A Solid-State Nafion-Coated Screen-Printed Electrochemical Sensor for Ultrasensitive and Rapid Detection of Copper Ions in Water
Abstract
1. Introduction
2. Materials and Methods
2.1. Sensor Electrodes
2.2. Reagents
2.3. Sensor Surface Modification
2.4. Electrochemical Instrumentation
2.5. Copper Sample Preparation
2.6. The Measurement Setup
2.6.1. Cyclic Voltammetry
2.6.2. Amperometry
3. Results and Discussion
3.1. Sensor Cyclic Voltammetry Results
3.2. Sensor Calibration Results
3.3. Limit of Detection (LOD)
3.4. Limit of Quantification (LOQ)
3.5. Interference Test
3.6. Effect of Anion Concentrations on Sensor Performance
3.7. Summary of the Results
3.8. Comparison with Recent Studies
4. Conclusions and Future Work
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiang, S.; Liu, Y. Trace element copper and human physiological function and disease. Univ. Chem. 2022, 37, 2107128. (In Chinese) [Google Scholar]
- Kirk, K.A.; Andreescu, S. Easy-to-use sensors for field monitoring of copper contamination in water and pesticide-sprayed plants. Anal. Chem. 2019, 91, 13892–13899. [Google Scholar] [CrossRef] [PubMed]
- Maddipatla, D.; Saeed, T.S.; Narakathu, B.B.; Obare, S.O.; Atashbar, M.Z. Incorporating a novel hexaazatriphenylene derivative to a flexible screen-printed electrochemical sensor for copper ion detection in water samples. IEEE Sens. J. 2020, 20, 12582–12591. [Google Scholar] [CrossRef]
- Uauy, R.; Olivares, M.; Gonzalez, M. Essentiality of copper in humans. Nutr. Rev. 1998, 67 (Suppl. 5), 952S–959S. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Han, H.; Ye, B.; Ji, R.; Li, J.; Liu, A.; Li, S.; Yang, L.; Zhang, S. Trace element copper effects on human health. J. Prev. Med. Henan 2021, 32, 888–892. [Google Scholar]
- Sobhanardakani, S.; Tayebi, L.; Farmany, A. Toxic metal (Pb, Hg, and As) contamination of muscle, gill, and liver tissues of Otolithes rubber, Pampus argenteus, Parastromateus niger, Scomberomorus commerson, and Onchorynchus mykiss. World Appl. Sci. J. 2011, 14, 1453–1456. [Google Scholar]
- Wołowiec, M.; Komorowska-Kaufman, M.; Pruss, A.; Rzepa, G.; Bajda, T. Removal of heavy metals and metalloids from water using drinking water treatment residuals as adsorbents: A review. Minerals 2019, 9, 487. [Google Scholar] [CrossRef]
- Grandis, D.J.; Nah, G.; Whitman, I.R.; Vittinghoff, E.; Dewland, T.A.; Olgin, J.E.; Marcus, G.M. Wilson’s disease and cardiac myopathy. Am. J. Cardiol. 2017, 120, 2056–2060. [Google Scholar] [CrossRef]
- Wang, W.X.; Yang, Y.; Guo, X.; He, M.; Guo, F.; Ke, C. Copper and zinc contamination in oysters: Subcellular distribution and detoxification. Environ. Toxicol. Chem. 2011, 30, 1767–1774. [Google Scholar] [CrossRef]
- Parks, A.N.; Cantwell, M.G.; Katz, D.R.; Cashman, M.A.; Luxton, T.P.; Ho, K.T.; Burgess, R.M. Assessing the release of copper from nanocopper-treated and conventional copper-treated lumber into marine waters: Concentrations and rates. Environ. Toxicol. Chem. 2018, 37, 1956–1968. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Copper in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality (WHO/SDE/WSH/03.04/88); World Health Organization: Geneva, Switzerland, 2004.
