Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (236)

Search Parameters:
Keywords = platinum-based electrode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2303 KiB  
Article
Fabrication of Low-Power Consumption Hydrogen Sensor Based on TiOx/Pt Nanocontacts via Local Atom Migration
by Yasuhisa Naitoh, Hisashi Shima and Hiroyuki Akinaga
Nanomaterials 2025, 15(15), 1154; https://doi.org/10.3390/nano15151154 - 25 Jul 2025
Viewed by 282
Abstract
Hydrogen (H2) gas sensors are essential for detecting leaks and ensuring safety, thereby supporting the broader adoption of hydrogen energy. The performance of H2 sensors has been shown to be improved by the incorporation of TiO2 nanostructures. The key [...] Read more.
Hydrogen (H2) gas sensors are essential for detecting leaks and ensuring safety, thereby supporting the broader adoption of hydrogen energy. The performance of H2 sensors has been shown to be improved by the incorporation of TiO2 nanostructures. The key findings are summarized as follows: (1) Resistive random-access memory (ReRAM) technology was used to fabricate extremely compact H2 sensors via various forming techniques, and substantial sensor performance enhancement was investigated. (2) A nanocontact composed of titanium oxide (TiOx)/platinum (Pt) was subjected to various forming operations to establish a Schottky junction with a nanogap structure on a tantalum oxide (Ta2O5) layer, and its properties were assessed. (3) When the Pt electrode was on the positive side during the forming operation used for ReRAM technology, a Pt nanopillar structure was produced. By contrast, when the forming operation was conducted with a positive bias on the TiOx side, a mixed oxide film of Ta and Ti was produced, which indicates local Ta doping into the TiOx. A sensor response of over 1000 times was achieved at a minimal voltage of 1 mV at room temperature. (4) This sensor fabrication technology based on the forming operation is promising for the development of low-power consumption sensors. Full article
Show Figures

Graphical abstract

16 pages, 1636 KiB  
Article
A Solid-State Nafion-Coated Screen-Printed Electrochemical Sensor for Ultrasensitive and Rapid Detection of Copper Ions in Water
by Yusra M. Obeidat
Processes 2025, 13(7), 2178; https://doi.org/10.3390/pr13072178 - 8 Jul 2025
Viewed by 448
Abstract
Copper is essential for various biological functions, but elevated levels in water can pose serious health risks. In this work, we introduce a novel electrochemical sensor designed for the highly sensitive and selective detection of copper ions. The sensor is based on a [...] Read more.
Copper is essential for various biological functions, but elevated levels in water can pose serious health risks. In this work, we introduce a novel electrochemical sensor designed for the highly sensitive and selective detection of copper ions. The sensor is based on a screen-printed platinum working electrode coated with a solid-state Nafion layer. Compared to previous platinum-based sensors, this design demonstrates enhanced sensitivity, a wide linear detection range (1 µM to 10 mM), and an exceptionally low limit of detection (1 nM). It also offers a rapid response time of 3–6 s, strong selectivity, and excellent stability. Interference from common metal ions such as Cr2+, Zn2+, Mn2+, Pb2+, and Fe2+ was minimal, with signal deviations remaining below 2%, and performance remained consistent across varying anion concentrations, showing less than 1% deviation. The use of Nafion as a solid-state electrolyte successfully overcomes challenges typically associated with traditional silver-based reference electrodes. These characteristics make the sensor a reliable and practical tool for the rapid, on-site monitoring of water quality. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 2422 KiB  
Article
Fabrication of Thylakoid Membrane-Based Photo-Bioelectrochemical Bioanode for Self-Powered Light-Driven Electronics
by Amit Sarode and Gymama Slaughter
Energies 2025, 18(12), 3167; https://doi.org/10.3390/en18123167 - 16 Jun 2025
Cited by 1 | Viewed by 565
Abstract
The transition toward sustainable and decentralized energy solutions necessitates the development of innovative bioelectronic systems capable of harvesting and converting renewable energy. Here, we present a novel photo-bioelectrochemical fuel cell architecture based on a biohybrid anode integrating laser-induced graphene (LIG), poly(3,4-ethylenedioxythiophene) (PEDOT), and [...] Read more.
The transition toward sustainable and decentralized energy solutions necessitates the development of innovative bioelectronic systems capable of harvesting and converting renewable energy. Here, we present a novel photo-bioelectrochemical fuel cell architecture based on a biohybrid anode integrating laser-induced graphene (LIG), poly(3,4-ethylenedioxythiophene) (PEDOT), and isolated thylakoid membranes. LIG provided a porous, conductive scaffold, while PEDOT enhanced electrode compatibility, electrical conductivity, and operational stability. Compared to MXene-based systems that involve complex, multi-step synthesis, PEDOT offers a cost-effective and scalable alternative for bioelectrode fabrication. Thylakoid membranes were immobilized onto the PEDOT-modified LIG surface to enable light-driven electron generation. Electrochemical characterization revealed enhanced redox activity following PEDOT modification and stable photocurrent generation under light illumination, achieving a photocurrent density of approximately 18 µA cm−2. The assembled photo-bioelectrochemical fuel cell employing a gas diffusion platinum cathode demonstrated an open-circuit voltage of 0.57 V and a peak power density of 36 µW cm−2 in 0.1 M citrate buffer (pH 5.5) under light conditions. Furthermore, the integration of a charge pump circuit successfully boosted the harvested voltage to drive a low-power light-emitting diode, showcasing the practical viability of the system. This work highlights the potential of combining biological photosystems with conductive nanomaterials for the development of self-powered, light-driven bioelectronic devices. Full article
Show Figures

