Digital Intelligence and Decision Optimization in Healthcare Supply Chain Management: The Mediating Roles of Innovation Capability and Supply Chain Resilience
Abstract
1. Introduction
2. Literature Review
2.1. Digital Intelligence
2.2. Innovation Capability
2.3. Supply Chain Resilience
2.3.1. Absorptive Capability
2.3.2. Response Capability
2.3.3. Restorative Capability
2.4. Decision Optimization
2.5. Summary of Existing Studies and Research Gap
3. Hypotheses Development and Research Methodology
3.1. Research Hypotheses
3.1.1. Digital Intelligence and Decision Optimization
3.1.2. Digital Intelligence and Innovation Capability
3.1.3. Digital Intelligence and Supply Chain Resilience
3.1.4. Innovation Capability and Decision Optimization
3.1.5. Innovation Capability and Supply Chain Resilience
3.1.6. Supply Chain Resilience and Decision Optimization
3.1.7. The Mediated Effects of Innovation Capability and Supply Chain Resilience
3.2. Research Model
3.3. Measurement
3.4. Demographics
4. Data Analysis and Results
4.1. Exploratory Factor Analysis
4.2. Confirmatory Factor Analysis
4.3. Correlation Analysis
4.4. Path Analysis
4.5. Test of Mediating Effect
5. Discussion
5.1. Conclusions
5.2. Theoretical Contribution
5.3. Practical Implications
5.4. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyen, A.; Lamouri, S.; Pellerin, R.; Tamayo, S.; Lekens, B. Data analytics in pharmaceutical supply chains: State of the art, opportunities, and challenges. Int. J. Prod. Res. 2022, 60, 6888–6907. [Google Scholar] [CrossRef]
- The IQVIA Institute. The Global Use of Medicines 2024: Outlook to 2028; The IQVIA Institute: Durham, NC, USA, 2024. [Google Scholar]
- Sun, X.; Li, X. Aging and chronic disease: Public health challenge and education reform. Front. Public Health 2023, 11, 1175898. [Google Scholar]
- Rudnicka, E.; Napierała, P.; Podfigurna, A.; Męczekalski, B.; Smolarczyk, R.; Grymowicz, M. The World Health Organization (WHO) approach to healthy ageing. Maturitas 2022, 139, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Garg, D.; Agarwal, A. A step towards responsive healthcare supply chain management: An overview. In Advances in Manufacturing and Industrial Engineering: Select Proceedings of ICAPIE, Proceedings of the International Conference on Advanced Production and Industrial Engineering, Delhi, India, 21–22 December 2019; Springer: Singapore, 2021; pp. 431–443. [Google Scholar]
- Avinash, B.; Joseph, G. Reimagining healthcare supply chains: A systematic review on digital transformation with specific focus on efficiency, transparency and responsiveness. J. Health Organ. Manag. 2024, 38, 1255–1279. [Google Scholar] [CrossRef]
- Arji, G.; Ahmadi, H.; Avazpoor, P.; Hemmat, M. Identifying resilience strategies for disruption management in the healthcare supply chain during COVID-19 by digital innovations: A systematic literature review. Inform. Med. Unlocked 2023, 38, 101199. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Li, G.; Zheng, H. How does digital intelligence technology enhance supply chain resilience? Sustainable framework and agenda. Ann. Oper. Res. 2024, 1–23. [Google Scholar] [CrossRef]
- Paramasivan, A. Transforming healthcare supply chains: AI for efficient drug distribution and inventory management. IJSAT-Int. J. Sci. Technol. 2023, 14, 1–15. [Google Scholar]
- Naz, A.; Ali, M.; Cheema, S.M.; Pires, I.M. Cloud-Based Framework for Data Exchange to Enhance Global Healthcare. Procedia Comput. Sci. 2024, 241, 570–575. [Google Scholar] [CrossRef]
- Torab-Miandoab, A.; Samad-Soltani, T.; Jodati, A.; Akbarzadeh, F.; Rezaei-Hachesu, P. A unified component-based data-driven framework to support interoperability in the healthcare systems. Heliyon 2024, 10, e35036. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Shi, Y.; Yang, B. Open innovation in times of crisis: An overview of the healthcare sector in response to the COVID-19 Pandemic. J. Open Innov. Technol. Mark. Complex. 2022, 8, 21. [Google Scholar] [CrossRef]
