Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,286)

Search Parameters:
Keywords = platform work

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 262 KiB  
Article
Comics as Heritage: Theorizing Digital Futures of Vernacular Expression
by Ilan Manouach and Anna Foka
Heritage 2025, 8(8), 295; https://doi.org/10.3390/heritage8080295 (registering DOI) - 24 Jul 2025
Abstract
This paper investigates digital comics—particularly webcomics and webtoons—as emerging forms of cultural heritage, analyzing their exponential global influence alongside the limitations of traditional heritage frameworks in systematically preserving them. The UNESCO heritage model, rooted in concepts of physical fixity and authenticity, is shown [...] Read more.
This paper investigates digital comics—particularly webcomics and webtoons—as emerging forms of cultural heritage, analyzing their exponential global influence alongside the limitations of traditional heritage frameworks in systematically preserving them. The UNESCO heritage model, rooted in concepts of physical fixity and authenticity, is shown as inadequate for born-digital works like comics, which derive meaning from technological infrastructure, dynamic platforms, and ongoing community interaction rather than static material forms. Drawing on heritage futures and digital materiality theories, the authors argue that digital comics exemplify "temporal authenticity," evolving through continual transformation and algorithmic curation. The paper details how platform recommendation systems and analytics directly shape which comics achieve cultural visibility and preservation, while community-driven initiatives—such as The Flashpoint Archive—demonstrate effective models for holistic, grassroots digital preservation beyond institutional reach. Ultimately, the study calls for new theoretical and practical approaches to heritage, recognizing digital comics as both cultural artifacts and dynamic, platform-specific vernacular expressions. Full article
(This article belongs to the Section Digital Heritage)
15 pages, 2123 KiB  
Article
Multi-Class Visual Cyberbullying Detection Using Deep Neural Networks and the CVID Dataset
by Muhammad Asad Arshed, Zunera Samreen, Arslan Ahmad, Laiba Amjad, Hasnain Muavia, Christine Dewi and Muhammad Kabir
Information 2025, 16(8), 630; https://doi.org/10.3390/info16080630 (registering DOI) - 24 Jul 2025
Abstract
In an era where online interactions increasingly shape social dynamics, the pervasive issue of cyberbullying poses a significant threat to the well-being of individuals, particularly among vulnerable groups. Despite extensive research on text-based cyberbullying detection, the rise of visual content on social media [...] Read more.
In an era where online interactions increasingly shape social dynamics, the pervasive issue of cyberbullying poses a significant threat to the well-being of individuals, particularly among vulnerable groups. Despite extensive research on text-based cyberbullying detection, the rise of visual content on social media platforms necessitates new approaches to address cyberbullying using images. This domain has been largely overlooked. In this paper, we present a novel dataset specifically designed for the detection of visual cyberbullying, encompassing four distinct classes: abuse, curse, discourage, and threat. The initial prepared dataset (cyberbullying visual indicators dataset (CVID)) comprised 664 samples for training and validation, expanded through data augmentation techniques to ensure balanced and accurate results across all classes. We analyzed this dataset using several advanced deep learning models, including VGG16, VGG19, MobileNetV2, and Vision Transformer. The proposed model, based on DenseNet201, achieved the highest test accuracy of 99%, demonstrating its efficacy in identifying the visual cues associated with cyberbullying. To prove the proposed model’s generalizability, the 5-fold stratified K-fold was also considered, and the model achieved an average test accuracy of 99%. This work introduces a dataset and highlights the potential of leveraging deep learning models to address the multifaceted challenges of detecting cyberbullying in visual content. Full article
(This article belongs to the Special Issue AI-Based Image Processing and Computer Vision)
Show Figures