Figure 1

14 pages, 1839 KiB  
Article
Non-Carbon-Supported, Pt-Based Catalysts with Applications in the Electrochemical Hydrogen Pump/Compressor (EHP/C)
by Galin Rusev Borisov, Nevelin Rusev Borisov and Evelina Slavcheva
Appl. Sci. 2025, 15(12), 6507; https://doi.org/10.3390/app15126507 - 9 Jun 2025
Viewed by 538
Abstract
In this study, platinum (Pt) nanocatalysts were synthesized via a sol-gel method over the non-stoichiometric, Magnéli phase titanium oxides (TinO2n−1) at varying Pt loadings (10–40 wt.%). Their structural and morphological properties were characterized, and after preliminary electrochemical screening, the catalysts were [...] Read more.
In this study, platinum (Pt) nanocatalysts were synthesized via a sol-gel method over the non-stoichiometric, Magnéli phase titanium oxides (TinO2n−1) at varying Pt loadings (10–40 wt.%). Their structural and morphological properties were characterized, and after preliminary electrochemical screening, the catalysts were integrated into commercially available gas diffusion electrodes (GDEs) with a three-layer structure to enhance mass transport and catalyst utilization. Membrane electrode assemblies (MEAs) were fabricated using a Nafion® 117 polymer membrane and tested in a laboratory PEM cell under controlled conditions. The electrochemical activity toward the hydrogen reduction reaction (HRR) was evaluated at room temperature and at elevated temperatures to determine the catalytic efficiency and stability. The optimal Pt loading was determined to be 30 wt.%, achieving a current density of approximately 0.12 A cm−2 at 0.25 V, demonstrating a balance between catalyst efficiency and material utilization. The chronoamperometry tests showed minimal degradation over prolonged operation, suggesting that the catalysts were durable. These findings highlight the potential of Pt-based catalysts supported on Magnéli phase titanium oxides (TinO2n−1) for efficient HRRs in electrochemical hydrogen pumps/compressors, offering a promising approach for improving hydrogen compression efficiency and advancing sustainable energy technologies. Full article
Show Figures

Figure 1

13 pages, 3815 KiB  
Article
Optimizing Crystalline MoS2 Growth on Technologically Relevant Platinum Substrates Using Ionized Jet Deposition: Interface Interactions and Structural Insights
by Cristian Tomasi Cebotari, Christos Gatsios, Andrea Pedrielli, Lucia Nasi, Francesca Rossi, Andrea Chiappini, Riccardo Ceccato, Roberto Verucchi, Marco V. Nardi and Melanie Timpel
Surfaces 2025, 8(2), 38; https://doi.org/10.3390/surfaces8020038 - 6 Jun 2025
Viewed by 476
Abstract
Transition metal dichalcogenides, especially molybdenum disulfide (MoS2), exhibit exceptional properties that make them suitable for a wide range of applications. However, the interaction between MoS2 and technologically relevant substrates, such as platinum (Pt) electrodes, can significantly influence its properties. This [...] Read more.
Transition metal dichalcogenides, especially molybdenum disulfide (MoS2), exhibit exceptional properties that make them suitable for a wide range of applications. However, the interaction between MoS2 and technologically relevant substrates, such as platinum (Pt) electrodes, can significantly influence its properties. This study investigates the growth and properties of MoS2 thin films on Pt substrates using ionized jet deposition, a versatile, low-cost vacuum deposition technique. We explore the effects of the roughness of Pt substrates and self-heating during deposition on the chemical composition, structure, and strain of MoS2 films. By optimizing the deposition system to achieve crystalline MoS2 at room temperature, we compare as-deposited and annealed films. The results reveal that as-deposited MoS2 films are initially amorphous and conform to the Pt substrate roughness, but crystalline growth is reached when the sample holder is sufficiently heated by the plasma. Further post-annealing at 270 °C enhances crystallinity and reduces sulfur-related defects. We also identify a change in the MoS2–Pt interface properties, with a reduction in Pt–S interactions after annealing. Our findings contribute to the understanding of MoS2 growth on Pt and provide insights for optimizing MoS2-based devices in catalysis and electronics. Full article
Show Figures

