Fabrication of Thylakoid Membrane-Based Photo-Bioelectrochemical Bioanode for Self-Powered Light-Driven Electronics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thylakoid Extraction from Spinach
2.3. Fabrication of the Photoanode Electrode
2.4. Electrochemical Characterization
3. Results and Discussion
3.1. Morphological Characterization of Laser-Induced Graphene Surface Modification
3.2. Electrochemical Characterizations of LIG/PEDOT Electrode
3.3. Characterization of LIG/PEDOT/Thylakoid Bioanode-Based Fuel Cell
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Matheri, A.N.; Nabadda, E.; Mohamed, B. Sustainable and circularity in the decentralized hybrid solar-bioenergy system. Environ. Dev. Sustain. 2024, 26, 16987–17011. [Google Scholar] [CrossRef] [PubMed]
- Rathore, P.K.S.; Chauhan, D.S.; Singh, R.P. Decentralized solar rooftop photovoltaic in India: On the path of sustainable energy security. Renew. Energy 2019, 131, 297–307. [Google Scholar] [CrossRef]
- Yehezkeli, O.; Tel-Vered, R.; Michaeli, D.; Nechushtai, R.; Willner, I. Photosystem I (PSI)/Photosystem II (PSII)-Based Photo-Bioelectrochemical Cells Revealing Directional Generation of Photocurrents. Small 2013, 9, 2970–2978. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Zhang, H.; Sibbons, J.; Sun, H.; Wang, H.; Wang, S. Photoelectrochemical Water Oxidation and Longevous Photoelectric Conversion by a Photosystem II Electrode. Adv. Energy Mater. 2021, 11, 2100911. [Google Scholar] [CrossRef]
- Tapie, P.; Haworth, P.; Hervo, G.; Breton, J. Orientation of the pigments in the thylakoid membrane and in the isolated chlorophyll-protein complexes of higher plants. III. A quantitative comparison of the low-temperature linear dichroism spectra of thylakoids and isolated pigment-protein complexes. Biochim. Biophys. Acta (BBA)-Bioenerg. 1982, 682, 339–344. [Google Scholar] [CrossRef]
- Stoitchkova, K.; Busheva, M.; Apostolova, E.; Andreeva, A. Changes in the energy distribution in mutant thylakoid membranes of pea with modified pigment content. II. Changes due to magnesium ions concentration. J. Photochem. Photobiol. B 2006, 83, 11–20. [Google Scholar] [CrossRef]
- Popova, A.; Velitchkova, M. Effect of membrane lipid order on the degree of freezing damage of thylakoid membranes. CryoLetters 2004, 25, 255–264. [Google Scholar]
- Pankratov, D.; Pankratova, G.; Gorton, L. Thylakoid membrane–based photobioelectrochemical systems: Achievements, limitations, and perspectives. Curr. Opin. Electrochem. 2020, 19, 49–54. [Google Scholar] [CrossRef]
- Saini, R.; Debnath, A. Thylakoid Composition Facilitates Chlorophyll a Dimerization through Stronger Interlipid Interactions. J. Phys. Chem. B 2023, 127, 9082–9094. [Google Scholar] [CrossRef]
- Lemieux, S.; Carpentier, R. Properties of Immobilized Thylakoid Membranes in a Photosynthetic Photoelectrochemical Cell. Photochem. Photobiol. 1988, 48, 115–121. [Google Scholar] [CrossRef]
- van Eerden, F.J.; de Jong, D.H.; de Vries, A.H.; Wassenaar, T.A.; Marrink, S.J. Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochim. Et Biophys. Acta (BBA)-Bioenerg. 2015, 1848, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Sarcina, M.; Mullineaux, C.; Murata, N. Thylakoid membrane fluidity and its crucial importance in photoinhibition. Sci. Access 2001, 3, 1–4. [Google Scholar] [CrossRef]
