Biofuel Cells Based on Oxidoreductases and Electroactive Nanomaterials: Development and Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Enzymes
2.2. Synthesis of Metallic Nanoparticles
2.3. Characterization of Metallic Nanoparticles
2.4. Apparatus and Measurements
2.5. Fabrication of the Enzymatic Fuel Cell
3. Results and Discussion
3.1. General Principle of FBC Functionality
3.2. Construction and Optimization of Laccase-Based Biocathodes
3.3. Development and Optimization of AO-Based Bioanode
3.4. Construction of AO-Based BFCs
3.5. Creation of the Fcb2-Based BFC
3.6. Testing the Developed Fcb2-Based BFC on Real Food Products as Lactate-Containing Fuel
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABS | Amperometric biosensor |
ABTS | 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt |
AO | Alcohol oxidase |
BFC | Biofuel cell |
CTAB | Cetyltrimethylammonium bromide |
Fcb2 | Flavocytochrome b2 |
GCE | Glassy carbon electrode |
HCF | Hexacyanoferrate of metal |
HQ | Hydroquinone |
NM | Nanomaterial |
NPs | Nanoparticles |
OCV | Open-circuit voltage |
PMS | Phenazyne methosulfate |
PO | Peroxidase |
PVP | Polyvinylpyrrolidone |
SEM | Scanning electron microscopy |
XRM | X-ray spectral microanalysis |
References
- Yu, Y.; Dong, S. Biofuel cells: From nature to energy. In Biofuel Cells: The Design and Application of Biological Catalysts, 1st ed.; Dong, S., Ed.; Elsevier: San Diego, CA, USA, 2024; pp. 1–10. [Google Scholar] [CrossRef]
- Mukherjee, A.; Patel, V.; Shah, M.T.; Munshi, N.S. Enzymatic and Microbial Biofuel Cells: Current Developments and Future Directions. In Handbook of Biofuels; Sahay, S., Ed.; Academic Press: San Diego, CA, USA, 2022; pp. 551–576. [Google Scholar] [CrossRef]
- Cracknell, J.A.; Vincent, K.A.; Armstrong, F.A. Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem. Rev. 2008, 108, 2439–2461. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Shen, F.; Zhao, J.; Xiao, X. Enzymatic Biofuel Cell: A Potential Power Source for Self-Sustained Smart Textiles. iScience 2024, 27, 108998. [Google Scholar] [CrossRef] [PubMed]
- Katz, E.; Bückmann, A.F.; Willner, I.J. Self-powered enzyme-based biosensors. Am. Chem. Soc. 2001, 123, 10752–10753. [Google Scholar] [CrossRef]
- Luo, X.; Li, S.; Wu, Y.; Tan, F.; Li, C.; Gu, W.; Zhu, C. Hybrid Enzymatic and Nanozymatic Biofuel Cells for Wearable and Implantable Biosensors. TrAC Trends Anal. Chem. 2025, 185, 118169. [Google Scholar] [CrossRef]
- Yun, J.; Keerthana, S.; Kwon, S.-R. Miniaturized power-integrated and self-powered sensor systems for advanced biomedical applications. Sensors Actuators Rep. 2025, 9, 100260. [Google Scholar] [CrossRef]
- Sharma, V.; Sharma, M.; Gaur, R.; Gupta, Y.; Rimza, S. Applications of Biofuel Cells. In Biofuel Cells and Energy Generation; Sadasivuni, K.K., Geetha, M., Eds.; Woodhead Publishing: Cambridge, MA, USA, 2025; pp. 429–452. [Google Scholar]
- Haque, S.U.; Duteanu, N.; Ciocan, S.; Nasar, A.; Inamuddin. A Review: Evolution of Enzymatic Biofuel Cells. J. Environ. Manag. 2021, 298, 113483. [Google Scholar] [CrossRef]