- Ali, O.; Abdelbaki, W.; Shrestha, A.; Elbasi, E.; Alryalat, M.A.A.; Dwivedi, Y.K. A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. J. Innov. Knowl. 2023, 8, 100333. [Google Scholar] [CrossRef]
- Mehedy, M.T.J.; Jalil, M.S.; Saeed, M.; Snigdha, E.Z.; Khan, N.; Hasan, M.M. Big Data and Machine Learning in Healthcare: A Business Intelligence Approach for Cost Optimization and Service Improvement. Am. J. Med. Sci. Pharm. Res. 2025, 7, 115–135. [Google Scholar] [CrossRef]
- Mittal, A.; Mantri, A. A literature survey on healthcare supply chain management. F1000Research 2023, 12, 759. [Google Scholar] [CrossRef]
- Madhani, P.M. Resource Based View (RBV) of Competitive Advantage: An Overview. Resource Based View: Concepts and Practices; Madhani, P., Ed.; Icfai University Press: Hyderabad, India, 2010; pp. 3–22. [Google Scholar]
- Gera, N.; Singh, R. Identifying key drivers of supply chain resilience in Indian pharmaceutical industry for enhanced export performance. Int. J. Pharm. Healthc. Mark. 2025. [Google Scholar] [CrossRef]
- Stadtfeld, G.M.; Gruchmann, T. Dynamic capabilities for supply chain resilience: A meta-review. Int. J. Logist. Manag. 2024, 35, 623–648. [Google Scholar] [CrossRef]
- Singh, G.; Singh, S.; Daultani, Y.; Chouhan, M. Measuring the influence of digital twins on the sustainability of manufacturing supply chain: A mediating role of supply chain resilience and performance. Comput. Ind. Eng. 2023, 186, 109711. [Google Scholar] [CrossRef]
- Charles, V.; Emrouznejad, A.; Gherman, T. A critical analysis of the integration of blockchain and artificial intelligence for supply chain. Ann. Oper. Res. 2023, 327, 7–47. [Google Scholar] [CrossRef] [PubMed]
- Armand, T.P.T.; Carole, K.S.; Bhattacharjee, S.; Mozumder, M.A.I.; Amaechi, A.O.; Kim, H.C. The benefits of integrating AI, IoT, and Blockchain in healthcare supply chain management: A multi-dimensional analysis with case study. In Proceedings of the 2024 26th International Conference on Advanced Communications Technology (ICACT), Pyeong Chang, Republic of Korea, 4–7 February 2024; pp. 300–304. [Google Scholar]
- Stroumpoulis, A.; Kopanaki, E. Theoretical perspectives on sustainable supply chain management and digital transformation: A literature review and a conceptual framework. Sustainability 2022, 14, 4862. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Goswami, S.S.; Sarkar, S.; Mitra, S. A review of digital transformation and industry 4.0 in supply chain management for small and medium-sized enterprises. Spectr. Eng. Manag. Sci. 2023, 1, 58–72. [Google Scholar] [CrossRef]
- Al Mashalah, H.; Hassini, E.; Gunasekaran, A.; Bhatt, D. The impact of digital transformation on supply chains through e-commerce: Literature review and a conceptual framework. Transp. Res. Part E Logist. Transp. Rev. 2022, 165, 102837. [Google Scholar] [CrossRef]
- Koot, M.; Mes, M.R.; Iacob, M.E. A systematic literature review of supply chain decision making supported by the Internet of Things and Big Data Analytics. Comput. Ind. Eng. 2021, 154, 107076. [Google Scholar] [CrossRef]
- Uzhakova, N.; Fischer, S. Data-driven enterprise architecture for pharmaceutical R&D. Digital 2024, 4, 333–371. [Google Scholar] [CrossRef]
- Yadav, P. Digital transformation in the health product supply chain: A framework for analysis. Health Syst. Reform 2024, 10, 2386041. [Google Scholar] [CrossRef] [PubMed]
- Dadhich, A.; Dadhich, P. Artificial Intelligence from Vaccine Development to Pharmaceutical Supply Chain Management in Post-COVID-19 Period. In Blockchain, IoT, and AI Technologies for Supply Chain Management; Taylor and Francis: Abingdon, UK, 2023; pp. 143–161. [Google Scholar]
