Synthesis and Optical Properties of N-Arylnaphtho- and Anthra[2,3-d]oxazol-2-amines
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Synthesis of N-Arylnaphtho- and Anthra[2,3-d]oxazol-2-amines
3.3. Characterization Data
3.3.1. N-Phenylnaphtho[2,3-d]oxazol-2-amine (4) [15]
3.3.2. N-(4-Methoxyphenyl)naphtho[2,3-d]oxazol-2-amine (6) [16]
3.3.3. N-(4-Fluorophenyl)naphtho[2,3-d]oxazol-2-amine (7)
3.3.4. N-[4-(Trifluoromethyl)phenyl]naphtho[2,3-d]oxazol-2-amine (8)
3.3.5. N-(4-Methoxyphenyl)anthra[2,3-d]oxazol-2-amine (9)
3.3.6. N-Phenylanthra[2,3-d]oxazol-2-amine (10) [15]
3.3.7. N-(4-Fluorophenyl)anthra[2,3-d]oxazol-2-amine (11)
3.3.8. N-[4-(Trifluoromethyl)phenyl]anthra[2,3-d]oxazol-2-amine (12)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, X.; Wen, J.; Zhou, L.; Fan, L.; Wang, X.; Xu, Z. Current scenario of 1,3-oxazole derivatives for anticancer activity. Curr. Top. Med. Chem. 2020, 20, 1916–1937. [Google Scholar] [CrossRef] [PubMed]
- Demmer, C.S.; Bunch, L. Benzoxazoles and oxazolopyridines in medicinal chemistry studies. Eur. J. Med. Chem. 2015, 97, 778–785. [Google Scholar] [CrossRef]
- Kaur, A.; Wakode, S.; Pathak, D.P. Benzoxazole: The molecule of diverse pharmacological importance. Int. J. Pharm. Pharm. Sci. 2015, 7, 16–23. [Google Scholar]
- Singh, S.; Veeraswamy, G.; Bhattarai, D.; Goo, J.; Lee, K.; Choi, Y. Recent advances in the development of pharmacologically active compounds that contain a benzoxazole scaffold. Asian J. Org. Chem. 2015, 4, 1338–1361. [Google Scholar] [CrossRef]
- Oliveira, E.; Santos, H.M. An overview on sensing materials depending on the electromagnetic spectra region applied. Dye. Pigment. 2016, 135, 3–25. [Google Scholar] [CrossRef]
- Flick, A.C.; Ding, H.X.; Leverett, C.A.; Kyne, R.E., Jr.; Liu, K.K.C.; Fink, S.J.; O’Donnell, C.J. Synthetic approaches to the 2014 new drugs. Bioorg. Med. Chem. 2016, 24, 1937–1980. [Google Scholar] [CrossRef] [PubMed]
- Dubey, A.K.; Handu, S.S.; Mediratta, P.K. Suvorexant: The first orexin receptor antagonist to treat insomnia. J. Pharmacol. Pharmacother. 2015, 6, 118–121. [Google Scholar] [CrossRef]
- Song, H.; Oh, S.R.; Lee, H.K.; Han, G.; Kim, J.H.; Chang, H.W.; Doh, K.E.; Rhee, H.K.; Choo, H.Y.P. Synthesis and evaluation of benzoxazole derivatives as 5-lipoxygenase inhibitors. Bioorg. Med. Chem. 2010, 18, 7580–7585. [Google Scholar] [CrossRef] [PubMed]
- Costales, A.; Mathur, M.; Ramurthy, S.; Lan, J.; Subramanian, S.; Jain, R.; Atallah, G.; Setti, L.; Lindvall, M.; Appleton, B.A.; et al. 2-Amino-7-substituted benzoxazole analogs as potent RSK2 inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 1592–1596. [Google Scholar] [CrossRef]
- Wang, G.; Peng, Z.; Wang, J.; Li, J.; Li, X. Synthesis, biological evaluation and molecular docking study of N-arylbenzo[d]oxazol-2-amines as potential α-glucosidase inhibitors. Bioorg. Med. Chem. 2016, 24, 5374–5379. [Google Scholar] [CrossRef]
- Kadagathur, M.; Shaikh, A.S.; Jadhav, G.S.; Sigalapalli, D.K.; Shankaraiah, N.; Tangellamudi, N.D. Cyclodesulfurization: An enabling protocol for synthesis of various heterocycles. ChemstrySelect 2021, 6, 2621–2640. [Google Scholar] [CrossRef]
