Experimental and Quantum Mechanical Studies of Efficient Re(VII)/Mo(VI) Separation by a Magnetic Amino-Functionalized Polymer
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instrumentation and Characterization
2.3. Sorption Experiments
2.3.1. Separation of Re(VII) and Mo(VI)
2.3.2. Adsorption Isotherm Experiments
2.3.3. Kinetic Experiments
2.3.4. Thermodynamic Experiments
2.4. Desorption Experiment
2.5. Theoretical Calculations
3. Results and Discussion
3.1. The pH Influence on Separation of Re(VII) and Mo(VI)
3.2. Sorption Mechanism
3.2.1. Theoretical Analysis of Physisorption-Driven Binding Energies
3.2.2. FTIR and XPS Analysis
3.3. Adsorption Isotherm Study
3.4. Kinetic Study
3.5. Thermodynamic Study
3.6. Desorption Study
3.7. Comparison Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yagi, R.; Okabe, T.H. Review: Rhenium and Its Smelting and Recycling Technologies. Int. Mater. Rev. 2024, 69, 142–177. [Google Scholar] [CrossRef]
- Dilworth, J.R. Rhenium Chemistry—Then and Now. Coord. Chem. Rev. 2021, 436, 213822. [Google Scholar] [CrossRef]
- Chatterjee, T.; Ravikanth, M. Rhenium Complexes of Porphyrinoids. Coord. Chem. Rev. 2020, 422, 213480. [Google Scholar] [CrossRef]
- Tan, Z.H.; Wang, X.G.; Ye, L.H.; Hou, G.C.; Li, R.; Yang, Y.H.; Liu, J.L.; Liu, J.D.; Yang, L.; Wang, B.; et al. Effects of Rhenium on the Microstructure and Creep Properties of Novel Nickle-Based Single Crystal Superalloys. Mater. Sci. Eng. A 2019, 761, 138042. [Google Scholar] [CrossRef]
- Zhang, M.; Du, J.; Dong, Z.; Qi, W.; Zhao, L. Recovery and Separation of Mo(VI) and Re(VII) from Mo-Re Bearing Solution by Gallic Acid-Modified Cellulose Microspheres. Sep. Purif. Technol. 2022, 281, 119879. [Google Scholar] [CrossRef]
- Jing, H.; Zhang, Q.; Hu, Z.; Jiang, H.; Gao, B.; Zhang, T.; Yin, Y. Advances in Enrichment and Purification Technology of Ammonium Perrhenate. Separations 2025, 12, 89. [Google Scholar] [CrossRef]
- Shen, L.; Tesfaye, F.; Li, X.; Lindberg, D.; Taskinen, P. Review of Rhenium Extraction and Recycling Technologies from Primary and Secondary Resources. Miner. Eng. 2021, 161, 106719. [Google Scholar] [CrossRef]
- Lin, S.; Mao, J.; Xiong, J.; Tong, Y.; Lu, X.; Zhou, T.; Wu, X. Toward a Mechanistic Understanding of Rhenium(VII) Adsorption Behavior onto Aminated Polymeric Adsorbents: Batch Experiments, Spectroscopic Analyses, and Theoretical Computations. Chemosphere 2023, 345, 140485. [Google Scholar] [CrossRef]
- Guagliardi, I.; Rovella, N.; Apollaro, C.; Bloise, A.; Rosa, R.D.; Scarciglia, F.; Buttafuoco, G. Modelling Seasonal Variations of Natural Radioactivity in Soils: A Case Study in Southern Italy. J. Earth Syst. Sci. 2016, 125, 1569–1578. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, H.; Lou, Z.; Shan, W.; Xing, Z.; Deng, G.; Wu, D.; Fang, D.; Biswas, B.K. Selective Adsorption of Molybdenum(VI) from Mo–Re Bearing Effluent by Chemically Modified Astringent Persimmon. J. Hazard. Mater. 2011, 186, 1855–1861. [Google Scholar] [CrossRef]