- Long, P.; Lu, L.; Chen, Q.; Chen, Y.; Li, C.; Luo, X. Intelligent selection of healthcare supply chain mode–an applied research based on artificial intelligence. Front. Public Health 2023, 11, 1310016. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, A.; Ebrahimpour, M.; Ramazanian, M.; Moradi, M. Intelligent distributed supply chain management in the pharmaceutical industry. J. Strateg. Manag. Stud. 2024, 14, 141–167. [Google Scholar]
- Shen, J.; Bu, F.; Ye, Z.; Zhang, M.; Ma, Q.; Yan, J.; Huang, T. Management of drug supply chain information based on “artificial intelligence+ vendor managed inventory” in China: Perspective based on a case study. Front. Pharmacol. 2024, 15, 1373642. [Google Scholar] [CrossRef] [PubMed]
- Al-Shboul, M.D.A. Do artificial intelligence system adoptions foster production management supply chain performance in pharmaceutical manufacturing firms? An empirical exploring study from the MENA region. Bus. Process Manag. J. 2024, 30, 2427–2455. [Google Scholar]
- Skowron-Grabowska, B.; Wincewicz-Bosy, M.; Dymyt, M.; Sadowski, A.; Dymyt, T.; Wąsowska, K. Healthcare supply chain reliability: The case of medical air transport. Int. J. Environ. Res. Public Health 2022, 19, 4336. [Google Scholar] [CrossRef] [PubMed]
- Ramos, E.; Patrucco, A.S.; Chavez, M. Dynamic capabilities in the “new normal”: A study of organizational flexibility, integration and agility in the Peruvian coffee supply chain. Supply Chain Manag. Int. J. 2023, 28, 55–73. [Google Scholar] [CrossRef]
- Tian, S.; Wu, L.; Ciano, M.P.; Ardolino, M.; Pawar, K.S. Enhancing innovativeness and performance of the manufacturing supply chain through datafication: The role of resilience. Comput. Ind. Eng. 2024, 188, 109841. [Google Scholar] [CrossRef]
- Moderno, O.B.D.S.; Braz, A.C.; Nascimento, P.T.D.S. Robotic process automation and artificial intelligence capabilities driving digital strategy: A resource-based view. Bus. Process Manag. J. 2024, 30, 105–134. [Google Scholar] [CrossRef]
- Wang, D.; Liu, W.; Liang, Y.; Wei, S. Decision optimization in service supply chain: The impact of demand and supply-driven data value and altruistic behavior. Ann. Oper. Res. 2023, 324, 971–992. [Google Scholar] [CrossRef]
- Martínez-Peláez, R.; Ochoa-Brust, A.; Rivera, S.; Félix, V.G.; Ostos, R.; Brito, H.; Mena, L.J. Role of digital transformation for achieving sustainability: Mediated role of stakeholders, key capabilities, and technology. Sustainability 2023, 15, 11221. [Google Scholar] [CrossRef]
- Adama, H.E.; Popoola, O.A.; Okeke, C.D.; Akinoso, A.E. Economic theory and practical impacts of digital transformation in supply chain optimization. Int. J. Adv. Econ. 2024, 6, 95–107. [Google Scholar] [CrossRef]
- Bahrami, M.; Shokouhyar, S.; Seifian, A. Big data analytics capability and supply chain performance: The mediating roles of supply chain resilience and innovation. Mod. Supply Chain Res. Appl. 2022, 4, 62–84. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.; Wu, W. How Does Artificial Intelligence Capability Affect Product Innovation in Manufacturing Enterprises? Evidence from China. Systems 2025, 13, 480. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, X.; Xie, J.; Hu, Q. A mechanistic study of enterprise digital intelligence transformation, innovation resilience, and firm performance. Systems 2024, 12, 186. [Google Scholar] [CrossRef]
- Le, T.T.; Behl, A. Linking artificial intelligence and supply chain resilience: Roles of dynamic capabilities mediator and open innovation moderator. IEEE Trans. Eng. Manag. 2023, 71, 8577–8590. [Google Scholar] [CrossRef]
- Hendry, L.C.; Stevenson, M.; MacBryde, J.; Ball, P.; Sayed, M.; Liu, L. Local food supply chain resilience to constitutional change: The Brexit effect. Int. J. Oper. Prod. Manag. 2019, 39, 429–453. [Google Scholar] [CrossRef]
- Zhao, N.; Hong, J.; Lau, K.H. Impact of supply chain digitalization on supply chain resilience and performance: A multi-mediation model. Int. J. Prod. Econ. 2023, 259, 108817. [Google Scholar] [CrossRef] [PubMed]