Figure 1

30 pages, 3932 KiB  
Article
Banking on the Metaverse: Systemic Disruption or Techno-Financial Mirage?
by Alina Georgiana Manta and Claudia Gherțescu
Systems 2025, 13(8), 624; https://doi.org/10.3390/systems13080624 - 24 Jul 2025
Abstract
This study delivers a rigorous and in-depth bibliometric examination of 693 scholarly publications addressing the intersection of metaverse technologies and banking, retrieved from the Web of Science Core Collection. Through advanced scientometric tools, including VOSviewer and Bibliometrix, the research systematically unpacks the evolving [...] Read more.
This study delivers a rigorous and in-depth bibliometric examination of 693 scholarly publications addressing the intersection of metaverse technologies and banking, retrieved from the Web of Science Core Collection. Through advanced scientometric tools, including VOSviewer and Bibliometrix, the research systematically unpacks the evolving intellectual and thematic contours of this interdisciplinary frontier. The co-occurrence analysis of keywords reveals a landscape shaped by seven core thematic clusters, encompassing immersive user environments, digital infrastructure, experiential design, and ethical considerations. Factorial analysis uncovers a marked bifurcation between experience-driven narratives and technology-centric frameworks, with integrative concepts such as technology, information, and consumption serving as conceptual bridges. Network visualizations of authorship patterns point to the emergence of high-density collaboration clusters, particularly centered around influential contributors such as Dwivedi and Ooi, while regional distribution patterns indicate a tri-continental dominance led by Asia, North America, and Western Europe. Temporal analysis identifies a significant surge in academic interest beginning in 2022, aligning with increased institutional and commercial experimentation in virtual financial platforms. Our findings argue that the incorporation of metaverse paradigms into banking is not merely a technological shift but a systemic transformation in progress—one that blurs the boundaries between speculative innovation and tangible implementation. This work contributes foundational insights for future inquiry into digital finance systems, algorithmic governance, trust architecture, and the wider socio-economic consequences of banking in virtualized environments. Whether a genuine leap toward financial evolution or a sophisticated illusion, the metaverse in banking must now be treated as a systemic phenomenon worthy of serious scrutiny. Full article
Show Figures

Figure 1

12 pages, 221 KiB  
Essay
Legal Doctrinal and Sectoral Problems of Digital Platform Contracts in the European Union Resulting in Conflicts Between Workers and Platforms
by Tamás Prugberger and Bernadett Solymosi-Szekeres
Merits 2025, 5(3), 16; https://doi.org/10.3390/merits5030016 - 24 Jul 2025
Abstract
Platform contracts are a central element of digital work and therefore present a number of legal challenges, in particular with regard to the classification of the legal relationship based on them. In this paper, the two forms of platform work, work on demand [...] Read more.
Platform contracts are a central element of digital work and therefore present a number of legal challenges, in particular with regard to the classification of the legal relationship based on them. In this paper, the two forms of platform work, work on demand via apps and crowdwork, are analysed, with a separate analysis which highlights legal doctrinal inconsistencies. In doing so, we will also discuss the related problematic and varied jurisprudence. This jurisprudence illustrates the complex dispute between the worker and the platform company. Finally, the new Platform Directive of the European Union, which may not hold the key to a real solution to the problem of setting up an appropriate legal qualification system for platform workers, will be analysed. The study is based on the desk-research method, presenting national and EU legislation and case law through qualitative analysis. Full article
19 pages, 41284 KiB  
Article
Coordinated Dual-Fin Actuation of Bionic Ocean Sunfish Robot for Multi-Modal Locomotion
by Lidong Huang, Zhong Huang, Quanchao Liu, Zhihao Song, Yayi Shen and Mengxing Huang
Biomimetics 2025, 10(8), 489; https://doi.org/10.3390/biomimetics10080489 - 24 Jul 2025
Abstract
This paper presents a bionic dual-fin underwater robot, inspired by the ocean sunfish, that achieves multiple swimming motions using only two vertically arranged fins. This work demonstrates that a mechanically simple platform can execute complex 2-D and 3-D motions through advanced control strategies, [...] Read more.
This paper presents a bionic dual-fin underwater robot, inspired by the ocean sunfish, that achieves multiple swimming motions using only two vertically arranged fins. This work demonstrates that a mechanically simple platform can execute complex 2-D and 3-D motions through advanced control strategies, eliminating the need for auxiliary actuators. We control the two fins independently so that they can perform cooperative actions in the water, enabling the robot to perform various motions, including high-speed cruising, agile turning, controlled descents, proactive ascents, and continuous spiraling. The swimming performance of the dual-fin robot in executing multi-modal locomotion is experimentally analyzed through visual measurement methods and onboard sensors. Experimental results demonstrate that a minimalist dual-fin propulsion system of the designed ocean sunfish robot can provide speed (maximum cruising speed of 1.16 BL/s), stability (yaw amplitude less than 4.2°), and full three-dimensional maneuverability (minimum turning radius of 0.89 BL). This design, characterized by its simple structure, multiple motion capabilities, and excellent motion performance, offers a promising pathway for developing robust and versatile robots for diverse underwater applications. Full article
(This article belongs to the Special Issue Bionic Robotic Fish: 2nd Edition)
Show Figures