- Cai, X.; Kong, L.; Hu, X.; Peng, X. Recovery of Re(VII) from Strongly Acidic Wastewater Using Sulphide: Acceleration by UV Irradiation and the Underlying Mechanism. J. Hazard. Mater. 2021, 416, 126233. [Google Scholar] [CrossRef]
- Huo, T.; Chen, Z.; Ou, X.; Wei, X.; Sun, Y.; Liu, C.; Li, H.; Chen, Z.; Zhu, J.; Lu, S.; et al. Fabricating Magnetic Thermo-Sensitive Imprinted Polymers with Enhanced Adsorption and Recognition Performance of Rhenium. React. Funct. Polym. 2023, 184, 105512. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, S.; Liu, Y.; Sarkar, A.K.; Bediako, J.K.; Kim, H.Y.; Yun, Y. Super-Stable, Highly Efficient, and Recyclable Fibrous Metal–Organic Framework Membranes for Precious Metal Recovery from Strong Acidic Solutions. Small 2019, 15, 1805242. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Wang, Y.; Liu, B.; Huang, Y.; Su, S.; Sun, H.; Yang, S. Rhenium Extraction from Dilute Solution by Precipitation Flotation and Oxidative Volatilization Techniques. J. Environ. Chem. Eng. 2023, 11, 111457. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, B.; Han, G.; Wang, M.; Huang, Y.; Su, S.; Xue, Y.; Wang, Y. Clean Separation and Purification for Strategic Metals of Molybdenum and Rhenium from Minerals and Waste Alloy Scraps–A Review. Resour. Conserv. Recycl. 2022, 181, 106232. [Google Scholar] [CrossRef]
- Olea, F.; Valenzuela, M.; Zurob, E.; Parraguez, B.; Abejón, R.; Cabezas, R.; Merlet, G.; Tapia, R.; Romero, J.; Quijada-Maldonado, E. Hydrophobic Eutectic Solvents for the Selective Solvent Extraction of Molybdenum (VI) and Rhenium (VII) from a Synthetic Pregnant Leach Solution. J. Mol. Liq. 2023, 385, 122415. [Google Scholar] [CrossRef]
- Weng, H.; Zhang, P.; Guo, Z.; Chen, G.; Shen, W.; Chen, J.; Zhao, X.; Lin, M. Efficient and Ultrafast Adsorption of Rhenium by Functionalized Hierarchically Mesoporous Silica: A Combined Strategy of Topological Construction and Chemical Modification. ACS Appl. Mater. Interfaces 2021, 13, 8249–8262. [Google Scholar] [CrossRef]
- Elwakeel, K.Z.; Mohammad, R.M.; Alghamdi, H.M.; Elgarahy, A.M. Hybrid Adsorbents for Pollutants Removal: A Comprehensive Review of Chitosan, Glycidyl Methacrylate and Their Composites. J. Mol. Liq. 2025, 426, 127262. [Google Scholar] [CrossRef]
- Bao, W.; Yu, T.; Liu, Y.; Sun, Z.; Yuan, L.; Mei, L.; Shi, W.; Zhang, Z. Cutting-Edge Characterization Techniques to Decipher Adsorption Mechanisms of Radionuclides and Heavy Metals. Coord. Chem. Rev. 2025, 539, 216748. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, K.; Tan, X.; Wang, X.; Alsaedi, A.; Hayat, T.; Chen, C. Interaction Mechanism of Re(VII) with Zirconium Dioxide Nanoparticles Archored onto Reduced Graphene Oxides. ACS Sustain. Chem. Eng. 2017, 5, 2163–2171. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Zhou, Y.; Fang, F.; Li, X. Tailored Metal-Organic Frameworks Facilitate the Simultaneously High-Efficient Sorption of UO22+ and ReO4− in Water. Sci. Total Environ. 2021, 799, 149468. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.-W.; Li, Z.-J.; Wu, Q.-Y.; Zheng, L.-R.; Zhou, L.-M.; Chai, Z.-F.; Wang, X.-L.; Shi, W.-Q. Simultaneous Elimination of Cationic Uranium(vi) and Anionic Rhenium(vii) by Graphene Oxide–Poly(Ethyleneimine) Macrostructures: A Batch, XPS, EXAFS, and DFT Combined Study. Environ. Sci. Nano 2018, 5, 2077–2087. [Google Scholar] [CrossRef]
- Hou, Y.; Fu, Z.; Luo, J.; Liu, X.; Sun, H.; Li, G. Selective Separation of Rhenium from Oxygen-Pressure Leach Solution of Molybdenite Concentrate Using Modified D201 Resin: Experiments and Theoretical Calculations. J. Mol. Liq. 2024, 408, 125371. [Google Scholar] [CrossRef]
- Marković, B.M.; Vuković, Z.M.; Spasojević, V.V.; Kusigerski, V.B.; Pavlović, V.B.; Onjia, A.E.; Nastasović, A.B. Selective Magnetic GMA Based Potential Sorbents for Molybdenum and Rhenium Sorption. J. Alloys Compd. 2017, 705, 38–50. [Google Scholar] [CrossRef]
- Muhammad, A.; Yang, Q.; Kanwal, A.; Zhao, J.; Nawaz, M.; Ren, H.; Yang, P. Highly Selective Adsorption of Rhenium by Amyloid-like Protein Material. Sci. China Technol. Sci. 2024, 67, 1417–1430. [Google Scholar] [CrossRef]
- Tadić, T.; Marković, B.; Vuković, Z.; Stefanov, P.; Maksin, D.; Nastasović, A.; Onjia, A. Fast Gold Recovery from Aqueous Solutions and Assessment of Antimicrobial Activities of Novel Gold Composite. Metals 2023, 13, 1864. [Google Scholar] [CrossRef]
- Nastasović, A.; Marković, B.; Suručić, L.; Onjia, A. Methacrylate-Based Polymeric Sorbents for Recovery of Metals from Aqueous Solutions. Metals 2022, 12, 814. [Google Scholar] [CrossRef]
- Schleder, G.R.; Padilha, A.C.M.; Acosta, C.M.; Costa, M.; Fazzio, A. From DFT to Machine Learning: Recent Approaches to Materials Science–a Review. J. Phys. Mater. 2019, 2, 032001. [Google Scholar] [CrossRef]
- Mamand, D.M.; Awla, A.H.; Kak Anwer, T.M.; Qadr, H.M. Quantum Chemical Study of Heterocyclic Organic Compounds on the Corrosion Inhibition. Chim. Tech. Acta 2022, 9, 20229203. [Google Scholar] [CrossRef]
- Mazurek, A.H.; Szeleszczuk, Ł.; Pisklak, D.M. Periodic DFT Calculations—Review of Applications in the Pharmaceutical Sciences. Pharmaceutics 2020, 12, 415. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-K. Density Functional Theory (DFT) Calculations and Catalysis. Catalysts 2021, 11, 454. [Google Scholar] [CrossRef]
- Hasnip, P.J.; Refson, K.; Probert, M.I.J.; Yates, J.R.; Clark, S.J.; Pickard, C.J. Density Functional Theory in the Solid State. Phil. Trans. R. Soc. A. 2014, 372, 20130270. [Google Scholar] [CrossRef]
- Adekoya, O.C.; Adekoya, G.J.; Sadiku, E.R.; Hamam, Y.; Ray, S.S. Application of DFT Calculations in Designing Polymer-Based Drug Delivery Systems: An Overview. Pharmaceutics 2022, 14, 1972. [Google Scholar] [CrossRef] [PubMed]