- Senna, P.; Reis, A.; Dias, A.; Coelho, O.; Guimarães, J.; Eliana, S. Healthcare supply chain resilience framework: Antecedents, mediators, consequents. Prod. Plan. Control 2023, 34, 295–309. [Google Scholar] [CrossRef]
- Anozie, U.C.; Adewumi, G.; Obafunsho, O.E.; Toromade, A.S.; Olaluwoye, O.S. Leveraging advanced technologies in Supply Chain Risk Management (SCRM) to mitigate healthcare disruptions: A comprehensive review. World J. Adv. Res. Rev. 2024, 23, 1039–1045. [Google Scholar] [CrossRef]
- Gaudenzi, B.; Pellegrino, R.; Confente, I. Achieving supply chain resilience in an era of disruptions: A configuration approach of capacities and strategies. Supply Chain Manag. Int. J. 2023, 28, 97–111. [Google Scholar] [CrossRef]
- Furstenau, L.B.; Zani, C.; Terra, S.X.; Sott, M.K.; Choo, K.K.R.; Saurin, T.A. Resilience capabilities of healthcare supply chain and supportive digital technologies. Technol. Soc. 2022, 71, 102095. [Google Scholar] [CrossRef]
- Aslam, H.; Khan, A.Q.; Rashid, K.; Rehman, S.U. Achieving supply chain resilience: The role of supply chain ambidexterity and supply chain agility. J. Manuf. Technol. Manag. 2020, 31, 1185–1204. [Google Scholar] [CrossRef]
- Singh, R.K.; Modgil, S. Adapting to disruption: The impact of agility, absorptive capacity and ambidexterity on supply chain resilience. Int. J. Product. Perform. Manag. 2025, 74, 637–658. [Google Scholar] [CrossRef]
- Tortorella, G.; Prashar, A.; Samson, D.; Kurnia, S.; Fogliatto, F.S.; Capurro, D.; Antony, J. Resilience development and digitalization of the healthcare supply chain: An exploratory study in emerging economies. Int. J. Logist. Manag. 2023, 34, 130–163. [Google Scholar] [CrossRef]
- Wright, A.M.; Snowdon, A.; Saunders, M.; Trampas, D. The necessity of healthcare supply chain resilience for crisis preparedness. Healthc. Manag. Forum 2024, 37, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Naz, F.; Luthra, S.; Vashistha, R.; Kumar, V.; Garza-Reyes, J.A.; Chhabra, D. Digging DEEP: Futuristic building blocks of omni-channel healthcare supply chains resiliency using machine learning approach. J. Bus. Res. 2023, 162, 113903. [Google Scholar] [CrossRef]
- Saarinen, L.; Oddsdottir, H.; Rehman, O. Resilience through appropriate response: A simulation study of disruptions and response strategies–case COVID-19 and the grocery supply chain. Oper. Manag. Res. 2024, 17, 1078–1099. [Google Scholar] [CrossRef]
- Maheshwari, P.; Kamble, S.S.; Belhadi, A.; Gupta, S.; Mangla, S.K. Resilient healthcare network for simultaneous product allocations during supply chain disruptions. Supply Chain Forum Int. J. 2024, 25, 407–427. [Google Scholar] [CrossRef]
- Tetteh, F.K.; Nyamekye, B.; Williams, E.; Attah, J.; Degbe, F.D. Effect of Supply Chain Analytics on Healthcare Supply Chain Performance: The Relevance of Building Responsive, Resilience, Restoration (3rs) and Desorptive Capabilities. Resil. Restor. (3rs) Desorptive Capab. 2024. [Google Scholar] [CrossRef]
- Vanany, I.; Ali, M.H.; Tan, K.H.; Kumar, A.; Siswanto, N. A supply chain resilience capability framework and process for mitigating the COVID-19 pandemic disruption. IEEE Trans. Eng. Manag. 2021, 71, 10358–10372. [Google Scholar] [CrossRef]
- Belhadi, A.; Mani, V.; Kamble, S.S.; Khan, S.A.R.; Verma, S. Artificial intelligence-driven innovation for enhancing supply chain resilience and performance under the effect of supply chain dynamism: An empirical investigation. Ann. Oper. Res. 2024, 333, 627–652. [Google Scholar] [CrossRef] [PubMed]
- Tortorella, G.L.; Prashar, A.; Antony, J.; Fogliatto, F.S.; Gonzalez, V.; Godinho Filho, M. Industry 4.0 adoption for healthcare supply chain performance during COVID-19 pandemic in Brazil and India: The mediating role of resilience abilities development. Oper. Manag. Res. 2024, 17, 389–405. [Google Scholar] [CrossRef]