Figure 1

14 pages, 4835 KiB  
Article
Development and Evaluation of Multi-Module Retinal Devices for Artificial Vision Applications
by Kuang-Chih Tso, Yoshinori Sunaga, Yuki Nakanishi, Yasuo Terasawa, Makito Haruta, Kiyotaka Sasagawa and Jun Ohta
Micromachines 2025, 16(5), 580; https://doi.org/10.3390/mi16050580 - 15 May 2025
Viewed by 555
Abstract
Artificial retinal devices require a high-density electrode array and mechanical flexibility to effectively stimulate retinal cells. However, designing such devices presents significant challenges, including the need to conform to the curvature of the eyeball and cover a large area using a single platform. [...] Read more.
Artificial retinal devices require a high-density electrode array and mechanical flexibility to effectively stimulate retinal cells. However, designing such devices presents significant challenges, including the need to conform to the curvature of the eyeball and cover a large area using a single platform. To address these issues, we developed a parylene-based multi-module retinal device (MMRD) integrating a complementary metal-oxide semiconductor (CMOS) system. The proposed device is designed for suprachoroidal transretinal stimulation, with each module comprising a parylene-C thin-film substrate, a CMOS chip, and a ceramic substrate housing seven platinum electrodes. The smart CMOS system significantly reduces wiring complexity, enhancing the device’s practicality. To improve fabrication reliability, we optimized the encapsulation process, introduced multiple silane coupling modifications, and utilized polyvinyl alcohol (PVA) for easier detachment in flip-chip bonding. This study demonstrates the fabrication and evaluation of the MMRD through in vitro and in vivo experiments. The device successfully generated the expected current stimulation waveforms in both settings, highlighting its potential as a promising candidate for future artificial vision applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

14 pages, 2078 KiB  
Article
A Microfluidic Device Integrating a Glucose Sensor and Calibration Function for Cell-Based Assays
by Laner Chen, Kenta Shinha, Hiroko Nakamura, Kikuo Komori and Hiroshi Kimura
Biosensors 2025, 15(5), 307; https://doi.org/10.3390/bios15050307 - 11 May 2025
Viewed by 835
Abstract
Microphysiological systems (MPS) incorporating microfluidic technologies offer improved physiological relevance and real-time analysis for cell-based assays, but often lack non-invasive monitoring capabilities. Addressing this gap, we developed a microfluidic cell-based assay platform integrating an electrochemical biosensor for real-time, non-invasive monitoring of kinetic cell [...] Read more.
Microphysiological systems (MPS) incorporating microfluidic technologies offer improved physiological relevance and real-time analysis for cell-based assays, but often lack non-invasive monitoring capabilities. Addressing this gap, we developed a microfluidic cell-based assay platform integrating an electrochemical biosensor for real-time, non-invasive monitoring of kinetic cell status through glucose consumption. The platform addresses the critical limitations of traditional cell assays, which typically rely on invasive, discontinuous methods. By combining enzyme-modified platinum electrodes within a microfluidic device, our biosensor can quantify dynamic changes in glucose concentration resulting from cellular metabolism. We have integrated a calibration function that corrects sensor drift, ensuring accurate and prolonged short-term measurement stability. In the validation experiments, the system successfully monitored glucose levels continuously for 20 h, demonstrating robust sensor performance and reliable glucose concentration predictions. Furthermore, in the cell toxicity assays using HepG2 cells exposed to varying concentrations of paraquat, the platform detected changes in glucose consumption, effectively quantifying the cellular toxicity responses. This capability highlights the device’s potential for accurately assessing the dynamic physiological conditions of the cells. Overall, our integrated platform significantly enhances cell-based assays by enabling continuous, quantitative, and non-destructive analysis, positioning it as a valuable tool for future drug development and biomedical research. Full article
(This article belongs to the Special Issue Microfluidics for Biomedical Applications (3rd Edition))
Show Figures