- Malik, L.A.; Pandith, A.H.; Qureashi, A.; Bashir, A.; Manzoor, T. The Emerging Role of Quantum Computations in Elucidating Adsorption Mechanism of Heavy Metal Ions: A Review. Chem. Pap. 2022, 76, 3351–3370. [Google Scholar] [CrossRef]
- Suručić, L.; Janjić, G.; Marković, B.; Tadić, T.; Vuković, Z.; Nastasović, A.; Onjia, A. Speciation of Hexavalent Chromium in Aqueous Solutions Using a Magnetic Silica-Coated Amino-Modified Glycidyl Methacrylate Polymer Nanocomposite. Materials 2023, 16, 2233. [Google Scholar] [CrossRef]
- Markovic, B.; Spasojevic, V.; Dapcevic, A.; Vukovic, Z.; Pavlovic, V.; Randjelovic, D.; Nastasovic, A. Characterization of Glycidyl Methacrylate Based Magnetic Nanocomposites. Hem. Ind. 2019, 73, 25–35. [Google Scholar] [CrossRef]
- Li, W.; Dong, X.; Zhu, L.; Tang, H. Highly Selective Separation of Re(VII) from Mo(VI) by Using Biomaterial-Based Ionic Gel Adsorbents: Extractive Adsorption Enrichment of Re and Surface Blocking of Mo. Chem. Eng. J. 2020, 387, 124078. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef]
- Cui, X.; Wang, J.; Zhao, Q.; Li, C.; Huang, J.; Hu, X.; Li, J.; Li, M. Application of a Novel Bifunctionalized Magnetic Biochar to Remove Cr(VI) from Wastewater: Performance and Mechanism. Separations 2023, 10, 358. [Google Scholar] [CrossRef]
- Xu, B.; Yin, X.; Ning, S.; Zhong, Y.; Wang, X.; Fujita, T.; Hamza, M.F.; Wei, Y. Study of the Adsorption and Separation Behavior of Scandium and Zirconium by Trialkyl Phosphine Oxide-Modified Resins in Sulfuric and Hydrochloric Acid Media. Toxics 2024, 12, 350. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Systèmes, D. Free Download: BIOVIA Discovery Studio Visualizer. Available online: https://discover.3ds.com/discovery-studio-visualizer-download (accessed on 29 July 2025).
- Boys, S.F.; Bernardi, F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Cheng, Q.; Luo, E.; Gan, L.; Luo, W.; Luo, X.; Wan, S.; Li, S. Construction of Quaternary Ammonium Nitroxy-Hybrid Magnetic Mesoporous Silica Adsorbent System and Its Selective Adsorption Research of Re(Ⅶ)/Cu(Ⅱ). Sep. Purif. Technol. 2025, 354, 129181. [Google Scholar] [CrossRef]
- Shi, T.; Ma, L.; Xi, X.; Nie, Z. Preparation of Functional Polytertiary Amine Macroporous Resin and Its Adsorption and Separation Properties for Tungsten and Molybdenum. Sep. Purif. Technol. 2024, 332, 125759. [Google Scholar] [CrossRef]
- Zhong, Z.; Yu, G.; Mo, W.; Zhang, C.; Huang, H.; Li, S.; Gao, M.; Lu, X.; Zhang, B.; Zhu, H. Enhanced Phosphate Sequestration by Fe(iii) Modified Biochar Derived from Coconut Shell. RSC Adv. 2019, 9, 10425–10436. [Google Scholar] [CrossRef]
- Yin, Z.; Liu, N.; Bian, S.; Li, J.; Xu, S.; Zhang, Y. Enhancing the Adsorption Capability of Areca Leaf Biochar for Methylene Blue by K2FeO4 -Catalyzed Oxidative Pyrolysis at Low Temperature. RSC Adv. 2019, 9, 42343–42350. [Google Scholar] [CrossRef]