Figure 1

30 pages, 470 KiB  
Article
Digital Intelligence and Decision Optimization in Healthcare Supply Chain Management: The Mediating Roles of Innovation Capability and Supply Chain Resilience
by Jing-Yan Ma and Tae-Won Kang
Sustainability 2025, 17(15), 6706; https://doi.org/10.3390/su17156706 - 23 Jul 2025
Abstract
Healthcare supply chain management operates amid fluctuating patient demand, rapidly advancing biotechnologies, and unpredictable supply disruptions pose high risks and create an imperative for sustainable resource optimization. This study investigates the underlying mechanisms through which digital intelligence drives strategic decision optimization in healthcare [...] Read more.
Healthcare supply chain management operates amid fluctuating patient demand, rapidly advancing biotechnologies, and unpredictable supply disruptions pose high risks and create an imperative for sustainable resource optimization. This study investigates the underlying mechanisms through which digital intelligence drives strategic decision optimization in healthcare supply chains. Drawing on the Resource-Based View and Dynamic Capabilities Theory, we develop a chain-mediated model, defined as the multistage indirect path whereby digital intelligence first bolsters innovation capability, which then activates supply chain resilience (absorptive, response, and restorative capability), to improve decision optimization. Data were collected from 360 managerial-level respondents working in healthcare supply chain organizations in China, and the proposed model was tested using structural equation modeling. The results indicate that digital intelligence enhances innovation capability, which in turn activates all three dimensions of resilience, producing a synergistic effect that promotes sustained decision optimization. However, the direct effect of digital intelligence on decision optimization was not statistically significant, suggesting that its impact is primarily mediated through organizational capabilities, particularly supply chain resilience. Practically, the findings suggest that in the process of deploying digital intelligence systems and platforms, healthcare organizations should embed technological advantages into organizational processes, emergency response mechanisms, and collaborative operations, so that digitalization moves beyond the technical system level and is truly internalized as organizational innovation capability and resilience, thereby leading to sustained improvement in decision-making performance. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

22 pages, 2538 KiB  
Article
Enhancing Supervisory Control with GPenSIM
by Reggie Davidrajuh, Shuanglin Tang and Yuming Feng
Machines 2025, 13(8), 641; https://doi.org/10.3390/machines13080641 - 23 Jul 2025
Abstract
Supervisory control theory (SCT), based on Petri nets, offers a robust framework for modeling and controlling discrete-event systems but faces significant challenges in scalability, expressiveness, and practical implementation. This paper introduces General-purpose Petri Net Simulator and Real-Time Controller (GPenSIM), a MATLAB version 24.1.0.2689473 [...] Read more.
Supervisory control theory (SCT), based on Petri nets, offers a robust framework for modeling and controlling discrete-event systems but faces significant challenges in scalability, expressiveness, and practical implementation. This paper introduces General-purpose Petri Net Simulator and Real-Time Controller (GPenSIM), a MATLAB version 24.1.0.2689473 (R2024a) Update 6-based modular Petri net framework, as a novel solution to these limitations. GPenSIM leverages modular decomposition to mitigate state-space explosion, enabling parallel execution of weakly coupled Petri modules on multi-core systems. Its programmable interfaces (pre-processors and post-processors) extend classical Petri nets’ expressiveness by enforcing nonlinear, temporal, and conditional constraints through custom MATLAB scripts, addressing the rigidity of traditional linear constraints. Furthermore, the integration of GPenSIM with MATLAB facilitates real-time control synthesis, performance optimization, and seamless interaction with external hardware and software, bridging the gap between theoretical models and industrial applications. Empirical studies demonstrate the efficacy of GPenSIM in reconfigurable manufacturing systems, where it reduced downtime by 30%, and in distributed control scenarios, where decentralized modules minimized synchronization delays. Grounded in systems theory principles of interconnectedness, GPenSIM emphasizes dynamic relationships between components, offering a scalable, adaptable, and practical tool for supervisory control. This work highlights the potential of GPenSIM to overcome longstanding limitations in SCT, providing a versatile platform for both academic research and industrial deployment. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