Figure 1

15 pages, 2947 KiB  
Article
Biofuel Cells Based on Oxidoreductases and Electroactive Nanomaterials: Development and Characterization
by Olha Demkiv, Nataliya Stasyuk, Galina Gayda, Oksana Zakalska, Mykhailo Gonchar and Marina Nisnevitch
Biosensors 2025, 15(4), 249; https://doi.org/10.3390/bios15040249 - 14 Apr 2025
Viewed by 674
Abstract
Amperometric biosensors (ABSs) and enzymatic biofuel cells (BFCs) share several fundamental principles in their functionality, despite serving different primary purposes. Both devices rely on biorecognition, redox reactions, electron transfer (ET), and advanced electrode materials, including innovative nanomaterials (NMs). ABSs and BFCs, utilizing microbial [...] Read more.
Amperometric biosensors (ABSs) and enzymatic biofuel cells (BFCs) share several fundamental principles in their functionality, despite serving different primary purposes. Both devices rely on biorecognition, redox reactions, electron transfer (ET), and advanced electrode materials, including innovative nanomaterials (NMs). ABSs and BFCs, utilizing microbial oxidoreductases in combination with electroactive NMs, are both efficient and cost-effective. In the current study, several laboratory prototypes of BFCs have been developed with bioanodes based on yeast flavocytochrome b2 (Fcb2) and alcohol oxidase (AO), and a cathode based on fungal laccase. For the first time, BFCs have been developed featuring anodes based on Fcb2 co-immobilized with redox NMs on a glassy carbon electrode (GCE), and cathode-utilizing laccase combined with gold–cerium–platinum nanoparticles (nAuCePt). The most effective lactate BFC, which contains gold–hexacyanoferrate (AuHCF), exhibited a specific power density of 1.8 µW/cm2. A series of BFCs were developed with an AO-containing anode and a laccase/nAuCePt/GCE cathode. The optimal configuration featured a bioanode architecture of AO/nCoPtCu/GCE, achieving a specific power density of 3.2 µW/cm2. The constructed BFCs were tested using lactate-containing food product samples as fuels. Full article
(This article belongs to the Special Issue Advances in Biosensing and Bioanalysis Based on Nanozymes)
Show Figures

Figure 1

12 pages, 2365 KiB  
Article
Membrane Permeability Monitoring to Antipsychotic Olanzapine Using Platinum Black-Modified Electrodes
by Murugaiya Sridar Ilango, Dayananda Desagani, Srikanth Jagadeesan, Alexander Snezhko, Gad Vatine and Hadar Ben-Yoav
Sensors 2025, 25(7), 2266; https://doi.org/10.3390/s25072266 - 3 Apr 2025
Viewed by 883
Abstract
The blood–brain barrier (BBB) is key to the regular functioning of the central nervous system. The dysfunction of the BBB has been described in various neurological disorders, including schizophrenia. Schizophrenia (SCZ) is a chronic psychiatric disorder described by hallucinations, delusions, and negative symptoms. [...] Read more.
The blood–brain barrier (BBB) is key to the regular functioning of the central nervous system. The dysfunction of the BBB has been described in various neurological disorders, including schizophrenia. Schizophrenia (SCZ) is a chronic psychiatric disorder described by hallucinations, delusions, and negative symptoms. The Olanzapine (OLZ) drug is an electroactive species, and its levels can be monitored using electrochemical sensors. The detection of OLZ was demonstrated previously by using electrochemical sensors, and this technique can be used to monitor the levels of OLZ in real time. The challenge is to identify the permeability of OLZ through the BBB, so a replica model was designed with the BBB based on a Transwell membrane seeded with endothelial cells. A microfabricated electrode consisting of a 3 mm Au disk was modified with platinum black; this enables higher selectivity of electrochemical signals from OLZ. The dose–response of OLZ was characterized in phosphate buffer saline solution (10 mM, pH 7.4) by adding 20–200 nM (in steps 20) of OLZ stock solution. The observed chronoamperometric electrochemical signals showed an increasing current at 0.45 V vs. Ag/AgCl with an increasing OLZ concentration. The controls for the experiments were performed in phosphate-buffered saline solution (10 mM, pH 7.4). The detection limit was calculated as 9.96 ± 7.35 × 10−6 nM from the calibration curve. The membrane permeability of the OLZ drug tested with five SCZ patients was monitored by studying the TEER measurements and permeability rate constant data. Full article
(This article belongs to the Special Issue Recent Advances in Sensors for Chemical Detection Applications)
Show Figures