- Fan, L.; Li, W.; Dai, Z.; Zhou, M.; Qiu, Y. Efficient Separation of Re (VII) and Mo (VI) by Extraction Using E-1006–Ammonium Sulfate Aqueous Two-Phase System. Separations 2024, 11, 142. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, B.; Liu, B.; Han, G.; Du, Y.; Su, S. Adsorption Behaviors of Strategic W/Mo/Re from Wastewaters by Novel Magnetic Ferrite Nanoparticles: Adsorption Mechanism Underlying Selective Separation. J. Hazard. Mater. 2022, 424, 127675. [Google Scholar] [CrossRef]
- Pantsar, T.; Poso, A. Binding Affinity via Docking: Fact and Fiction. Molecules 2018, 23, 1899. [Google Scholar] [CrossRef]
- Zhou, C.; Cheng, X.; Zhao, O.; Liu, S.; Liu, C.; Wang, J.; Huang, J. The Evolution of Self-Assemblies in the Mixed System of Oleic Acid–Diethylenetriamine Based on the Transformation of Electrostatic Interactions and Hydrogen Bonds. Soft Matter 2014, 10, 8023–8030. [Google Scholar] [CrossRef] [PubMed]
- Hua, Z.; Dong, Y.; Chen, L.; Jiang, F.; Tang, H.; Feng, D. Roles of Nitrogen- and Sulphur-Containing Groups in Copper Ion Adsorption by a Modified Chitosan Carboxymethyl Starch Polymer. Separations 2024, 11, 283. [Google Scholar] [CrossRef]
- Su, H.; Sun, J.; Li, D.; Wei, J. Local Hydrogen Bonding Environment Induces the Deprotonation of Surface Hydroxyl for Continuing Ammonia Decomposition. Phys. Chem. Chem. Phys. 2024, 26, 16871–16882. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Elkhooly, T.; Reicha, F. The Effect of Different Solvents for Chitosan Solubilization on The Crystal Growth of in Situ Prepared Hydroxyapatite. Egypt. J. Phys. 2017, 45, 29–38. [Google Scholar] [CrossRef]
- Chong, X.; Bao, W.; Wang, Y.; Sun, Z.; Chen, L.; Chen, Q.; Zhang, Z. Preparation of Magnetic Fe3O4 Composite Cu-MOFs and Their Removal of Perrhenate Ions. J. Solid State Chem. 2025, 348, 125390. [Google Scholar] [CrossRef]
- Kołczyk-Siedlecka, K.; Socha, R.P.; Yang, X.; Eckert, K.; Wojnicki, M. Study on Kinetics and Mechanism of Re(VII) Ion Adsorption and Desorption Using Commercially Available Activated Carbon and Solutions Containing Se(VI) as an Impurity. Hydrometallurgy 2023, 215, 105973. [Google Scholar] [CrossRef]
- Wang, C.; Sun, L.; Wang, Q.; Wang, Y.; Cao, Y.; Wang, X.; Chen, P.; Sun, W. Adsorption Mechanism and Flotation Behavior of Ammonium Salt of N-Nitroso-N-Phenylhydroxyamine on Malachite Mineral. Appl. Surf. Sci. 2022, 583, 152489. [Google Scholar] [CrossRef]
- Góbi, S.; Crandall, P.B.; Maksyutenko, P.; Förstel, M.; Kaiser, R.I. Accessing the Nitromethane (CH3NO2) Potential Energy Surface in Methanol (CH3OH)–Nitrogen Monoxide (NO) Ices Exposed to Ionizing Radiation: An FTIR and PI-ReTOF-MS Investigation. J. Phys. Chem. A 2018, 122, 2329–2343. [Google Scholar] [CrossRef]
- Melaku, A.; Alemayehu, E.; Worku, A.; Lennartz, B. Synthesis of Magnetic Iron Oxide Heat-Activated Termite Mound Composite for Adsorption of Basic Blue 41 Dye from Textile Wastewater: Characterization and Box–Behnken Optimization. Separations 2025, 12, 117. [Google Scholar] [CrossRef]