- Chang, Y.-S.; Yang, H.-C.; Chao, L. Formation of Supported Thylakoid Membrane Bioanodes for Effective Electron Transfer and Stable Photocurrent. ACS Appl. Mater. Interfaces 2022, 14, 22216–22224. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Kim, T.; Hong, H.; Kim, Y.J.; Kim, S.I.; Park, Y.; Kim, K.; Ryu, W. Conductive thylakoid composites with mussel-adhesive protein-coated carbon nanotubes for harvesting photosynthetic electrons. Appl. Surf. Sci. 2022, 575, 151697. [Google Scholar] [CrossRef]
- Son, J.; Yun, J.; Kang, Y.; Ryu, W.; Kim, J. Thin, Flexible, and Inkjet-Printed Biophotovoltaic Cell Based on Thylakoid Membrane. In Proceedings of the 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS), Austin, TX, USA, 21–25 January 2024; pp. 288–291. [Google Scholar] [CrossRef]
- Hong, H.; Lee, J.M.; Yun, J.; Kim, Y.J.; Kim, S.I.; Shin, H.; Ahn, H.S.; Hwang, S.-J.; Ryu, W. Enhanced interfacial electron transfer between thylakoids and RuO2 nanosheets for photosynthetic energy harvesting. Sci. Adv. 2021, 7, eabf2543. [Google Scholar] [CrossRef]
- Sarode, A.; Torati, S.R.; Hossain, M.F.; Slaughter, G. A photo-driven bioanode based on MXene-decorated graphene. Electrochim. Acta 2024, 498, 144637. [Google Scholar] [CrossRef]
- Hasan, K.; Patil, S.A.; Górecki, K.; Leech, D.; Hägerhäll, C.; Gorton, L. Electrochemical communication between heterotrophically grown Rhodobacter capsulatus with electrodes mediated by an osmium redox polymer. Bioelectrochemistry 2013, 93, 30–36. [Google Scholar] [CrossRef]
- Leech, D.; Kavanagh, P.; Schuhmann, W. Enzymatic fuel cells: Recent progress. Electrochim. Acta 2012, 84, 223–234. [Google Scholar] [CrossRef]
- McCormick, A.J.; Bombelli, P.; Bradley, R.W.; Thorne, R.; Wenzel, T.; Howe, C.J. Biophotovoltaics: Oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci. 2015, 8, 1092–1109. [Google Scholar] [CrossRef]
- Hasan, K.; Milton, R.D.; Grattieri, M.; Wang, T.; Stephanz, M.; Minteer, S.D. Photobioelectrocatalysis of Intact Chloroplasts for Solar Energy Conversion. ACS Catal. 2017, 7, 2257–2265. [Google Scholar] [CrossRef]
- Chen, C.-P.; Lin, P.-H.; Chen, L.-Y.; Ke, M.-Y.; Cheng, Y.-W.; Huang, J. Nanoparticle-coated n-ZnO/p-Si photodiodes with improved photoresponsivities and acceptance angles for potential solar cell applications. Nanotechnology 2009, 20, 245204. [Google Scholar] [CrossRef] [PubMed]
- Libert, M.; Schütz, M.K.; Esnault, L.; Féron, D.; Bildstein, O. Impact of microbial activity on the radioactive waste disposal: Long term prediction of biocorrosion processes. Bioelectrochemistry 2014, 97, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhai, F.; Hasebe, Y.; Jia, H.; Zhang, Z. A highly sensitive electrochemical biosensor for phenol derivatives using a graphene oxide-modified tyrosinase electrode. Bioelectrochemistry 2018, 122, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Bombelli, P.; Bradley, R.W.; Scott, A.M.; Philips, A.J.; McCormick, A.J.; Cruz, S.M.; Anderson, A.; Yunus, K.; Bendall, D.S.; Cameron, P.J.; et al. Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy Environ. Sci. 2011, 4, 4690–4698. [Google Scholar] [CrossRef]
- Zeng, Q.; Wu, J.; Yu, Z.; Luo, L. Conductive PEDOT-decorated Li4Ti5O12 as next-generation anode material for electrochemical lithium storage. Solid State Ion. 2018, 325, 7–11. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Wang, L.; Wang, J.; Meng, W.; Sun, J.; Li, Q.; He, X.; Liu, Z.; Lei, Z. Highly Reversible and Dendrite-Free Zinc Anodes Enabled by PEDOT Nanowire Interfacial Layers for Aqueous Zinc-Ion Batteries. ACS Appl. Mater. Interfaces 2024, 16, 43026–43037. [Google Scholar] [CrossRef]