23 pages, 356 KiB  
Article
First-Year STEM College Students’ Study Strategies: Perceived Effectiveness and Use
by Kadir Kozan, Chaewon Kim and Amédee Marchand Martella
Educ. Sci. 2025, 15(8), 945; https://doi.org/10.3390/educsci15080945 - 23 Jul 2025
Abstract
Effective studying is important to learn better and increase academic achievement in postsecondary education, which also holds true for the challenging content of science, technology, engineering, and mathematics (STEM). Informed by previous research, this study mainly aimed to investigate first-year STEM college students’ [...] Read more.
Effective studying is important to learn better and increase academic achievement in postsecondary education, which also holds true for the challenging content of science, technology, engineering, and mathematics (STEM). Informed by previous research, this study mainly aimed to investigate first-year STEM college students’ study habits and perceptions of the effectiveness of different study strategies, and the frequency of use of these strategies. To this end, this study employed a cross-sectional survey using the Prolific platform. The results revealed that participants use various study strategies, including more and less effective ones, generally do not study in a planned way nor believe that learning takes hard work, and also prioritize approaching deadlines. The results also showed that the participants (a) frequently use the study strategies that they think are effective, suggesting that perceived effectiveness can have an important role in students’ strategy choice, and (b) mostly use study strategies for studying only or for both studying and while learning for fun. However, the frequency of the use of strategies partially aligned with the perceived effectiveness of the strategies. Overall, these results suggest the need to further investigate the conditions under which college students find study strategies effective, which can affect their choices. Full article
(This article belongs to the Section Education and Psychology)
21 pages, 3415 KiB  
Article
SARS-CoV-2 RBD Scaffolded by AP205 or TIP60 Nanoparticles and Delivered as mRNA Elicits Robust Neutralizing Antibody Responses
by Johnathan D. Guest, Yi Zhang, Daniel Flores, Emily Atkins, Kuishu Ren, Yingyun Cai, Kim Rosenthal, Zimeng Wang, Kihwan Kim, Charles Chen, Richard Roque, Bei Cheng, Marianna Yanez Arteta, Liping Zhou, Jason Laliberte and Joseph R. Francica
Vaccines 2025, 13(8), 778; https://doi.org/10.3390/vaccines13080778 - 22 Jul 2025
Abstract
Background/Objectives: SARS-CoV-2 vaccine candidates comprising the receptor binding domain (RBD) of the spike protein have been shown to confer protection against infection. Previous research evaluating vaccine candidates with SARS-CoV-2 RBD fused to ferritin (RBD-ferritin) and other scaffolds suggested that multimeric assemblies of RBD [...] Read more.
Background/Objectives: SARS-CoV-2 vaccine candidates comprising the receptor binding domain (RBD) of the spike protein have been shown to confer protection against infection. Previous research evaluating vaccine candidates with SARS-CoV-2 RBD fused to ferritin (RBD-ferritin) and other scaffolds suggested that multimeric assemblies of RBD can enhance antigen presentation to improve the potency and breadth of immune responses. Though RBDs directly fused to a self-assembling scaffold can be delivered as messenger RNA (mRNA) formulated with lipid nanoparticles (LNPs), reports of SARS-CoV-2 vaccine candidates that combine these approaches remain scarce. Methods: Here, we designed RBD fused to AP205 or TIP60 self-assembling nanoparticles following a search of available structures focused on several scaffold properties. RBD-AP205 and RBD-TIP60 were tested for antigenicity following transfection and for immunogenicity and neutralization potency when delivered as mRNA in mice, with RBD-ferritin as a direct comparator. Results: All scaffolded RBD constructs were readily secreted to transfection supernatant and showed antigenicity in ELISA, though clear heterogeneity in assembly was observed. RBD-AP205 and RBD-TIP60 also exhibited robust antibody binding and neutralization titers in mice that were comparable to those elicited by RBD-ferritin or a full-length membrane-bound spike. Conclusions: These data suggest that AP205 and TIP60 can present RBD as effectively as ferritin and induce similar immune responses. By describing additional scaffolds for multimeric display that accommodate mRNA delivery platforms, this work can provide new tools for future vaccine design efforts. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