- Mahajan, T.; Paikaray, S.; Mahajan, P. Applicability of the Equilibrium Adsorption Isotherms and the Statistical Tools on to Them: A Case Study for the Adsorption of Fluoride onto Mg-Fe-CO3 LDH. J. Phys. Conf. Ser. 2023, 2603, 012056. [Google Scholar] [CrossRef]
- Jemutai-Kimosop, S.; Okello, V.A.; Shikuku, V.O.; Orata, F.; Getenga, Z.M. Synthesis of Mesoporous Akaganeite Functionalized Maize Cob Biochar for Adsorptive Abatement of Carbamazepine: Kinetics, Isotherms, and Thermodynamics. Clean. Mater. 2022, 5, 100104. [Google Scholar] [CrossRef]
- Fathi, M.B.; Nasiri, M. Synthesis and Characterization of Modified Resins and Their Selective Sorption towards Rhenium from Binary (Re and Mo) Solutions. Iran. J. Chem. Chem. Eng. 2023, 42, 1471–1477. [Google Scholar] [CrossRef]
- Feng, J.; Li, J.; Liao, Y.; Liu, F.; Li, H.; Jiang, Q.; Huang, B.; Wang, Y.; Xiao, L.; Liu, H.; et al. Rhenium Recovery from Roasting Leachate of Molybdenum Concentrate by N-Methylimidazole Functionalized Anion Exchange Resin. J. Radioanal. Nucl. Chem. 2023, 332, 747–760. [Google Scholar] [CrossRef]
- Shan, W.; Wang, D.; Zhang, Z.; Lou, Z.; Xiong, Y.; Fan, Y. Synthesis of Schiff Base-Functionalized Silica for Effective Adsorption of Re(VII) from Aqueous Solution. J. Taiwan Inst. Chem. Eng. 2019, 100, 277–284. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Q.; Li, Q.; Zhang, Z.; Zhang, L.; Liu, X. Simultaneous Speciation of Inorganic Rhenium and Molybdenum in the Industrial Wastewater by Amino-Functionalized Nano-SiO2. J. Taiwan Inst. Chem. Eng. 2015, 55, 126–132. [Google Scholar] [CrossRef]
- Cyganowski, P.; Cierlik, A.; Leśniewicz, A.; Pohl, P.; Jermakowicz-Bartkowiak, D. Separation of Re(VII) from Mo(VI) by Anion Exchange Resins Synthesized Using Microwave Heat. Hydrometallurgy 2019, 185, 12–22. [Google Scholar] [CrossRef]
- Lou, Z.; Wan, L.; Guo, C.; Zhang, S.; Shan, W.; Xiong, Y. Quasi-Complete Separation Re(VII) from Mo(VI) onto Magnetic Modified Cross-Linked Chitosan Crab Shells Gel by Using Kinetics Methods. Ind. Eng. Chem. Res. 2015, 54, 1333–1341. [Google Scholar] [CrossRef]
- Jia, M.; Cui, H.; Jin, W.; Zhu, L.; Liu, Y.; Chen, J. Adsorption and Separation of Rhenium(VII) Using N-methylimidazolium Functionalized Strong Basic Anion Exchange Resin. J. Chem. Technol. Biotechnol. 2013, 88, 437–443. [Google Scholar] [CrossRef]
Parameter | ReO4−//hedetaH22+ | MoO42−//hedetaH22+ |
---|---|---|
ΔEe (electronic) | −224.86 | −423.91 |
ΔEt (thermal) | 1.35 | −2.03 |
TΔS | −15.91 | −17.44 |
VΔp | −0.59 | −0.59 |
ΔG(g) | −208.18 | −409.10 |
ΔE(s) | 182.09 | 385.97 |
ΔG(aq) | −26.09 | −23.12 |
Isotherm Model | Parameter | Value |
---|---|---|
Langmuir | Qm,L, mmol/g | 0.43 |
KL, g/mmol | 1.23 | |
R2 | 0.999 | |
Freundlich | 1/n | 0.34 |
KF, (mmol/g)(dm3/g)n | 0.21 | |
R2 | 0.912 | |
Dubinin–Radushkevich | Qm,DR, mmol/g | 0.37 |
β·104, mol2/kJ2 | 0.10 | |
E, kJ/mol | 6.93 | |
R2 | 0.903 | |