Figure 1

13 pages, 6895 KiB  
Article
Catalytic Activity of Pt/Pd Mono- and Bimetallic Catalysts in Electrochemical Hydrogen Pump/Compressor
by Nevelin Borisov, Borislava Mladenova, Galin Borisov and Evelina Slavcheva
Inorganics 2025, 13(2), 48; https://doi.org/10.3390/inorganics13020048 - 7 Feb 2025
Cited by 1 | Viewed by 855
Abstract
In this study, mono- and bimetallic platinum (Pt), palladium (Pd) and Pt-Pd nanoparticles were synthesized using the wet sol–gel method, employing a carbon-based XC72R as catalytic carrier. The overall metal content was set at 40 wt.% at varying Pt:Pd ratios. Characterization of the [...] Read more.
In this study, mono- and bimetallic platinum (Pt), palladium (Pd) and Pt-Pd nanoparticles were synthesized using the wet sol–gel method, employing a carbon-based XC72R as catalytic carrier. The overall metal content was set at 40 wt.% at varying Pt:Pd ratios. Characterization of the morphology and surface structure was conducted through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer–Emmett–Teller (BET) and X-ray diffraction (XRD) analyses. The electrochemical performance and catalytic activity against the hydrogen evolution reaction (HER) were assessed in a three-electrode cell for screening purposes, as well as in a prototype cell of an electrochemical hydrogen pump/compressor (EHP/C) where the catalysts served as cathodes, while the anode was Pt/XC72 40% wt. with 0.38 mgPt·cm−2 within a membrane electrode assembly (MEA) with a 180 µm thick Nafion 117 proton-conductive membrane. The results obtained indicated superior catalytic activity of the bimetallic catalysts in comparison to the pure metal samples. Further electrochemical tests in an EHP/C cell at varying differential pressures in the range of 0–3 bar revealed stable behavior and high current density, reaching approximately 0.7 A cm−2 at 60 °C. The accelerated durability tests performed demonstrated excellent stability of the synthesized composite catalysts. These findings underscore the potential of Pt-Pd nanoparticles as efficient catalysts with sustainable performance for electrochemical hydrogen pumping/compressing applications. Full article
Show Figures

Figure 1

30 pages, 5285 KiB  
Review
Proton Exchange Membrane Fuel Cell Catalyst Layer Degradation Mechanisms: A Succinct Review
by Paul C. Okonkwo
Catalysts 2025, 15(1), 97; https://doi.org/10.3390/catal15010097 - 20 Jan 2025
Cited by 4 | Viewed by 4579
Abstract
Increasing demand for clean energy power generation is a direct result of the rapid depletion of fossil fuel reserves, the volatility of fossil commodity prices, and the environmental damage caused by burning fossil fuels. Fuel cell vehicles, portable power supplies, stationary power stations, [...] Read more.
Increasing demand for clean energy power generation is a direct result of the rapid depletion of fossil fuel reserves, the volatility of fossil commodity prices, and the environmental damage caused by burning fossil fuels. Fuel cell vehicles, portable power supplies, stationary power stations, and submarines are just some of the applications where proton exchange membrane (PEM) fuel cells are a prominent technology for power generation. PEM fuel cells have several advantages over conventional power sources, including a higher power density, lower emissions, a lower operating temperature, higher efficiency, noiseless operation, ease of design, and operation. The catalyst layer of the membrane electrode assembly is discussed in this paper as a vital part of the proton exchange membrane fuel cell. Along with that, the platinum (Pt)-based catalyst, carbon support, and nafion ionomer found in the catalyst layer often degrade. Catalyst growth, agglomeration, Pt loss, migration, active site contamination, and other microscopic processes are all considered in the degradation process. Employing experimental and numerical research with a focus on enhancing the material properties was suggested as a possible solution to understanding the problem of catalyst layer degradation. Ultimately, this review aims to prevent catalyst layer degradation and lower the high costs associated with replacing catalysts in proton exchange membrane fuel cells through the recommendations provided in this study. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