29 pages, 7403 KiB  
Article
Development of Topologically Optimized Mobile Robotic System with Machine Learning-Based Energy-Efficient Path Planning Structure
by Hilmi Saygin Sucuoglu
Machines 2025, 13(8), 638; https://doi.org/10.3390/machines13080638 - 22 Jul 2025
Abstract
This study presents the design and development of a structurally optimized mobile robotic system with a machine learning-based energy-efficient path planning framework. Topology optimization (TO) and finite element analysis (FEA) were applied to reduce structural weight while maintaining mechanical integrity. The optimized components [...] Read more.
This study presents the design and development of a structurally optimized mobile robotic system with a machine learning-based energy-efficient path planning framework. Topology optimization (TO) and finite element analysis (FEA) were applied to reduce structural weight while maintaining mechanical integrity. The optimized components were manufactured using Fused Deposition Modeling (FDM) with ABS (Acrylonitrile Butadiene Styrene) material. A custom power analysis tool was developed to compare energy consumption between the optimized and initial designs. Real-world current consumption data were collected under various terrain conditions, including inclined surfaces, vibration-inducing obstacles, gravel, and direction-altering barriers. Based on this dataset, a path planning model was developed using machine learning algorithms, capable of simultaneously optimizing both energy efficiency and path length to reach a predefined target. Unlike prior works that focus separately on structural optimization or learning-based navigation, this study integrates both domains within a single real-world robotic platform. Performance evaluations demonstrated superior results compared to traditional planning methods, which typically optimize distance or energy independently and lack real-time consumption feedback. The proposed framework reduces total energy consumption by 5.8%, cuts prototyping time by 56%, and extends mission duration by ~20%, highlighting the benefits of jointly applying TO and ML for sustainable and energy-aware robotic design. This integrated approach addresses a critical gap in the literature by demonstrating that mechanical light-weighting and intelligent path planning can be co-optimized in a deployable robotic system using empirical energy data. Full article
(This article belongs to the Special Issue Design and Manufacturing: An Industry 4.0 Perspective)
Show Figures

Figure 1

25 pages, 760 KiB  
Article
Scheduling the Exchange of Context Information for Time-Triggered Adaptive Systems
by Daniel Onwuchekwa, Omar Hekal and Roman Obermaisser
Algorithms 2025, 18(8), 456; https://doi.org/10.3390/a18080456 - 22 Jul 2025
Abstract
This paper presents a novel metascheduling algorithm to enhance communication efficiency in off-chip time-triggered multi-processor system-on-chip (MPSoC) platforms, particularly for safety-critical applications in aerospace and automotive domains. Time-triggered communication standards such as time-sensitive networking (TSN) and TTEthernet effectively enable deterministic and reliable communication [...] Read more.
This paper presents a novel metascheduling algorithm to enhance communication efficiency in off-chip time-triggered multi-processor system-on-chip (MPSoC) platforms, particularly for safety-critical applications in aerospace and automotive domains. Time-triggered communication standards such as time-sensitive networking (TSN) and TTEthernet effectively enable deterministic and reliable communication across distributed systems, including MPSoC-based platforms connected via Ethernet. However, their dependence on static resource allocation limits adaptability under dynamic operating conditions. To address this challenge, we propose an offline metascheduling framework that generates multiple precomputed schedules corresponding to different context events. The proposed algorithm introduces a selective communication strategy that synchronizes context information exchange with key decision points, thereby minimizing unnecessary communication while maintaining global consistency and system determinism. By leveraging knowledge of context event patterns, our method facilitates coordinated schedule transitions and significantly reduces communication overhead. Experimental results show that our approach outperforms conventional scheduling techniques, achieving a communication overhead reduction ranging from 9.89 to 32.98 times compared to a two-time-unit periodic sampling strategy. This work provides a practical and certifiable solution for introducing adaptability into Ethernet-based time-triggered MPSoC systems without compromising the predictability essential for safety certification. Full article
(This article belongs to the Special Issue Bio-Inspired Algorithms: 2nd Edition)
Show Figures