- Gu, Y.; Li, Y.D.; Ge, Y.; Huang, J.L.; Xu, H.J.; Hu, Y. Hypervalent iodine mediated synthesis of 2-aminobenzazoles and 2-aminobenzothiazoles. Asian J. Org. Chem. 2024, 13, e202400076. [Google Scholar] [CrossRef]
- Kant, K.; Patel, C.K.; Banerjee, S.; Naik, P.; Padhi, A.; Sharma, V.; Singh, V.; Almeer, R.; Keremane, K.S.; Atta, A.K.; et al. HFIP-mediated cyclodesulfurization approach for the synthesis of 2-aminobenzoxazole and 2-aminobenzothiazole derivatives. Asian J. Org. Chem. 2024, 13, e202400223. [Google Scholar] [CrossRef]
- Rodríguez-Nuévalos, S.; Costero, A.M.; Arroyo, P.; Sáez, J.A.; Parra, M.; Sancenón, F.; Martínez-Máñez, R. Protection against chemical submission: Naked-eye detection of γ-hydroxybutyric acid (GHB) in soft drinks and alcoholic beverages. Chem. Commun. 2020, 56, 12600–12603. [Google Scholar] [CrossRef] [PubMed]
- Murata, Y.; Matsumoto, N.; Miyata, M.; Kitamura, Y.; Kakusawa, N.; Matsumura, M.; Yasuike, S. One-pot reaction for the synthesis of N-substituted 2-aminobenzoxazoles using triphenylbismuth dichloride as cyclodesulfurization reagent. J. Organomet. Chem. 2018, 859, 18–23. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Dong, Y.; Yang, J.; Wu, Y. A Cu2O/TBAB-promoted approach to synthesize heteroaromatic 2-amines via one-pot cyclization of aryl isothiocyanates with ortho-substituted amines in water. Org. Biomol. Chem. 2020, 18, 7425–7430. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.T.; Huynh, T.N.; Nguyen, P.C.; Phan, N.T.S.; Nguyen, T.T. Synthesis of 2-aminobenzoxazoles from elemental sulfur mediated cyclization of 2-aminophenols and aryl isothiocyanates. Tetrahedron Lett. 2023, 122, 154510. [Google Scholar] [CrossRef]
- Xu, Y.; Li, F.; Zhao, N.; Su, J.; Wang, C.; Wang, C.; Li, Z.; Wang, L. Environment-friendly and efficient synthesis of 2-aminobenzo-xazoles and 2-aminobenzothiazoles catalyzed by Vitreoscilla hemoglobin incorporating a cobalt porphyrin cofactor. Green Chem. 2021, 23, 8047–8052. [Google Scholar] [CrossRef]
- Listratova, A.V.; Sbei, N.; Voskressensky, L.G. Catalytic electrosynthesis of N,O-heterocycles—Recent advances. Eur. J. Org. Chem. 2020, 2020, 2012–2027. [Google Scholar] [CrossRef]
- Sbei, N.; Listratova, A.V.; Titov, A.A.; Voskressensky, L.G. Recent advances in electrochemistry for the synthesis of N-heterocycles. Synthesis 2019, 51, 2455–2473. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, K.; Zeng, C. Use of electrochemistry in the synthesis of heterocyclic structures. Chem. Rev. 2018, 118, 4485–4540. [Google Scholar] [CrossRef]
- Huynh, T.N.T.; Tankam, T.; Koguchi, S.; Rerkrachaneekorn, T.; Sukwattanasinitt, M.; Wacharasindhu, S. Electrochemical NaI/NaCl-mediated one-pot synthesis of 2-aminobenzoxazoles in aqueous media via tandem addition–cyclization. Green Chem. 2021, 23, 5189–5194. [Google Scholar] [CrossRef]
- Liu, K.; Song, C.; Lei, A. Recent advances in iodine mediated electrochemical oxidative cross-coupling. Org. Biomol. Chem. 2018, 16, 2375–2387. [Google Scholar] [CrossRef]