9 pages, 3086 KiB  
Article
Synthesis and Optical Properties of N-Arylnaphtho- and Anthra[2,3-d]oxazol-2-amines
by Yuki Murata, Masato Kawakubo, Ayumi Maruyama, Mio Matsumura and Shuji Yasuike
Molecules 2025, 30(2), 319; https://doi.org/10.3390/molecules30020319 - 15 Jan 2025
Viewed by 867
Abstract
Oxazole, a versatile and significant heteroarene, serves as a bridge between synthetic organic chemistry and applications in the medicinal, pharmaceutical, and industrial fields. Polycyclic aromatic compounds with amino groups substituted at the 2-position of an oxazole, such as 2-aminonaphthoxazoles, are expected to be [...] Read more.
Oxazole, a versatile and significant heteroarene, serves as a bridge between synthetic organic chemistry and applications in the medicinal, pharmaceutical, and industrial fields. Polycyclic aromatic compounds with amino groups substituted at the 2-position of an oxazole, such as 2-aminonaphthoxazoles, are expected to be functional probes, but their synthetic methods are extremely limited. Herein, we describe electrochemical reactions of 3-amino-2-naphthol or 3-amino-2-anthracenol and isothiocyanates in DMSO, using a graphite electrode as an anode and a platinum electrode as a cathode in the presence of potassium iodide (KI), which afford N-arylnaphtho- and N-arylanthra[2,3-d]oxazol-2-amines via cyclodesulfurization. This reaction is the first example of synthesis of 2-aminoxazole-based polycyclic compounds using an electrochemical reaction. An examination of the spectroscopic properties of polycyclic oxazoles revealed that the λabs value of the tetracyclic oxazoles was redshifted relative to that of the tricyclic oxazoles. Moreover, synthesized naphthalene/anthracene-fused tricyclic and tetracyclic oxazoles exhibited extended π-conjugated skeletons and fluoresced in the 340–430 nm region in chloroform. Full article
Show Figures

Figure 1

29 pages, 5737 KiB  
Review
Recent Progress in Materials Design and Fabrication Techniques for Membrane Electrode Assembly in Proton Exchange Membrane Fuel Cells
by Xinhai Deng, Liying Ma, Chao Wang, Hao Ye, Lin Cao, Xinxing Zhan, Juan Tian and Xin Tong
Catalysts 2025, 15(1), 74; https://doi.org/10.3390/catal15010074 - 14 Jan 2025
Cited by 2 | Viewed by 2989
Abstract
Proton Exchange Membrane Fuel Cells (PEMFCs) are widely regarded as promising clean energy technologies due to their high energy conversion efficiency, low environmental impact, and versatile application potential in transportation, stationary power, and portable devices. Central to the operation and performance of PEMFCs [...] Read more.
Proton Exchange Membrane Fuel Cells (PEMFCs) are widely regarded as promising clean energy technologies due to their high energy conversion efficiency, low environmental impact, and versatile application potential in transportation, stationary power, and portable devices. Central to the operation and performance of PEMFCs are advancements in materials and manufacturing processes that directly influence their efficiency, durability, and scalability. This review provides a comprehensive overview of recent progress in these areas, emphasizing the critical role of membrane electrode assembly (MEA) technology and its constituent components, including catalyst layers, membranes, and gas diffusion layers (GDLs). The MEA, as the heart of PEMFCs, has seen significant innovations in its structure and manufacturing methodologies to ensure optimal performance and durability. At the material level, catalyst layer advancements, including the development of platinum-group metal catalysts and cost-effective non-precious alternatives, have focused on improving catalytic activity, durability, and mass transport. Similarly, the evolution of membranes, particularly advancements in perfluorosulfonic acid membranes and alternative hydrocarbon-based or composite materials, has addressed challenges related to proton conductivity, mechanical stability, and operation under harsh conditions such as low humidity or high temperature. Additionally, innovations in gas diffusion layers have optimized their porosity, hydrophobicity, and structural properties, ensuring efficient reactant and product transport within the cell. By examining these interrelated aspects of PEMFC development, this review aims to provide a holistic understanding of the state of the art in PEMFC materials and manufacturing technologies, offering insights for future research and the practical implementation of high-performance fuel cells. Full article
(This article belongs to the Special Issue Advances in Catalyst Design and Application for Fuel Cells)
Show Figures