Fowler–Guggenheim | W, kJ/mol | −7.66 |
KFG 102, dm3/mmol | 0.34 | |
R2 | 0.989 |
Kinetic Model | Parameter | Value |
---|---|---|
Pseudo-first-order | k1·102, 1/min | 10.78 |
Qecalc, mmol/g | 0.21 | |
R2 | 0.991 | |
Pseudo-second-order | k2·102, g/mmol min | 5.76 |
Qecalc, mmol/g | 0.26 | |
R2 | 0.992 | |
Elovitz | α·102, mmol/g min | 11.13 |
β, g/mmol | 1.98 | |
R2 | 0.966 |
Kinetic Model | Parameter | Value |
---|---|---|
Intra-particle diffusion | kid,1·103, mmol/g min0,5 | 15.81 |
Cid,1·103 | −8.07 | |
R2 | 0.997 | |
kid,2·103, mmol/g min0,5 | 11.05 | |
Cid,2·102 | 3.88 | |
R2 | 0.996 | |
kid,3·103, mmol/g min0,5 | 5.21 | |
Cid,3 | 0.13 | |
R2 | 0.989 | |
Bangham | kB 105, 1/g | 7.24 |
α | 0.55 | |
R2 | 0.994 |
T, K | ΔG°, kJ/mol | ΔH°, kJ/mol | T ΔS°, kJ/mol |
---|---|---|---|
298 | −4.27 | 24.08 | 28.34 |
313 | −5.69 | 29.77 | |
328 | −7.12 | 31.20 | |
343 | −8.55 | 32.63 |
Sorbent | pH | Qm, mg/g | βRe/Mo | Reference |
---|---|---|---|---|
Amine-functionalized vinyl-benzyl chloride/divinylbenzene resin | 1 | 21.9 | 6.7 | [62] |
N-methylimidazole-functionalized anion exchange resin | 2.5 | 369.69 | 128.56 | [63] |
Schiff base-functionalized silica | 3 | 270.13 | 1.56 | [64] |
Amyloid-like protein material | 12 | 124 | 2.78 · 103 | [25] |
Amino-functionalized nano-SiO2 | 2 | 4.93 | 2.69 | [65] |
1-(3-aminopropyl)imidazole-modified (vinylbenzyl chloride)-co-(divinylbenzene) copolymer | 1 | 253.7 | 38 | [66] |
di-2-ethylhexylamine-modified magnetic chitosan gel | 10 | 60.81 | 4.40 | [67] |
N-methylimidazolium-functionalized strong basic anion exchange resin | 6.25 | 69.2 | 25.6 | [68] |
Amino-functionalized magnetic glycidyl methacrylate-based nanocomposite | 6 | 80.1 | 8.85 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marković, B.; Janjić, G.; Onjia, A.; Tadić, T.; Stefanov, P.; Nastasović, A. Experimental and Quantum Mechanical Studies of Efficient Re(VII)/Mo(VI) Separation by a Magnetic Amino-Functionalized Polymer. Separations 2025, 12, 206. https://doi.org/10.3390/separations12080206
Marković B, Janjić G, Onjia A, Tadić T, Stefanov P, Nastasović A. Experimental and Quantum Mechanical Studies of Efficient Re(VII)/Mo(VI) Separation by a Magnetic Amino-Functionalized Polymer. Separations. 2025; 12(8):206. https://doi.org/10.3390/separations12080206
Chicago/Turabian StyleMarković, Bojana, Goran Janjić, Antonije Onjia, Tamara Tadić, Plamen Stefanov, and Aleksandra Nastasović. 2025. "Experimental and Quantum Mechanical Studies of Efficient Re(VII)/Mo(VI) Separation by a Magnetic Amino-Functionalized Polymer" Separations 12, no. 8: 206. https://doi.org/10.3390/separations12080206
APA StyleMarković, B., Janjić, G., Onjia, A., Tadić, T., Stefanov, P., & Nastasović, A. (2025). Experimental and Quantum Mechanical Studies of Efficient Re(VII)/Mo(VI) Separation by a Magnetic Amino-Functionalized Polymer. Separations, 12(8), 206. https://doi.org/10.3390/separations12080206