- Bentlety, C.L.; Bond, A.M.; Hollenkamp, A.F.; Mahon, P.J.; Zhang, J. Electrochemistry of iodide, iodine, and iodine monochloride in chloride containing nonhaloaluminate ionic liquids. Anal. Chem. 2016, 88, 1915–1921. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, C.; Jiang, H.; Sun, L. Convenient synthesis of selenyl-indoles via iodide ion-catalyzed electrochemical C–H selenation. Chem. Commun. 2018, 54, 8781–8784. [Google Scholar] [CrossRef] [PubMed]
- Eaton, D.F. Reference materials for fluorescence measurement. Pure Appl. Chem. 1988, 60, 1107–1114. [Google Scholar] [CrossRef]
- Partes, C.; Yildirim, C.; Schuster, S.; Kind, M.; Bats, J.W.; Zharnikov, M.; Terfort, A. Self-assembled monolayers of pseudo-C2v-Symmetric, low-band-gap areneoxazolethiolates on gold surfaces. Langmuir 2016, 32, 11474–11484. [Google Scholar] [CrossRef] [PubMed]
Entry | Electrolyte | Electrode | Current (mA) | Solvent | Time (h) | Yield (%) b |
1 | NaI | C(+)/Pt(−) | 20 | MeCN | 3 | 64 |
2 | NH4I | C(+)/Pt(−) | 20 | MeCN | 3 | 77 |
3 | nBu4NI | C(+)/Pt(−) | 20 | MeCN | 4 | 76 |
4 | KI | C(+)/Pt(−) | 20 | MeCN | 3 | 83 |
5 | KBr | C(+)/Pt(−) | 20 | MeCN | 24 | --- |
6 | KI | C(+)/Pt(−) | 20 | DMF | 3 | 79 |
7 | KI | C(+)/Pt(−) | 20 | DMA | 3 | 69 |
8 | KI | C(+)/Pt(−) | 20 | DMSO | 2 | 87 |
9 | KI | C(+)/Pt(−) | 20 | EtOH | 24 | --- |
10 | KI | C(+)/Pt(−) | 20 | THF | 24 | --- |
11 | KI | C(+)/C(–) | 20 | DMSO | 2 | 72 |
12 | KI | Pt(+)/Pt(−) | 20 | DMSO | 3 | 81 |
13 | KI | Pt(+)/C(–) | 20 | DMSO | 4 | 81 |
14 c | KI | C(+)/Pt(−) | 20 | DMSO | 3 | 60 |
15 | KI | C(+)/Pt(−) | 5 | DMSO | 24 | 80 |
6: 90% (4 h) | 7: 86% (2 h) | 8: 89% (2 h) | 9: 17% (4 h) | ||
10: 36% (2 h) | 11: 47% (2 h) | 12: 53% (2 h) |
Compound | Ar | λabs (nm) | λem (nm) a | ΦF (%) a,b |
---|---|---|---|---|
6 | 4-MeOC6H4 | 334 | 357 | <1 |
4 | C6H5 | 332 | 345 | 15 |
7 | 4-FC6H4 | 332 | 344 | 11 |
8 | 4-CF3C6H4 | 332 | 339 | 32 |
9 | 4-MeOC6H4 | 359, 376, 398 | 414, 431 | 27 |
10 | C6H5 | 359, 376, 398 | 409, 431 | 18 |
11 | 4-FC6H4 | 359, 376, 398 | 408, 430 | 14 |
12 | 4-CF3C6H4 | 359, 376, 398 | 406, 430 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murata, Y.; Kawakubo, M.; Maruyama, A.; Matsumura, M.; Yasuike, S. Synthesis and Optical Properties of N-Arylnaphtho- and Anthra[2,3-d]oxazol-2-amines. Molecules 2025, 30, 319. https://doi.org/10.3390/molecules30020319
Murata Y, Kawakubo M, Maruyama A, Matsumura M, Yasuike S. Synthesis and Optical Properties of N-Arylnaphtho- and Anthra[2,3-d]oxazol-2-amines. Molecules. 2025; 30(2):319. https://doi.org/10.3390/molecules30020319
Chicago/Turabian StyleMurata, Yuki, Masato Kawakubo, Ayumi Maruyama, Mio Matsumura, and Shuji Yasuike. 2025. "Synthesis and Optical Properties of N-Arylnaphtho- and Anthra[2,3-d]oxazol-2-amines" Molecules 30, no. 2: 319. https://doi.org/10.3390/molecules30020319
APA StyleMurata, Y., Kawakubo, M., Maruyama, A., Matsumura, M., & Yasuike, S. (2025). Synthesis and Optical Properties of N-Arylnaphtho- and Anthra[2,3-d]oxazol-2-amines. Molecules, 30(2), 319. https://doi.org/10.3390/molecules30020319