- Malik, L.A.; Bashir, A.; Qureashi, A.; Pandith, A.H. Detection and removal of heavy metal ions: A review. Environ. Chem. Lett. 2019, 17, 1495–1521. [Google Scholar] [CrossRef]
- Elkhatat, A.M.; Soliman, M.; Ismail, R.; Ahmed, S.; Abounahia, N.; Mubashir, S.; Fouladi, S.; Khraisheh, M. Recent trends of copper detection in water samples. Bull. Natl. Res. Cent. 2021, 45, 218. [Google Scholar] [CrossRef]
- Özzeybek, G.; Erarpat, S.; Chormey, D.S.; Fırat, M.; Büyükpınar, Ç.; Turak, F.; Bakırdere, S. Sensitive determination of copper in water samples using dispersive liquid-liquid microextraction-slotted quartz tube-flame atomic absorption spectrometry. Microchem. J. 2017, 132, 406–410. [Google Scholar] [CrossRef]
- Wilschefski, S.C.; Baxter, M.R. Inductively coupled plasma mass spectrometry: Introduction to analytical aspects. Clin. Biochem. Rev. 2019, 40, 115–133. [Google Scholar] [CrossRef]
- Ouyang, Z.; Chen, Z.; Mou, H. Determination of copper by flame atomic absorption spectrometry using flow injection on-line preconcentration with double micro-columns. Rev. Anal. Chem. 2010, 29, 51–58. [Google Scholar] [CrossRef]
- Liu, H.-L.; Meng, Q.; Zhao, X.; Ye, Y.-L.; Tong, H.-R. Inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometer (ICP-OES)-based discrimination for the authentication of tea. Food Control 2021, 123, 107735. [Google Scholar] [CrossRef]
- Pesavento, M.; Profumo, A.; Merli, D.; Cucca, L.; Zeni, L.; Cennamo, N. An Optical Fiber Chemical Sensor for the Detection of Copper(II) in Drinking Water. Sensors 2019, 19, 5246. [Google Scholar] [CrossRef]
- Liu, B. Determination of copper in metal processing wastewater by stripping voltammetry. IOP Conf. Ser. Mater. Sci. Eng. 2017, 224, 012060. [Google Scholar] [CrossRef]
- Topcu, C.; Lacin, G.; Yilmaz, V.; Coldur, F.; Caglar, B.; Cubuk, O.; Isildak, I. Electrochemical determination of copper(II) in water samples using a novel ion-selective electrode based on a graphite oxide–imprinted polymer composite. Anal. Lett. 2018, 51, 1890–1910. [Google Scholar] [CrossRef]
- Zamani, H.A.; Rajabzadeh, G.; Firouz, A.; Ganjali, M.R. Determination of copper (II) in wastewater by electroplating samples using a PVC-membrane copper (II)-selective electrode. J. Anal. Chem. 2007, 62, 1080–1087. [Google Scholar] [CrossRef]
- Seher, S.; Shah, A.; Iftikhar, F.J.; Nisar, J.; Ashiq, M.N.; Aljar, M.A.; Akhter, M.S. Detection of Copper Ions by a Simple, Greener and Cost Effective Sensor with GCE Modified with L-Tryptophan. J. Electrochem. Soc. 2020, 167, 027506. [Google Scholar] [CrossRef]
- Romero-Cano, L.A.; Zárate-Guzmán, A.I.; Carrasco-Marín, F.; González-Gutiérrez, L.V. Electrochemical detection of copper in water using carbon paste electrodes prepared from bio-template (grapefruit peels) functionalized with carboxyl groups. J. Electroanal. Chem. 2019, 837, 22–29. [Google Scholar] [CrossRef]
- Zhang, C.; Tao, W.; Qiu, C.; Qu, W.; Zhuang, Y.; Gu, Y.; Hao, H.; Zhao, Z. Detection of Copper Ions in Seawater Using a Graphitised Multi-Walled Carbon Nanotubes-Copper Ion Carrier Modified Electrode. Water 2024, 16, 2128. [Google Scholar] [CrossRef]
- Li, R.-Z.; Qin, L.; Fu, D.-J.; Wang, M.-L.; Song, X.-F.; Bai, Y.-H.; Liu, W.-F.; Liu, X.-G. A highly selective and sensitive electrochemical Cu(II) detector based on ion-imprinted magnetic carbon nanospheres. New Carbon Mater. 2023, 38, 1092–1100. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Zhang, Z.; Tong, J.; Bian, C.; Dong, H.; Xia, S. A portable sensor system for detection of copper ions in water samples. In Proceedings of the 2019 IEEE 14th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Bangkok, Thailand, 11–14 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 385–388. [Google Scholar] [CrossRef]