Figure 1

21 pages, 5862 KiB  
Article
ICP-Based Mapping and Localization System for AGV with 2D LiDAR
by Felype de L. Silva, Eisenhawer de M. Fernandes, Péricles R. Barros, Levi da C. Pimentel, Felipe C. Pimenta, Antonio G. B. de Lima and João M. P. Q. Delgado
Sensors 2025, 25(15), 4541; https://doi.org/10.3390/s25154541 - 22 Jul 2025
Abstract
This work presents the development of a functional real-time SLAM system designed to enhance the perception capabilities of an Automated Guided Vehicle (AGV) using only a 2D LiDAR sensor. The proposal aims to address recurring gaps in the literature, such as the need [...] Read more.
This work presents the development of a functional real-time SLAM system designed to enhance the perception capabilities of an Automated Guided Vehicle (AGV) using only a 2D LiDAR sensor. The proposal aims to address recurring gaps in the literature, such as the need for low-complexity solutions that are independent of auxiliary sensors and capable of operating on embedded platforms with limited computational resources. The system integrates scan alignment techniques based on the Iterative Closest Point (ICP) algorithm. Experimental validation in a controlled environment indicated better performance using Gauss–Newton optimization and the point-to-plane metric, achieving pose estimation accuracy of 99.42%, 99.6%, and 99.99% in the position (x, y) and orientation (θ) components, respectively. Subsequently, the system was adapted for operation with data from the onboard sensor, integrating a lightweight graphical interface for real-time visualization of scans, estimated pose, and the evolving map. Despite the moderate update rate, the system proved effective for robotic applications, enabling coherent localization and progressive environment mapping. The modular architecture developed allows for future extensions such as trajectory planning and control. The proposed solution provides a robust and adaptable foundation for mobile platforms, with potential applications in industrial automation, academic research, and education in mobile robotics. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

18 pages, 3220 KiB  
Article
High-Throughput Microfluidic Electroporation (HTME): A Scalable, 384-Well Platform for Multiplexed Cell Engineering
by William R. Gaillard, Jess Sustarich, Yuerong Li, David N. Carruthers, Kshitiz Gupta, Yan Liang, Rita Kuo, Stephen Tan, Sam Yoder, Paul D. Adams, Hector Garcia Martin, Nathan J. Hillson and Anup K. Singh
Bioengineering 2025, 12(8), 788; https://doi.org/10.3390/bioengineering12080788 - 22 Jul 2025
Abstract
Electroporation-mediated gene delivery is a cornerstone of synthetic biology, offering several advantages over other methods: higher efficiencies, broader applicability, and simpler sample preparation. Yet, electroporation protocols are often challenging to integrate into highly multiplexed workflows, owing to limitations in their scalability and tunability. [...] Read more.
Electroporation-mediated gene delivery is a cornerstone of synthetic biology, offering several advantages over other methods: higher efficiencies, broader applicability, and simpler sample preparation. Yet, electroporation protocols are often challenging to integrate into highly multiplexed workflows, owing to limitations in their scalability and tunability. These challenges ultimately increase the time and cost per transformation. As a result, rapidly screening genetic libraries, exploring combinatorial designs, or optimizing electroporation parameters requires extensive iterations, consuming large quantities of expensive custom-made DNA and cell lines or primary cells. To address these limitations, we have developed a High-Throughput Microfluidic Electroporation (HTME) platform that includes a 384-well electroporation plate (E-Plate) and control electronics capable of rapidly electroporating all wells in under a minute with individual control of each well. Fabricated using scalable and cost-effective printed-circuit-board (PCB) technology, the E-Plate significantly reduces consumable costs and reagent consumption by operating on nano to microliter volumes. Furthermore, individually addressable wells facilitate rapid exploration of large sets of experimental conditions to optimize electroporation for different cell types and plasmid concentrations/types. Use of the standard 384-well footprint makes the platform easily integrable into automated workflows, thereby enabling end-to-end automation. We demonstrate transformation of E. coli with pUC19 to validate the HTME’s core functionality, achieving at least a single colony forming unit in more than 99% of wells and confirming the platform’s ability to rapidly perform hundreds of electroporations with customizable conditions. This work highlights the HTME’s potential to significantly accelerate synthetic biology Design-Build-Test-Learn (DBTL) cycles by mitigating the transformation/transfection bottleneck. Full article
(This article belongs to the Section Cellular and Molecular Bioengineering)
Show Figures