- Cai, R. Fabrication and Applications of Enzymatic Biofuel Cells. In Biofuel Cells and Energy Generation; Sadasivuni, K.K., Geetha, M., Eds.; Woodhead Publishing: Cambridge, MA, USA, 2025; pp. 109–181. [Google Scholar]
- Zou, Y.; Li, Z. Self-Powered Sensors for Wearable Detections. In Portable and Wearable Sensing Systems: Techniques, Fabrication, and Biochemical Detection; Liu, Q., Ed.; Wiley-VCH GmbH: Weinheim, Germany, 2024. [Google Scholar] [CrossRef]
- Koushanpour, A.; Gamella, M.; Katz, E. A biofuel cell based on biocatalytic reactions of lactate on both anode and cathode electrodes—Extracting electrical power from human sweat. Electroanalysis 2017, 29, 1602–1611. [Google Scholar] [CrossRef]
- Wei, J.; Sha, J.; Di, K.; Chen, S.; Liu, W.; Long, L.; Wang, K. Reusable Self-Powered Electrochromic Sensor Patch Based on Enzymatic Biofuel Cells for On-Site Visualized Monitoring of Lactic Acid. Anal. Chem. 2025, 97, 2604–2609. [Google Scholar] [CrossRef]
- Liu, H.; Lu, Y.; Xiang, A.; Zhang, W.; Kuang, W.; Yan, S.; Liu, K. A 1.6 mW cm−2 Lactate/O2 Enzymatic Biofuel Cell: Enhanced Power Generation and Energy Harvesting from Human Sweat by 3D Interpenetrating Network Porous Structure CNT-Membranes. Energy Environ. Sci. 2025, 18, 1801–1811. [Google Scholar] [CrossRef]
- Baingane, A.; Slaughter, G. Self-Powered Electrochemical Lactate Biosensing. Energies 2017, 10, 1582. [Google Scholar] [CrossRef]
- Cohen, R.; Herzallh, N.S.; Meirovich, M.M.; Bachar, O.; Frech, L.; Cohen, Y.; Yehezkeli, O. An oxygen-insensitive biosensor and a biofuel cell device based on FMN L-lactate dehydrogenase. Bioelectrochemistry 2023, 149, 108316. [Google Scholar] [CrossRef] [PubMed]
- Ruff, A.; Pinyou, P.; Nolten, M.; Conzuelo, F.; Schuhmann, W. A Self-Powered Ethanol Biosensor. ChemElectroChem 2017, 4, 890–897. [Google Scholar] [CrossRef]
- Monkratok, J.; Janphuang, P.; Chansaenpak, K.; Lisnund, S.; Blay, V.; Pinyou, P. Small but Mighty: A Microfluidic Biofuel Cell-Based Biosensor for the Determination of Ethanol. Molecules 2025, 30, 673. [Google Scholar] [CrossRef] [PubMed]
- Farahbakhsh, A.; Abad, J.M.N.; Hekmatmanesh, A.; Handroos, H. Evaluating the Performance of Ethanol Electrochemical Nanobiosensor Through Machine for Predictive Analysis of Electric Current in Self-Powered Biosensors. Battery Energy 2025, e20240044. [Google Scholar] [CrossRef]
- Franco, J.H.; Minteer, S.D.; De Andrade, A.R. Ethanol Biofuel Cells: Hybrid Catalytic Cascades as a Tool for Biosensor Devices. Biosensors 2021, 11, 41. [Google Scholar] [CrossRef]
- Moore, C.M.; Minteer, S.D.; Martin, R.S. Microchip-Based Ethanol/Oxygen Biofuel Cell. Lab Chip 2005, 5, 218–225. [Google Scholar] [CrossRef]
- Zloczewska, A.; Celebanska, A.; Szot, K.; Tomaszewska, D.; Opallo, M.; Jonsson-Niedziolka, M. Self-Powered Biosensor for Ascorbic Acid with a Prussian Blue Electrochromic Display. Biosens. Bioelectron. 2014, 54, 455–461. [Google Scholar] [CrossRef]
- Geetha, M.; Safamariyam, E.; Roshan, S.; Synumol, P. Biofuel Cells: A Novel Innovation. In Biofuel Cells and Energy Generation; Sadasivuni, K.K., Geetha, M., Eds.; Woodhead Publishing: Cambridge, MA, USA, 2025; pp. 1–26. [Google Scholar]