- Inam, A.K.M.S.; Costa Angeli, M.A.; Shkodra, B.; Douaki, A.; Avancini, E.; Magagnin, L.; Petti, L.; Lugli, P. Flexible Screen-Printed Electrochemical Sensors Functionalized with Electrodeposited Copper for Nitrate Detection in Water. ACS Omega 2021, 6, 33523–33532. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, D.; Xu, S.; Jin, H.; Wang, J.; Yan, F. Copper Nanoparticles Confined in a Silica Nanochannel Film for the Electrochemical Detection of Nitrate Ions in Water Samples. Molecules 2023, 28, 7515. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Daly, R.; Narayan, T.; Shao, H.; O’Riordan, A.; Lovera, P. Platinum-Based Interdigitated Micro-Electrode Arrays for Reagent-Free Detection of Copper. Sensors 2021, 21, 3544. [Google Scholar] [CrossRef]
- Cranny, A.; Harris, N.R.; Nie, M.; Wharton, J.A.; Wood, R.J.K.; Stokes, K.R. Sensors for Corrosion Detection: Measurement of Copper Ions in 3.5% Sodium Chloride Using Screen-Printed Platinum Electrodes. IEEE Sens. J. 2012, 12, 2091–2099. [Google Scholar] [CrossRef]
- Mauritz, K.A.; Moore, R.B. Nafion®: A unique polymer for membranes. Chem. Rev. 2004, 104, 4535–4586. [Google Scholar] [CrossRef]
- Arán-Ais, R.M.; Herrero, E.; Feliu, J.M. Termodynamic studies of anion adsorption at the Pt(111) electrode surface from glycolic acid solutions. J. Solid State Electrochem. 2015, 19, 13–21. [Google Scholar] [CrossRef]
- Chen, S.H. Wither the Concepts of Mole and Concentration: Conceptual Confusion in applying M1V1 = M2V2. Univers. J. Educ. Res. 2016, 4, 1158–1162. [Google Scholar] [CrossRef]
- Lin, C.J.; Wang, P.Y.; Lin, Y.L.; Chang, S.T.; Hsu, C.S.; Wu, S.P.; Wu, C.H. Nonpolar Side Chains Affect the Photochemical Redox Reactions of Copper(II)–Amino Acid Complexes in Aqueous Solutions. ACS Omega 2021, 6, 28194–28202. [Google Scholar] [CrossRef] [PubMed]
- Chemistry LibreTexts. Characteristic Reactions of Copper Ions (Cu2+). 2023. Available online: https://chem.libretexts.org (accessed on 7 June 2025).
- Liu, Y.; Aoki, K.J.; Chen, J. The Difference in the Effects of IR-Drop from the Negative Capacitance of Fast Cyclic Voltammograms. Electrochem 2023, 4, 460–472. [Google Scholar] [CrossRef]
- Bernalte, E.; Arévalo, S.; Pérez-Taborda, J.; Wenk, J.; Estrela, P.; Avila, A.; Di Lorenzo, M. Rapid and on-site simultaneous electrochemical detection of copper, lead and mercury in the Amazon river. Sens. Actuators B Chem. 2020, 307, 127620. [Google Scholar] [CrossRef]
- Mei, C.J.; Yusof, N.A.; Alang Ahmad, S.A. Electrochemical Determination of Lead & Copper Ions Using Thiolated Calix[4]arene-Modified Screen-Printed Carbon Electrode. Chemosensors 2021, 9, 157. [Google Scholar] [CrossRef]
- Daniele, S.; Bragato, C.; Baldo, M.A. An approach to the calibration less determination of copper and lead by anodic stripping voltammetry at thin mercury film microelectrodes. Application to well water and rain. Anal. Chim. Acta 1997, 346, 145–156. [Google Scholar] [CrossRef]
- See, W.P.; Nathan, S.; Heng, L.Y. Copper(II) and aluminium(III) ion sensors based on gold nanoparticles modified screen-printed carbon electrodes. AIP Conf. Proc. 2013, 1571, 725–731. [Google Scholar] [CrossRef]
- Bobrowski, A.; Maczuga, M.; Królicka, A.; Konstanteli, E.; Sakellaropoulou, C.; Economou, A. Determination of Copper(II) Through Anodic Stripping Voltammetry in Tartrate Buffer Using an Antimony Film Screen-printed Carbon Electrode. Anal. Lett. 2017, 50, 2920–2936. [Google Scholar] [CrossRef]
- Tesfaye, E.; Chandravanshi, B.S.; Negash, N.; Tessema, M. Development of a new electrochemical method for the determination of copper(II) at trace levels in environmental and food samples. RSC Adv. 2022, 12, 35367–35382. [Google Scholar] [CrossRef] [PubMed]
- Li, L.G.; Chen, M.; Hao, H.Q.; Xu, Q.Q.; Wu, J.; Xie, C.G.; Fu, X.C. Electrochemical determination of trace copper(II) based on L-cysteine functionalized gold nanoparticle/CdS nanosphere hybrid. Anal. Methods 2016, 8, 3592–3598. [Google Scholar] [CrossRef]
