diversity and Analysis of Influencing Factors During the Restoration Process of Scirpus Mariqueter Wetlands
by Yaru Li, Shubo Fang, Qinyi Wang, Pengling Wu, Peimin He and Wei Liu
Biology 2025, 14(8), 1013; https://doi.org/10.3390/biology14081013 - 7 Aug 2025
Abstract
Due to human activities and the invasion of Spartina alterniflora, the population of Scirpus mariqueter (S. mariqueter) in the Yangtze River Estuary has gradually declined. To address this issue, numerous restoration efforts have been undertaken. To investigate the changes and [...] Read more.
Due to human activities and the invasion of Spartina alterniflora, the population of Scirpus mariqueter (S. mariqueter) in the Yangtze River Estuary has gradually declined. To address this issue, numerous restoration efforts have been undertaken. To investigate the changes and influencing factors of soil bacterial communities during the restoration of S. mariqueter wetlands, we selected S. mariqueter populations as the research focus and divided the samples into two years, S1 and S2. High-throughput sequencing technology was employed for observation and analysis. The results revealed that from S1 to S2, soil bacterial diversity in the S. mariqueter wetland increased significantly and displayed clear seasonal patterns. The dominant bacterial phyla included Proteobacteria, Bacteroidota, Firmicutes, and Acidobacteriota. Among these, Proteobacteria had the highest relative abundance, while Acidobacteriota showed the most pronounced increase, surpassing Bacteroidota and Firmicutes to become the second most abundant group. Redundancy analysis (RDA) indicated that soil organic matter and electrical conductivity were the key factors influencing the composition and diversity of the soil bacterial community, with Acidobacteriota playing a dominant role during wetland restoration. In conclusion, during the ecological restoration of the S. mariqueter wetlands, attention should be given to environmental factors such as soil organic matter and electrical conductivity, while the regulatory role of Acidobacteriota in wetland soils should not be overlooked. This study provides a microscopic perspective on the interactions between microbial diversity and ecosystem functions in coastal wetlands, offering valuable guidance for the ecological restoration of degraded wetlands. Full article
Show Figures

Figure 1

17 pages, 5085 KiB  
Article
A Segmentation Network with Two Distinct Attention Modules for the Segmentation of Multiple Renal Structures in Ultrasound Images
by Youhe Zuo, Jing Li and Jing Tian
Diagnostics 2025, 15(15), 1978; https://doi.org/10.3390/diagnostics15151978 - 7 Aug 2025
Abstract
Background/Objectives: Ultrasound imaging is widely employed to assess kidney health and diagnose renal diseases. Accurate segmentation of renal structures in ultrasound images plays a critical role in the diagnosis and treatment of related kidney diseases. However, challenges such as speckle noise and [...] Read more.
Background/Objectives: Ultrasound imaging is widely employed to assess kidney health and diagnose renal diseases. Accurate segmentation of renal structures in ultrasound images plays a critical role in the diagnosis and treatment of related kidney diseases. However, challenges such as speckle noise and low contrast still hinder precise segmentation. Methods: In this work, we propose an encoder–decoder architecture, named MAT-UNet, which incorporates two distinct attention mechanisms to enhance segmentation accuracy. Specifically, the multi-convolution pixel-wise attention module utilizes the pixel-wise attention to enable the network to focus more effectively on important features at each stage. Furthermore, the triple-branch multi-head self-attention mechanism leverages the different convolution layers to obtain diverse receptive fields, capture global contextual information, compensate for the local receptive field limitations of convolution operations, and boost the segmentation performance. We evaluate the segmentation performance of the proposed MAT-UNet using the Open Kidney US Data Set (OKUD). Results: For renal capsule segmentation, MAT-UNet achieves a Dice Similarity Coefficient (DSC) of 93.83%, a 95% Hausdorff Distance (HD95) of 32.02 mm, an Average Surface Distance (ASD) of 9.80 mm, and an Intersection over Union (IOU) of 88.74%. Additionally, MAT-UNet achieves a DSC of 84.34%, HD95 of 35.79 mm, ASD of 11.17 mm, and IOU of 74.26% for central echo complex segmentation; a DSC of 66.34%, HD95 of 82.54 mm, ASD of 19.52 mm, and IOU of 51.78% for renal medulla segmentation; and a DSC of 58.93%, HD95 of 107.02 mm, ASD of 21.69 mm, and IOU of 43.61% for renal cortex segmentation. Conclusions: The experimental results demonstrate that our proposed MAT-UNet achieves superior performance in multiple renal structure segmentation in ultrasound images. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