Figure 1

24 pages, 13010 KiB  
Article
Dual-Vortex Aerosol Mixing Chamber for Micrometer Aerosols: Parametric CFD Analysis and Experimentally Validated Design Improvements
by Ziran Xu, Junjie Liu, Yue Liu, Jiazhen Lu and Xiao Xu
Processes 2025, 13(8), 2322; https://doi.org/10.3390/pr13082322 - 22 Jul 2025
Viewed by 154
Abstract
Aerosol uniformity in the mixing chamber is one of the key factors in evaluating performance of aerosol samplers and accuracy of aerosol monitors which could output the direct reading of particle size or concentration. For obtaining high uniformity and a stable test aerosol [...] Read more.
Aerosol uniformity in the mixing chamber is one of the key factors in evaluating performance of aerosol samplers and accuracy of aerosol monitors which could output the direct reading of particle size or concentration. For obtaining high uniformity and a stable test aerosol sample during evaluation, a portable mixing chamber, where the sample and clean air were dual-vortex turbulent mixed, was designed. By using computational fluid dynamics (CFD), particle motion within the mixing chamber was illustrated or explained. By adjusting critical structure parameters of chamber such as height and diameter, the flow field structure was optimized to improve particle mixing characteristics. Accordingly, a novel portable aerosol mixing chamber with length and inner diameter of 0.7 m and 60 mm was developed. Through a combination of simulations and experiments, the operating conditions, including working flow rate, ratio of carrier/dilution clean air, and mixture duration, were studied. Finally, by using the optimized parameters, a mixing chamber with high spatial uniformity where variation is less than 4% was obtained for aerosol particles ranging from 0.3 μm to 10 μm. Based on this chamber, a standardized testing platform was established to verify the sampling efficiency of aerosol samplers with high flow rate (28.3 L·min−1). The obtained results were consistent with the reference values in the sampler’s manual, confirming the reliability of the evaluation system. The testing platform developed in this study can provide test aerosol particles ranging from sub-micrometers to micrometers and has significant engineering applications, such as atmospheric pollution monitoring and occupational health assessment. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

24 pages, 4254 KiB  
Review
Zein-Based Nanocarriers: Advances in Oral Drug Delivery
by Yuxin Liu, Dongyu An, Xiangjian Meng, Shiming Deng and Guijin Liu
Pharmaceutics 2025, 17(7), 944; https://doi.org/10.3390/pharmaceutics17070944 - 21 Jul 2025
Viewed by 218
Abstract
Oral administration remains the preferred drug delivery route but faces formidable gastrointestinal barriers, including enzymatic degradation, solubility limitations, and poor epithelial absorption. Zein-based nanocarriers (ZBNs), derived from maize prolamin, provide a transformative platform to address these challenges. This review synthesizes recent advances in [...] Read more.
Oral administration remains the preferred drug delivery route but faces formidable gastrointestinal barriers, including enzymatic degradation, solubility limitations, and poor epithelial absorption. Zein-based nanocarriers (ZBNs), derived from maize prolamin, provide a transformative platform to address these challenges. This review synthesizes recent advances in ZBNs’ design, highlighting their intrinsic advantages: structural stability across pH gradients, self-assembly versatility, and a surface functionalization capacity. Critically, we detail how engineered ZBNs overcome key barriers, such as enzymatic/chemical protection via hydrophobic encapsulation, the enhanced mucus penetration or adhesion through surface engineering, and improved epithelial transport via ligand conjugation. Applications demonstrate their efficacy in stabilizing labile therapeutics, enhancing the solubility of BCS Class II/IV drugs, enabling pH-responsive release, and significantly boosting oral bioavailability. Remaining challenges in scalability and translational predictability warrant future efforts toward multifunctional systems, bio-interfacial modeling, and continuous manufacturing. This work positions ZBNs as a potential platform for the oral delivery of BCS Class II–IV drugs’ in the biopharmaceutics classification system. Full article
(This article belongs to the Special Issue Recent Advances in Peptide and Protein-Based Drug Delivery Systems)
Show Figures

Figure 1

Back to TopTop