- Koudelkova, Z.; Syrovy, T.; Ambrozova, P.; Moravec, Z.; Kubac, L.; Hynek, D.; Richtera, L.; Adam, V. Determination of zinc, cadmium, lead, copper and silver using a carbon paste electrode and a screen printed electrode modified with chromium(III) oxide. Sensors 2017, 17, 1832. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.; Ding, X.; Zhao, F.; Yang, Y. Electrochemical determination of copper(II) by gold electrodes modified with N-ACETYL CYSTEINE. Anal. Lett. 2002, 35, 2245–2258. [Google Scholar] [CrossRef]
- Hermouche, L.; Aqil, Y.; Abbi, K.; El Hamdouni, Y.; Ouanji, F.; El Hajjaji, S.; El Mahi, M.; Lotfi, E.; Labjar, N. Eco-friendly modified carbon paste electrode by Bigarreau Burlat kernel shells for simultaneous trace detection of cadmium, lead, and copper. Chem. Data Collect. 2021, 32, 100642. [Google Scholar] [CrossRef]
- Ting, S.L.; Ee, S.J.; Ananthanarayanan, A.; Leong, K.C.; Chen, P. Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions. Electrochim. Acta 2015, 172, 7–11. [Google Scholar] [CrossRef]
- Akhdhar, A.; Binkadem, M.S.; El-Said, W.A.; Yakout, A.A. Design and Fabrication of Silver Nanoparticles Doped β-cyclodextrin-chitosan Functionalized Graphene Nanocomposite Modified Electrode for Determination of Cu(II). Curr. Anal. Chem. 2024, 20, 275–285. [Google Scholar] [CrossRef]
- Melo, L.C.; Julião MSda, S.; Barbano, E.P.; Portela, R.R.; Dias, S.S. Evaluation of voltammetric method for the determination of electrodeposited copper in citrate medium validated by ICP-OES. Matéria 2021, 26, e13069. [Google Scholar] [CrossRef]
- Jing-ji, P.; Hong, Z.; Yi-song, Z.; Guo-kun, L.; Dong-xing, Y. Electrochemical Determination of Trace Copper ions in Drinking Water Source. J. Electrochem. 2019, 25, 699–707. [Google Scholar] [CrossRef]
- Miglione, A.; Spinelli, M.; Amoresano, A.; Cinti, S. Sustainable copper electrochemical stripping onto a paper-based substrate for clinical application. ACS Meas. Sci. Au 2022, 2, 177–184. [Google Scholar] [CrossRef]
- Niu, L.M.; Luo, H.Q.; Li, N.B.; Song, L. Electrochemical detection of copper(II) at a gold electrode modified with a self-assembled monolayer of penicillamine. J. Anal. Chem. 2007, 62, 470–474. [Google Scholar] [CrossRef]
- Patella, B.; Narayan, T.; O’Sullivan, B.; Daly, R.; Zanca, C.; Lovera, P.; Inguanta, R.; O’Riordan, A. Simultaneous detection of copper and mercury in water samples using in-situ pH control with electrochemical stripping techniques. Electrochimica Acta 2023, 439, 141668. [Google Scholar] [CrossRef]
- Hassan, S.S.M.; El-Shalakany, H.H.; Fathy, M.A.; Kamel, A.H. A novel potentiometric screen-printed electrode based on crown ethers/nano manganese oxide/Nafion composite for trace level determination of copper ion in biological fluids. Microchim. Acta 2024, 191, 313. [Google Scholar] [CrossRef] [PubMed]
- Ashley, S. Lister, 7—Validation of HPLC Methods in Pharmaceutical Analysis. In Separation Science and Technology; Ahuja, S., Dong, M.W., Eds.; Academic Press: Cambridge, MA, USA, 2005; Volume 6, pp. 191–217. ISSN 1877-1718. [Google Scholar]
- Nudurupati, U.; Narla, T.; Punihaole, D.; Ou, Y. A facile approach to create sensitive and selective Cu(II) sensors on carbon fiber microelectrodes. RSC Adv. 2023, 13, 33688–33695. [Google Scholar] [CrossRef] [PubMed]
- Kaimal, R.; Dube, A.; Al Souwaileh, A.A.; Wu, J.J.; Anandan, S. A copper metal–organic framework-based electrochemical sensor for identification of glutathione in pharmaceutical samples. Analyst 2024, 149, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Elik, M.; Akyasan, A.; Ozcan, A.N.; Gurdere, M.B. Electrochemical determination of copper(II) ions based on a semicarbazone derivative molecule. Turk. J. Sens. Biosens. 2024, 1, 37–44. [Google Scholar]
- Gao, Y.; Li, X.; Zhang, H.; Wang, Y. Deep learning-assisted single-atom detection of copper ions by electrochemical sensor. Nat. Commun. 2024, 15, 54743. [Google Scholar]