24 pages, 1966 KiB  
Article
A Hybrid Bayesian Machine Learning Framework for Simultaneous Job Title Classification and Salary Estimation
by Wail Zita, Sami Abou El Faouz, Mohanad Alayedi and Ebrahim E. Elsayed
Symmetry 2025, 17(8), 1261; https://doi.org/10.3390/sym17081261 - 7 Aug 2025
Abstract
In today’s fast-paced and evolving job market, salary continues to play a critical role in career decision-making. The ability to accurately classify job titles and predict corresponding salary ranges is increasingly vital for organizations seeking to attract and retain top talent. This paper [...] Read more.
In today’s fast-paced and evolving job market, salary continues to play a critical role in career decision-making. The ability to accurately classify job titles and predict corresponding salary ranges is increasingly vital for organizations seeking to attract and retain top talent. This paper proposes a novel approach, the Hybrid Bayesian Model (HBM), which combines Bayesian classification with advanced regression techniques to jointly address job title identification and salary prediction. HBM is designed to capture the inherent complexity and variability of real-world job market data. The model was evaluated against established machine learning (ML) algorithms, including Random Forests (RF), Support Vector Machines (SVM), Decision Trees (DT), and multinomial naïve Bayes classifiers. Experimental results show that HBM outperforms these benchmarks, achieving 99.80% accuracy, 99.85% precision, 100% recall, and an F1 score of 98.8%. These findings highlight the potential of hybrid ML frameworks to improve labor market analytics and support data-driven decision-making in global recruitment strategies. Consequently, the suggested HBM algorithm provides high accuracy and handles the dual tasks of job title classification and salary estimation in a symmetric way. It does this by learning from class structures and mirrored decision limits in feature space. Full article
(This article belongs to the Special Issue Mathematics: Feature Papers 2025)
Show Figures

Figure 1

13 pages, 6104 KiB  
Article
Light-Driven Enhancement of Oxygen Evolution for Clean Energy Conversion: Co3O4-TiO2/CNTs P-N Heterojunction Catalysts Enabling Efficient Carrier Separation and Reduced Overpotential
by Weicheng Zhang, Taotao Zeng, Yi Yu, Yuling Liu, Hao He, Ping Li and Zeyan Zhou
Energies 2025, 18(15), 4185; https://doi.org/10.3390/en18154185 - 7 Aug 2025
Abstract
In the renewable energy conversion system, water electrolysis technology is widely regarded as the core means to achieve clean hydrogen production. However, the anodic oxygen evolution reaction (OER) has become a key bottleneck limiting the overall water splitting efficiency due to its slow [...] Read more.
In the renewable energy conversion system, water electrolysis technology is widely regarded as the core means to achieve clean hydrogen production. However, the anodic oxygen evolution reaction (OER) has become a key bottleneck limiting the overall water splitting efficiency due to its slow kinetic process and high overpotential. This study proposes a novel Co3O4-TiO2/CNTs p-n heterojunction catalyst, which was synthesized by hydrothermal method and significantly improved OER activity by combining heterojunction interface regulation and light field enhancement mechanism. Under illumination conditions, the catalyst achieved an overpotential of 390 mV at a current density of 10 mA cm−2, which is superior to the performance of the dark state (410 mV) and single component Co3O4-TiO2 catalysts. The material characterization results indicate that the p-n heterojunction structure effectively promotes the separation and migration of photogenerated carriers and enhances the visible light absorption capability. This work expands the design ideas of energy catalytic materials by constructing a collaborative electric light dual field regulation system, providing a new strategy for developing efficient and low-energy water splitting electrocatalysts, which is expected to play an important role in the future clean energy production and storage field. Full article
Show Figures