- Li, S.; Huang, J.; Wang, J.; Han, K. Micro-sized porous silicon@PEDOT with high rate capacity and stability for Li-ion battery anode. Mater. Lett. 2021, 293, 129712. [Google Scholar] [CrossRef]
- Liu, J.; Xu, J.; Chen, Y.; Sun, W.; Zhou, X.; Ke, J. Synthesis and Electrochemical Performance of a PEDOT: PSS@Ge Composite as the Anode Materials for Lithium-Ion Batteries. Int. J. Electrochem. Sci. 2019, 14, 359–370. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, X.; Huang, X.; Liao, S.; Liang, K.; Yu, X.; Li, K.; Zhi, C.; Zhang, H.; Li, N. Cl−/SO32−-Codoped Poly(3,4-ethylenedioxythiophene) That Interpenetrates and Encapsulates Porous Fe2O3 To Form Composite Nanoframeworks for Stable Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 30801–30809. [Google Scholar] [CrossRef]
- Hsu, S.-C.; Wang, K.-S.; Lin, Y.-T.; Huang, J.-H.; Wu, N.-J.; Kang, J.-L.; Weng, H.-C.; Liu, T.-Y. Surface Modification of Li3VO4 with PEDOT:PSS Conductive Polymer as an Anode Material for Li-Ion Capacitors. Polymers 2023, 15, 2502. [Google Scholar] [CrossRef]
- Zhu, X.; Jack, J.; Bian, Y.; Chen, X.; Tsesmetzis, N.; Ren, Z.J. Electrocatalytic Membranes for Tunable Syngas Production and High-Efficiency Delivery to Biocompatible Electrolytes. ACS Sustain. Chem. Eng. 2021, 9, 6012–6022. [Google Scholar] [CrossRef]
- Chyan, Y.; Ye, R.; Li, Y.; Singh, S.P.; Arnusch, C.J.; Tour, J.M. Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food. ACS Nano 2018, 12, 2176–2183. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Huang, X.; Song, W. Physical and Chemical Sensors on the Basis of Laser-Induced Graphene: Mechanisms, Applications, and Perspectives. ACS Nano 2021, 15, 18708–18741. [Google Scholar] [CrossRef] [PubMed]
- Shinde, M.; Torati, S.R.; Slaughter, G. Nb4C3Tx MXene-AgNPs decorated laser-induced graphene for selective detection of dopamine. J. Electroanal. Chem. 2024, 959, 118180. [Google Scholar] [CrossRef]
- Pankratova, G.; Pankratov, D.; Di Bari, C.; Goñi-Urtiaga, A.; Toscano, M.D.; Chi, Q.; Pita, M.; Gorton, L.; De Lacey, A.L. Three-Dimensional Graphene Matrix-Supported and Thylakoid Membrane-Based High-Performance Bioelectrochemical Solar Cell. ACS Appl. Energy Mater. 2018, 1, 319–323. [Google Scholar] [CrossRef]
- Hamidi, H.; Hasan, K.; Emek, S.C.; Åkerlund, H.-E.; Albertsson, P.-Å.; Leech, D.; Gorton, L. Photocurrent Generation from Thylakoid Membranes on Osmium-Redox-Polymer-Modified Electrodes. ChemSusChem 2015, 8, 990–993. [Google Scholar] [CrossRef]
- Bunea, A.-I.; Heiskanen, A.; Pankratova, G.; Tesei, G.; Lund, M.; Åkerlund, H.-E.; Leech, D.; Larsen, N.B.; Keller, S.S.; Gorton, L.; et al. Micropatterned Carbon-on-Quartz Electrode Chips for Photocurrent Generation from Thylakoid Membranes. ACS Appl. Energy Mater. 2018, 1, 3313–3322. [Google Scholar] [CrossRef]
- Shin, H.; Kim, T.; Seo, I.; Kim, S.; Kim, Y.J.; Hong, H.; Park, Y.; Jeong, H.M.; Kim, K.; Ryu, W. Fabrication of scalable and flexible bio-photoanodes by electrospraying thylakoid/graphene oxide composites. Appl. Surf. Sci. 2019, 481, 1–9. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Rasmussen, M.; Wingersky, A.; Minteer, S.D. Comparative study of thylakoids from higher plants for solar energy conversion and herbicide detection. Electrochim. Acta 2014, 140, 304–308. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, L.; Zhang, P.; Lv, F.; Liu, L.; Qi, R.; Wang, Y.; Shen, M.-Y.; Yu, H.-H.; Bazan, G.; et al. Conducting Polymers–Thylakoid Hybrid Materials for Water Oxidation and Photoelectric Conversion. Adv. Electron. Mater. 2019, 5, 1800789. [Google Scholar] [CrossRef]