Anion | Average Current (µA) | Oxidation Potential (V) |
---|---|---|
CuCl2 | 92.5 ± 3.1 | 0.61 |
CuSO4 | 93.3 ± 2.7 | 0.60 |
Cu(NO3)2 | 91.8 ± 2.9 | 0.60 |
Study | Linearity | Sensitivity | Concentration Range | LOD | LOQ (µM) | Method Used | Response Time (Seconds) | Surface Modification |
---|---|---|---|---|---|---|---|---|
Our Study | Linear response to copper ions R2 = 0.99 | High sensitivity: 1.3 µA/µM to 50 µA/mM | 1 µM to 10 mM | 0.001 µM | 0.003 | Cyclic voltammetry | 5–10 | Pt WE is covered with Nafion layer as a solid-state electrolyte |
[2] | Linear response to copper ions R2 = 0.99 | High sensitivity | 10 µM–2 mM | 0.795 µM | Not specified | Cyclic voltammetry | Not specified | A sensor based on polyethyeleneimine (PEI) |
[3] | Linear response to copper ions R2 = 0.99 | High sensitivity 135 µA/mM | 0–100 µM | 0.142 µM | 0.43 | Cyclic voltammetry | Not specified | hexaazatriphenylene derivative into flexible screen-printed electrochemical sensor |
[19] | Linear response to copper ions R2 = 0.99 | High sensitivity | 0.1–10 µM | 0.001 µM | 0.3 | Stripping voltammetry | 10 | Not specified |
[20] | Linear response to copper ions R2 = 0.99 | High sensitivity | 0.1 µM–0.1 M | 0.4 µM | 3 | Potentiometric determination | 3 | Graphite oxide–imprinted polymer composite |
[21] | High linearity | High sensitivity | 1 µM–0.1 M | 0.75 µM | Not specified | Electroplating of samples | <15 | A PVC membrane containing 4-amino-6-methyl-1,2,4-triazin-3,5-dithione (AMTD) as a suitable ionophore |
[24] | Linear response to copper ions R2 = 0.996 | High sensitivity | 0.79 to 7.87 µM | 11.64 nM | Not specified | Differential pulse anodic stripping voltammetry (DPASV) | Not specified | A graphitized multi-walled carbon nanotubes-copper ion carrier modified electrode |
[29] | Linear response to copper ions | High sensitivity | 78.7 nM to 1.57 µM | 12.6 nM | Not specified | square wave voltammetry | Not specified | Platinum-based interdigitated micro-electrode arrays |
[30] | Linear response to copper ions R2 = 0.98 | High sensitivity | 10 µM to 100 mM | 10 µM | Not specified | cyclic differential pulse voltammetry (DPV) | Not specified | Planar screen-printed platinum electrodes |
[37] | Linear response to copper ions R2 = 0.98–0.99 | High sensitivity | 78 µM–4.72 mM | 23.6 µM | Not specified | Square wave anodic stripping voltammetry (SWASV) | 60 | A low temperature-curing gold ink working 0.1 mol/L HCl as electrolyte |
[38] | Linear response to copper ions R2 = 0.99 | High sensitivity | 3.14 µM–15.7 µM | 0.21 µM | Not specified | Differential pulse voltammetry (DPV) | 30–120 | Thiolated calix[4]arene-modified screen-printed carbon electrode |
[40] | Linear response to copper ions R2 = 0.987 | High sensitivity | 0.079 µM–157.4 µM | 0.125 µM | Not specified | Cyclic voltammetry and differential pulse voltammetry | Not specified | Gold nanoparticles modified screen-printed carbon electrodes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obeidat, Y.M. A Solid-State Nafion-Coated Screen-Printed Electrochemical Sensor for Ultrasensitive and Rapid Detection of Copper Ions in Water. Processes 2025, 13, 2178. https://doi.org/10.3390/pr13072178
Obeidat YM. A Solid-State Nafion-Coated Screen-Printed Electrochemical Sensor for Ultrasensitive and Rapid Detection of Copper Ions in Water. Processes. 2025; 13(7):2178. https://doi.org/10.3390/pr13072178
Chicago/Turabian StyleObeidat, Yusra M. 2025. "A Solid-State Nafion-Coated Screen-Printed Electrochemical Sensor for Ultrasensitive and Rapid Detection of Copper Ions in Water" Processes 13, no. 7: 2178. https://doi.org/10.3390/pr13072178
APA StyleObeidat, Y. M. (2025). A Solid-State Nafion-Coated Screen-Printed Electrochemical Sensor for Ultrasensitive and Rapid Detection of Copper Ions in Water. Processes, 13(7), 2178. https://doi.org/10.3390/pr13072178