- Wu, Y.; Luo, D.; Yi, J.; Li, R.; Yang, D.; Pang, P.; Wang, H.; Yang, W.; Zhang, Y. A Self-Powered Electrochemical Aptasensor for the Detection of 17β-Estradiol Based on Carbon Nanocages/Gold Nanoparticles and DNA Bioconjugate Mediated Biofuel Cells. Analyst 2024, 149, 2621–2628. [Google Scholar] [CrossRef]
- Chakraborty, I.; Olsson, R.T.; Andersson, R.L.; Pandey, A. Glucose-Based Biofuel Cells and Their Applications in Medical Implants: A Review. Heliyon 2024, 10, e33615. [Google Scholar] [CrossRef]
- Bi, R.; Ma, P.; Wang, Q.; Song, S.; Chen, F.; Ma, X. Morphological Regulation of Platinum Nanoflowers with High Enzyme Loading for Glucose Biosensing and Biofuel Cells. J. Power Sources 2025, 629, 235989. [Google Scholar] [CrossRef]
- Kausaite-Minkstimiene, A.; Kaminskas, A.; Ramanaviciene, A. Development of a Membraneless Single-Enzyme Biofuel Cell Powered by Glucose. Biosens. Bioelectron. 2022, 216, 114657. [Google Scholar] [CrossRef] [PubMed]
- Gloeb-McDonald, R.G.; Fridman, G.Y. Glucose Fuel Cells: Electricity from Blood Sugar. IEEE Rev. Biomed. Eng. 2025, 18, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.; Liu, H.; Mo, Y.; Li, J.; Liu, X.; Pang, L. In-situ growth of enzyme/copper phosphate hybrids on carbon cloth surface as self-powered electrochemical glucose biosensor. Biochem. Eng. J. 2023, 193, 108860. [Google Scholar] [CrossRef]
- Khan, A.; Rashid, H.A.; Kabiraz, D.C.; Sarker, A.C.; Chowdhury, S.I. Self-Powered Wearable Biosensors for Metabolites and Electrolytes Detection: Harnessing Nanogenerators and Renewable Energy Sources. Sens. Actuators A Phys. 2025, 386, 116339. [Google Scholar] [CrossRef]
- Stasyuk, N.; Smutok, O.; Demkiv, O.; Prokopiv, T.; Gayda, G.; Nisnevitch, M.; Gonchar, M. Synthesis, Catalytic Properties and Application in Biosensorics of Nanozymes and Electronanocatalysts: A Review. Sensors 2020, 20, 4509. [Google Scholar] [CrossRef]
- Demkiv, O.; Stasyuk, N.; Serkiz, R.; Gayda, G.; Nisnevitch, M.; Gonchar, M. Peroxidase-like Metal-Based Nanozymes: Synthesis, Catalytic Properties, and Analytical Application. Appl. Sci. 2021, 11, 777. [Google Scholar] [CrossRef]
- Demkiv, O.; Gayda, G.; Stasyuk, N.; Moroz, A.; Serkiz, R.; Kausaite-Minkstimiene, A.; Gonchar, M.; Nisnevitch, M. Flavocytochrome b2-Mediated Electroactive Nanoparticles for Developing Amperometric L-Lactate Biosensors. Biosensors 2023, 13, 587. [Google Scholar] [CrossRef]
- Demkiv, O.M.; Stasyuk, N.Y.; Grynchyshyn, N.M.; Klepach, H.M.; Gonchar, M.V. Nanoparticles of Prussian Blue Analogues as Peroxidase Mimetics for Nanozyme–Oxidase–Based Biosensors. Biopolym. Cell 2024, 40, 96–108. [Google Scholar] [CrossRef]
- Demkiv, O.; Nogala, W.; Stasyuk, N.; Klepach, H.; Danysh, T.; Gonchar, M. Highly Sensitive Amperometric Sensors Based on Laccase-Mimetic Nanozymes for the Detection of Dopamine. RSC Adv. 2024, 14, 5472–5478. [Google Scholar] [CrossRef]
- Gayda, G.; Demkiv, O.; Stasyuk, N.; Boretsky, Y.; Gonchar, M.; Nisnevitch, M. Peroxidase-like Nanoparticles of Noble Metals Stimulate Increasing Sensitivity of Flavocytochrome b2-Based L-Lactate Biosensors. Biosensors 2024, 14, 562. [Google Scholar] [CrossRef]