- Aviha, R.; Joshi, A.; Slaughter, G. Fabrication of Palladium-Decorated Zinc Oxide Nanostructures for Non-Enzymatic Glucose Sensing. Chemosensors 2025, 13, 6. [Google Scholar] [CrossRef]
- Shinde, M.; Slaughter, G. Advanced nanocomposite-based electrochemical sensor for ultra-sensitive dopamine detection in physiological fluids. Front. Lab Chip Technol. 2025, 4, 1549365. [Google Scholar] [CrossRef]
- Torati, S.R.; Slaughter, G. Advanced laser-induced graphene-based electrochemical immunosensor for the detection of C-reactive protein. Bioelectrochemistry 2025, 161, 108842. [Google Scholar] [CrossRef]
- Balamurugan, A.; Chen, S.M. Flow injection analysis of iodate reduction on PEDOT modified electrode. Electroanalysis 2008, 20, 1873–1877. [Google Scholar] [CrossRef]
- Slaughter, G.; Kulkarni, T. A self-powered glucose biosensing system. Biosens. Bioelectron. 2016, 78, 45–50. [Google Scholar] [CrossRef]
- Baingane, A.; Slaughter, G. A Glucose Monitoring System with Remote Data Access. IEEE Trans. NanoBioscience 2020, 19, 622–626. [Google Scholar] [CrossRef]
- Slaughter, G.; Kulkarni, T. Highly Selective and Sensitive Self-Powered Glucose Sensor Based on Capacitor Circuit. Sci. Rep. 2017, 7, 1471. [Google Scholar] [CrossRef]
- Ryu, D.; Kim, Y.J.; Kim, S.I.; Hong, H.; Ahn, H.S.; Kim, K.; Ryu, W. Thylakoid-deposited micro-pillar electrodes for enhanced direct extraction of photosynthetic electrons. Nanomaterials 2018, 8, 189. [Google Scholar] [CrossRef]
- Lee, J.; Im, J.; Kim, S. Mediatorless solar energy conversion by covalently bonded thylakoid monolayer on the glassy carbon electrode. Bioelectrochemistry 2016, 108, 21–27. [Google Scholar] [CrossRef]
- Rasmussen, M.; Minteer, S.D. Thylakoid direct photobioelectrocatalysis: Utilizing stroma thylakoids to improve bio-solar cell performance. Phys. Chem. Chem. Phys. 2014, 16, 17327–17331. [Google Scholar] [CrossRef]
No | Photoanode | OCV | Photocurrent | Power Density | Ref. |
---|---|---|---|---|---|
1 | Au/Expanded TM Au/stacked TM | 220 mV 190 mV | 214 nA cm−2 191 nA cm−2 | -- | [13] |
2 | LIG/MXene/Thylakoid | 450 mV | 29.18 µA cm−2 | 7.24 µW cm−2 | [17] |
3 | GC/rGO/Thylakoid | 500 mV | 5.24 µA cm−2 | 1.79 μW cm−2 | [36] |
4 | Carbon Paper/ Stroma Thylakoid | -- | 51 ± 4 nA cm−2 | 0.65 nW cm−2 | [42] |
5 | Thylakoid-Deposited Micro-Pillar Electrodes | 407 mV | 280 nA cm−2 | 64 nW cm−2 | [50] |
6 | Glassy Carbon/Thylakoid Monolayer | -- | 230 nA cm−2 | -- | [51] |
7 | Thylakoid/PFP Conducting Polymer | -- | 1246 nA cm−2 | -- | [52] |
8 | LIG/PEDOT/Thylakoid | 570 mV | 18 μA cm−2 | 36 µW cm−2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarode, A.; Slaughter, G. Fabrication of Thylakoid Membrane-Based Photo-Bioelectrochemical Bioanode for Self-Powered Light-Driven Electronics. Energies 2025, 18, 3167. https://doi.org/10.3390/en18123167
Sarode A, Slaughter G. Fabrication of Thylakoid Membrane-Based Photo-Bioelectrochemical Bioanode for Self-Powered Light-Driven Electronics. Energies. 2025; 18(12):3167. https://doi.org/10.3390/en18123167
Chicago/Turabian StyleSarode, Amit, and Gymama Slaughter. 2025. "Fabrication of Thylakoid Membrane-Based Photo-Bioelectrochemical Bioanode for Self-Powered Light-Driven Electronics" Energies 18, no. 12: 3167. https://doi.org/10.3390/en18123167
APA StyleSarode, A., & Slaughter, G. (2025). Fabrication of Thylakoid Membrane-Based Photo-Bioelectrochemical Bioanode for Self-Powered Light-Driven Electronics. Energies, 18(12), 3167. https://doi.org/10.3390/en18123167