Figure 1

12 pages, 2650 KiB  
Article
A Sensitive and Selective Electrochemical Aptasensor for Carbendazim Detection
by Suthira Pushparajah, Mahnaz Shafiei and Aimin Yu
Biosensors 2025, 15(1), 15; https://doi.org/10.3390/bios15010015 - 3 Jan 2025
Cited by 1 | Viewed by 1156
Abstract
Carbendazim (CBZ) is used to prevent fungal infections in agricultural crops. Given its high persistence and potential for long-term health effects, it is crucial to quickly identify pesticide residues in food and the environment in order to mitigate excessive exposure. Aptamer-based sensors offer [...] Read more.
Carbendazim (CBZ) is used to prevent fungal infections in agricultural crops. Given its high persistence and potential for long-term health effects, it is crucial to quickly identify pesticide residues in food and the environment in order to mitigate excessive exposure. Aptamer-based sensors offer a promising solution for pesticide detection due to their exceptional selectivity, design versatility, ease of use, and affordability. Herein, we report the development of an electrochemical aptasensor for CBZ detection. The sensor was fabricated through a one-step electrodeposition of platinum nanoparticles (Pt NPs) and reduced graphene oxide (rGO) on a glassy carbon electrode (GCE). Then, a CBZ-specific aptamer was attached via Pt-sulfur bonds. Upon combining CBZ with the aptamer on the electrode surface, the redox reaction of the electrochemical probe K4[Fe(CN)6] is hindered, resulting in a current drop. Under optimized conditions (pH of 7.5 and 25 min of incubation time), the proposed aptasensor showed a linear current reduction to CBZ concentrations between 0.5 and 15 nM. The limit of detection (LOD) for this proposed aptasensor is 0.41 nM. Along with its repeatable character, the aptasensor demonstrated better selectivity for CBZ compared to other potential compounds. The recovery rates for detecting CBZ in skim milk and tap water using the standard addition method were 98% and 96%, respectively. The proposed aptasensor demonstrated simplicity, sensitivity, and selectivity for detecting CBZ with satisfactory repeatability. It establishes a strong foundation for environmental monitoring of CBZ. Full article
Show Figures

Figure 1

16 pages, 9041 KiB  
Article
Carbon Nanofiber-Reinforced Carbon Black Support for Enhancing the Durability of Catalysts Used in Proton Exchange Membrane Fuel Cells Against Carbon Corrosion
by Minki Sung, Hyeonseok Yi, Jimin Han, Jong Beom Lee, Seong-Ho Yoon and Joo-Il Park
Membranes 2025, 15(1), 3; https://doi.org/10.3390/membranes15010003 - 26 Dec 2024
Cited by 1 | Viewed by 1274
Abstract
This study addresses the critical challenge of carbon corrosion in proton exchange membrane fuel cells (PEMFCs) by developing hybrid supports that combine the high surface area of carbon black (CB) with the superior crystallinity and graphitic structure of carbon nanofibers (CNFs). Two commercially [...] Read more.
This study addresses the critical challenge of carbon corrosion in proton exchange membrane fuel cells (PEMFCs) by developing hybrid supports that combine the high surface area of carbon black (CB) with the superior crystallinity and graphitic structure of carbon nanofibers (CNFs). Two commercially available CB samples were physically activated and composited with two types of CNFs synthesized via chemical vapor deposition using different carbon sources. The structure, morphology, and crystallinity of the resulting CNF–CB hybrid supports were characterized, and the performances of these hybrid supports in mitigating carbon corrosion and enhancing the PEMFC performance was evaluated through full-cell testing in collaboration with a membrane electrode assembly (MEA) manufacturer (VinaTech, Seoul, Republic, of Korea), adhering to industry-standard fabrication and evaluation procedures. Accelerated stress tests following the US Department of Energy protocols revealed that incorporating CNFs enhanced the durability of the CB-based hybrid supports without compromising their performance. The improved performance of the MEAs with the hybrid carbon support is attributed to the ability of the CNF to act as a structural backbone, facilitate water removal, and provide abundant edge plane sites for anchoring the platinum catalyst, which promoted the oxygen reduction reaction and improved catalyst utilization. The findings of this study highlight the potential of CNF-reinforced CB supports for enhancing the durability and performance of PEMFCs. Full article
(This article belongs to the Special Issue New Challenges in Proton Exchange Membrane Fuel Cells)
Show Figures

Figure 1

Back to TopTop