- Stasyuk, N.; Demkiv, O.; Gayda, G.; Zakalskiy, A.; Klepach, H.; Bisko, N.; Gonchar, M.; Nisnevitch, M. Highly Porous 3D Gold Enhances Sensitivity of Amperometric Biosensors Based on Oxidases and CuCe Nanoparticles. Biosensors 2022, 12, 472. [Google Scholar] [CrossRef]
- Gayda, G.; Demkiv, O.; Stasyuk, N.; Klepach, H.; Serkiz, R.; Nakonechny, F.; Gonchar, M.; Nisnevitch, M. Copper Hexacyanoferrates Obtained via Flavocytochrome b2 Assistance: Characterization and Application. Biosensors 2025, 15, 157. [Google Scholar] [CrossRef]
- Gayda, G.; Demkiv, O.; Klepach, H.; Gonchar, M.; Nisnevitch, M. Effective Technologies for Isolating Yeast Oxido-Reductases of Analytical Importance. In Non-Conventional Yeasts: From Basic Research to Application; Sibirny, A., Ed.; Springer Nature: Cham, Switzerland, 2019; pp. 119–151. ISBN 978-3-030-21110-3. [Google Scholar]
- Stasyuk, N.; Demkiv, O.; Gayda, G.; Zakalska, O.; Zakalskiy, A.; Serkiz, R.; Kavetskyy, T.; Gonchar, M. Reusable Alcohol Oxidase–nPtCu/Alginate Beads for Highly Sensitive Ethanol Assay in Beverages. RSC Adv. 2022, 12, 21309–21317. [Google Scholar] [CrossRef]
- Demkiv, O.; Stasyuk, N.; Gayda, G.; Gonchar, M. Highly Sensitive Amperometric Sensor Based on Laccase-Mimicking Metal-Based Hybrid Nanozymes for Adrenaline Analysis in Pharmaceuticals. Catalysts 2021, 11, 1510. [Google Scholar] [CrossRef]
- Stasyuk, N.; Zakalskiy, A.; Holdynski, M.; Demkiv, O.; Nogala, W.; Gonchar, M. Genetically Engineered Bacterial Cells Enriched with Creatinine Deiminase and N-Methylhydantoin-Sensitive Bionanocomposites for Self-Powered Creatinine-Selective Biosensors. Sens. Actuators B Chem. 2025, 425, 136971. [Google Scholar] [CrossRef]
- Fenga, P.G.; Cardoso, F.P.; Nikolaou, S.; de Andrade, A.R. Membraneless Ethanol, O2 Enzymatic Biofuel Cell Based on Laccase and ADH/NAD+ Bioelectrodes. Eclét. Quím. 2019, 44, 46–54. [Google Scholar] [CrossRef]
- Das, M.; Barbora, L.; Das, P.; Goswami, P. Biofuel Cell for Generating Power from Methanol Substrate Using Alcohol Oxidase Bioanode and Air-Breathed Laccase Biocathode. Biosens. Bioelectron. 2014, 59, 184–191. [Google Scholar] [CrossRef]
- Franco, J.H.; Minteer, S.D.; de Andrade, A.R. Product Analysis of Operating an Ethanol/O2 Biofuel Cell Shows the Synergy between Enzymes within an Enzymatic Cascade. J. Electrochem. Soc. 2018, 165, H575. [Google Scholar] [CrossRef]
- Selloum, D.; Tingry, S. Ethanol/Oxygen Microfluidic Biofuel Cells. Mater. Sci. Eng. C 2018, 1, 011–015. [Google Scholar]
- Yan, Y.; Mao, L. An Enzymatic Ethanol/O2 Biofuel Cell Powered by Commercial Vodka Fuel. J. Electrochem. 2015, 21, 2. [Google Scholar]
- Wang, W.; Song, W.; Xu, T.; Liu, Z.; Bai, L. Dual-Substrate, Dual-Mode and Self-Powered Visual Biosensor Based on Biofuel Cell. Sens. Actuators B Chem. 2023, 394, 134401. [Google Scholar] [CrossRef]
- Ledesma-García, J.; Gurrola, M.P.; Trejo-Arroyo, D.L.; Rodríguez-Morales, J.A.; Gutiérrez, A.; Escalona-Villalpando, R.A.; Arriaga, L.G. Development of Bioanode for Versatile Applications: Microfuel Cell System in the Presence of Alcohol and Glucose. Mater. Renew. Sustain. Energy 2022, 11, 155–167. [Google Scholar] [CrossRef]