- Silva, A.C.; Marques, C.M.; de Sousa, J.P. A simulation approach for the design of more sustainable and resilient supply chains in the pharmaceutical industry. Sustainability 2023, 15, 7254. [Google Scholar] [CrossRef]
- Badejo, O.; Ierapetritou, M. Optimization of pharmaceutical supply chains: Navigating disruptions and operational uncertainty utilizing risk measures. AIChE J. 2025, 71, e18770. [Google Scholar] [CrossRef]
- Mahdavimanshadi, M.; Anaraki, M.G.; Mowlai, M.; Ahmadirad, Z. A multistage stochastic optimization model for resilient pharmaceutical supply chain in COVID-19 pandemic based on patient group priority. In Proceedings of the 2024 Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, VA, USA, 3 May 2024; pp. 382–387. [Google Scholar]
- Li, Q.; Zhang, H.; Liu, K.; Zhang, Z.J.; Jasimuddin, S.M. Linkage between digital supply chain, supply chain innovation and supply chain dynamic capabilities: An empirical study. Int. J. Logist. Manag. 2024, 35, 1200–1223. [Google Scholar] [CrossRef]
- Aghaei, R.; Kiaei, A.A.; Boush, M.; Vahidi, J.; Barzegar, Z.; Rofoosheh, M. The Potential of Large Language Models in Supply Chain Management: Advancing Decision-Making, Efficiency, and Innovation. arXiv 2025, arXiv:2501.15411. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Zhang, H.; Song, J. Bridging Prediction and Decision: Advances and Challenges in Data-Driven Optimization. Nexus 2025, 2, 100057. [Google Scholar] [CrossRef]
- Ivanov, D.; Dolgui, A.; Das, A.; Sokolov, B. Digital supply chain twins: Managing the ripple effect, resilience, and disruption risks by data-driven optimization, simulation, and visibility. In Handbook of Ripple Effects in the Supply Chain; Springer: Cham, Switzerland, 2019; pp. 309–332. [Google Scholar]
- Barney, J.B. Resource-based theories of competitive advantage: A ten-year retrospective on the resource-based view. J. Manag. 2001, 27, 643–650. [Google Scholar] [CrossRef]
- Revilla, E.; Acero, B.; Sáenz, M.J. Resilience in the Supply Chain. In The Palgrave Handbook of Supply Chain Management; Palgrave Macmillan: Cham, Switzerland, 2024; pp. 601–625. [Google Scholar]
- Ning, L.; Yao, D. The impact of digital transformation on supply chain capabilities and supply chain competitive performance. Sustainability 2023, 15, 10107. [Google Scholar] [CrossRef]
- Wang, S.; Ghadge, A.; Aktas, E. Digital transformation in food supply chains: An implementation framework. Supply Chain Manag. Int. J. 2024, 29, 328–350. [Google Scholar] [CrossRef]
- Tiwari, M.; Bryde, D.J.; Stavropolou, F.; Dubey, R.; Kumari, S.; Foropon, C. Modelling supply chain Visibility, digital Technologies, environmental dynamism and healthcare supply chain Resilience: An organisation information processing theory perspective. Transp. Res. Part E Logist. Transp. Rev. 2024, 188, 103613. [Google Scholar] [CrossRef]
- Lima, B.; Ganga, G.M.D.; Godinho Filho, M.; De Santa-Eulalia, L.A.; Thürer, M.; Queiroz, M.M.; Moraes, K.K. Timing and interdependencies in blockchain capabilities development for supply chain management: A resource-based view perspective. Ind. Manag. Data Syst. 2025, 125, 1645–1685. [Google Scholar] [CrossRef]
- Tonsi, A.A.; Husain, K.S.; Yaqub, M.Z. IT Capabilities’ Impact on Postponement and Supply Chain Viability of Retail Manufacturers: A Dynamic Resource-Based View. Sustainability 2025, 17, 1437. [Google Scholar] [CrossRef]
- Moraes, K.K.; Ganga, G.M.D.; Godinho Filho, M.; Santa-Eulalia, L.A.; Tortorella, G.L. Overcoming technological barriers for blockchain adoption in supply chains: A diffusion of innovation (DOI)-informed framework proposal. Supply Chain Manag. Int. J. 2025, 30, 19–49. [Google Scholar] [CrossRef]
- Mehmood, S.; Nazir, S.; Fan, J.; Nazir, Z. Achieving supply chain sustainability: Enhancing supply chain resilience, organizational performance, innovation and information sharing: Empirical evidence from Chinese SMEs. Mod. Supply Chain Res. Appl. 2025, 7, 2–29. [Google Scholar] [CrossRef]