Figure 1

21 pages, 767 KiB  
Article
Promoting Sustainable Mobility on Campus: Uncovering the Behavioral Mechanisms Behind Non-Compliant E-Bike Use Among University Students
by Huihua Chen, Yongqi Guo and Lei Li
Sustainability 2025, 17(15), 7147; https://doi.org/10.3390/su17157147 - 7 Aug 2025
Abstract
Electric bikes (e-bikes) offer a low-carbon, space-efficient solution for campus mobility, yet their sustainable potential is increasingly challenged by patterns of non-compliant use, including speeding, informal parking, and unauthorized charging. This study integrates the Theory of Planned Behavior (TPB) and the Technology Acceptance [...] Read more.
Electric bikes (e-bikes) offer a low-carbon, space-efficient solution for campus mobility, yet their sustainable potential is increasingly challenged by patterns of non-compliant use, including speeding, informal parking, and unauthorized charging. This study integrates the Theory of Planned Behavior (TPB) and the Technology Acceptance Model (TAM) to examine the cognitive and contextual factors that shape such behaviors among university students. Drawing on a survey of 408 e-bike users and structural equation modeling, the results show that non-compliance is primarily driven by perceived usefulness, ease of action, and behavioral feasibility, with affective and normative factors playing indirect, reinforcing roles. Importantly, actual behavior is influenced not only by intention but also by students’ perceived capacity to act within low-enforcement environments. These findings highlight the need to align behavioral perceptions with sustainability goals. The study contributes to sustainable mobility governance by clarifying key psychological pathways and offering targeted insights for designing perception-sensitive interventions in campus transport systems. Furthermore, by promoting compliance-oriented campus mobility, this research highlights a pathway toward enhancing the resilience of transport systems through behavioral adaptation within semi-regulated environments. Full article
Show Figures

Figure 1

19 pages, 2093 KiB  
Article
Risk Assessment of Prefabricated Building Projects Based on the G1-CRITIC Method and Cloud Model: A Case Study from China
by Zhipeng Zhang, Lini Duan and Xinran Du
Buildings 2025, 15(15), 2787; https://doi.org/10.3390/buildings15152787 - 7 Aug 2025
Abstract
To enhance the ability to identify and analyze the construction safety risks of prefabricated building projects, this paper explores the risk factors affecting the construction safety of prefabricated buildings from the perspective of the construction stage. Based on the WSR theory, this paper [...] Read more.
To enhance the ability to identify and analyze the construction safety risks of prefabricated building projects, this paper explores the risk factors affecting the construction safety of prefabricated buildings from the perspective of the construction stage. Based on the WSR theory, this paper identifies risk-influencing factors from five dimensions: personnel, materials, management, technology, and environment, and constructs a safety risk assessment index system. This paper establishes a risk assessment model based on the G1-CRITIC method and cloud model. Firstly, it quantitatively analyzes the weights of the risk indicators for prefabricated building construction, and then evaluates the specific degree of impact of each indicator on the construction risk of this type of project. The research results show that the project is at the low-risk level, but there are still some potential risks in terms of material and technical factors, which require close attention and targeted management. The evaluation results obtained by applying this model are consistent with the current actual situation of prefabricated building construction, further demonstrating the applicability of this model. The risk assessment model proposed in this paper, by focusing on a specific type of risk, comprehensively incorporates the fuzziness and randomness of risk factors, thereby more effectively capturing the dynamic characteristics of risk evolution. This model can effectively evaluate the level of safety risk management and plays a positive role in reducing the incidence of engineering accidents. Furthermore, it also provides practical experience that can be drawn upon by risk managers of similar projects which holds significant theoretical value and practical guiding significance. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

19 pages, 787 KiB  
Review
Comparison of Polynucleotide and Polydeoxyribonucleotide in Dermatology: Molecular Mechanisms and Clinical Perspectives
by Sung Tae Kim
Pharmaceutics 2025, 17(8), 1024; https://doi.org/10.3390/pharmaceutics17081024 - 7 Aug 2025
Abstract
Polynucleotide (PN) and polydeoxyribonucleotide (PDRN) are DNA-derived biopolymers increasingly recognized for their potential in dermatology. Despite their structural similarities, PN and PDRN exhibit distinct functions due to differences in polymer length and molecular weight. PN, composed of longer DNA fragments, plays a key [...] Read more.
Polynucleotide (PN) and polydeoxyribonucleotide (PDRN) are DNA-derived biopolymers increasingly recognized for their potential in dermatology. Despite their structural similarities, PN and PDRN exhibit distinct functions due to differences in polymer length and molecular weight. PN, composed of longer DNA fragments, plays a key role in extracellular matrix remodeling. Conversely, PDRN, composed of relatively shorter oligonucleotide sequences than those of PN, enhances skin condition through adenosine receptor activations and supports nucleotide synthesis via both the salvage and de novo pathways. This review provides a critical comparison of the molecular characteristics and functions of PN and PDRN with particular emphasis on their dermatological applications. By delineating their respective roles in esthetic and regenerative medicine, we aim to highlight recent advances that may guide the development of optimized treatment strategies and foster evidence-based clinical practice. Full article
(This article belongs to the Collection Advanced Pharmaceutical Science and Technology in Korea)
Show Figures

Figure 1

Back to TopTop