- Das, P.; Bachu, V.; Barbora, L.; Dutta, A.; Sarma, M.K.; Goswami, P. Passive Fuel Delivery and Efficient Anoxic Condition in Anode Improve Performance of Methanol Biofuel Cell. Appl. Energy 2021, 305, 117824. [Google Scholar] [CrossRef]
- Sun, M.; Gu, Y.; Pei, X.; Wang, J.; Liu, J.; Ma, C.; Bai, J.; Zhou, M. A Flexible and Wearable Epidermal Ethanol Biofuel Cell for on-Body and Real-Time Bioenergy Harvesting from Human Sweat. Nano Energy 2021, 86, 106061. [Google Scholar] [CrossRef]
- Liu, S.; Feng, Y.; Li, H. Degradation mechanism of saliferous compounding heavy metals-organic wastewater by manganese and iron cycling in the microbial fuel cell. Chem. Eng. J. 2023, 473, 145389. [Google Scholar] [CrossRef]
Bioanode | Biocathode | OCV, V | Power Density, µW/cm2 | Resistance, Ohm | A Current of a Short Circuit, nA |
---|---|---|---|---|---|
AO + 1 HQ | Laccase + ABTS | 0.58 ± 0.02 | 0.20 ± 0.01 | 0.50 ± 0.02 | 100 ± 7.0 |
AO/2 CNTs + HQ | 0.56 ± 0.02 | 0.49 ± 0.03 | 0.15 ± 0.01 | 235 ± 10 | |
AO/nAgCu + HQ | Laccase/nAuCePt + ABTS | 0.54 ± 0.01 | 1.30 ± 0.02 | 0.05 ± 0.03 | 700 ± 5.5 |
AO/nAgCePt + HQ | 0.50 ± 0.03 | 1.04 ±0.07 | 0.20 ± 0.01 | 600 ± 3.3 | |
AO/nPtPd + HQ | 0.50 ± 0.04 | 1.08 ± 0.04 | 0.20 ± 0.01 | 550 ± 7.0 | |
AO/nCoCuCe + HQ | 0.57 ± 0.03 | 2.10 ± 0.12 | 0.03 ± 0.002 | 400 ± 2.5 | |
AO/nCoPtCu + HQ | 0.63 ± 0.05 | 3.20 ±0.15 | 0.02 ± 0.001 | 600 ± 5.9 |
Bioanode | FDM | Biocathode | OCV, V | Fuel Cell Potential, V | Power Density, μW/cm2 | Current of Short Circuit, nA |
---|---|---|---|---|---|---|
Fcb2/nAuHCF | - | laccase/nAuCePt with ABTS | 0.54 ± 0.04 | 0.44 ± 0.03 | 0.44 ± 0.04 | 110 ± 10 |
HQ | 0.44 ± 0.03 | 0.35 ± 0.02 | 1.80 ± 0.1 | 550 ± 45 | ||
Fcb2/nAuPt | PMS | 0.35 ± 0.02 | 0.35 ± 0.03 | 0.28 ± 0.02 | 210 ± 18 | |
K3Fe(CN)6 | 0.4 ± 0.03 | 0.37 ± 0.03 | 0.13 ± 0.01 | 85 ± 7 |
Bioanode | Fuel | Biocathode | OCV, mV | Fuel Cell Potential, V | Power Density, μW/cm2 | A Current of the Short Circuit, nA |
---|---|---|---|---|---|---|
Fcb2/nAuPt + PMS | yogurt | laccase nAuCePt/ABTS | 0.39 ± 0.03 | 0.37 ± 0.03 | 0.30 ± 0.03 | 210 ± 18 |
cucumber brine | 0.65 ± 0.05 | 0.60 ± 0.04 | 0.78 ± 0.05 | 350 ± 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demkiv, O.; Stasyuk, N.; Gayda, G.; Zakalska, O.; Gonchar, M.; Nisnevitch, M. Biofuel Cells Based on Oxidoreductases and Electroactive Nanomaterials: Development and Characterization. Biosensors 2025, 15, 249. https://doi.org/10.3390/bios15040249
Demkiv O, Stasyuk N, Gayda G, Zakalska O, Gonchar M, Nisnevitch M. Biofuel Cells Based on Oxidoreductases and Electroactive Nanomaterials: Development and Characterization. Biosensors. 2025; 15(4):249. https://doi.org/10.3390/bios15040249
Chicago/Turabian StyleDemkiv, Olha, Nataliya Stasyuk, Galina Gayda, Oksana Zakalska, Mykhailo Gonchar, and Marina Nisnevitch. 2025. "Biofuel Cells Based on Oxidoreductases and Electroactive Nanomaterials: Development and Characterization" Biosensors 15, no. 4: 249. https://doi.org/10.3390/bios15040249
APA StyleDemkiv, O., Stasyuk, N., Gayda, G., Zakalska, O., Gonchar, M., & Nisnevitch, M. (2025). Biofuel Cells Based on Oxidoreductases and Electroactive Nanomaterials: Development and Characterization. Biosensors, 15(4), 249. https://doi.org/10.3390/bios15040249