- Seifi, N.; Ghoodjani, E.; Majd, S.S.; Maleki, A.; Khamoushi, S. Evaluation and prioritization of artificial intelligence integrated block chain factors in healthcare supply chain: A hybrid Decision Making Approach. Comput. Decis. Mak. Int. J. 2025, 2, 374–405. [Google Scholar] [CrossRef]
- Kasparis, E.; Huang, Y.; Lin, W.; Vasilakis, C. Improving timeliness in the neglected tropical diseases preventive chemotherapy donation supply chain through information sharing: A retrospective empirical analysis. PLoS Neglected Trop. Dis. 2021, 15, e0009523. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Che Mat, C.R.; Ibrahim, A.; Zhang, Y.; Muzammil, S. Digital supply chain reshaping industrial ecology: A study from the Pharma Industry. In Industrial Ecology: A Fusion of Material and Energy in Green Supply Chain Context; Springer: Singapore, 2024; pp. 107–123. [Google Scholar]
- Adhikari, A.; Joshi, R.; Basu, S. Collaboration and coordination strategies for a multi-level AI-enabled healthcare supply chain under disaster. Int. J. Prod. Res. 2025, 63, 497–523. [Google Scholar] [CrossRef]
- Lee, K.L.; Wong, S.Y.; Alzoubi, H.M.; Al Kurdi, B.; Alshurideh, M.T.; El Khatib, M. Adopting smart supply chain and smart technologies to improve operational performance in manufacturing industry. Int. J. Eng. Bus. Manag. 2023, 15, 18479790231200614. [Google Scholar] [CrossRef]
- Al-Surmi, A.; Bashiri, M.; Koliousis, I. AI based decision making: Combining strategies to improve operational performance. Int. J. Prod. Res. 2022, 60, 4464–4486. [Google Scholar] [CrossRef]
- Abourokbah, S.H.; Mashat, R.M.; Salam, M.A. Role of absorptive capacity, digital capability, agility, and resilience in supply chain innovation performance. Sustainability 2023, 15, 3636. [Google Scholar] [CrossRef]
- Apell, P.; Eriksson, H. Artificial intelligence (AI) healthcare technology innovations: The current state and challenges from a life science industry perspective. Technol. Anal. Strateg. Manag. 2023, 35, 179–193. [Google Scholar] [CrossRef]
- Papalexi, M.; Bamford, D.; Breen, L. Key sources of operational inefficiency in the pharmaceutical supply chain. Supply Chain Manag. Int. J. 2020, 25, 617–635. [Google Scholar] [CrossRef]
- Chen, X.; He, C.; Chen, Y.; Xie, Z. Internet of Things (IoT)—Blockchain-enabled pharmaceutical supply chain resilience in the post-pandemic era. Front. Eng. Manag. 2023, 10, 82–95. [Google Scholar] [CrossRef]
- Kyeremeh, E.; Yamoah, E.E.; Yamoah, A. Enhancing pharmaceutical supply chain performance: The impact of technology integration, interorganizational trust, and collaboration in the digital age. Future Bus. J. 2025, 11, 98. [Google Scholar] [CrossRef]
- Gama, F.; Magistretti, S. Artificial intelligence in innovation management: A review of innovation capabilities and a taxonomy of AI applications. J. Prod. Innov. Manag. 2025, 42, 76–111. [Google Scholar] [CrossRef]
- Cannavale, C.; Esempio Tammaro, A.; Leone, D.; Schiavone, F. Innovation adoption in inter-organizational healthcare networks–the role of artificial intelligence. Eur. J. Innov. Manag. 2022, 25, 758–774. [Google Scholar] [CrossRef]
- Machucho, R.; Ortiz, D. The Impacts of Artificial Intelligence on Business Innovation: A Comprehensive Review of Applications, Organizational Challenges, and Ethical Considerations. Systems 2025, 13, 264. [Google Scholar] [CrossRef]
- Saha, R. Empowering Absorptive Capacity in Healthcare Supply Chains Through Big Data Analytics and AI-Driven Collaborative Platforms: A Prisma-Based Systematic Review. Innov. Eng. J. 2024, 1, 10–70937. [Google Scholar] [CrossRef]
- Bag, S.; Dhamija, P.; Singh, R.K.; Rahman, M.S.; Sreedharan, V.R. Big data analytics and artificial intelligence technologies based collaborative platform empowering absorptive capacity in health care supply chain: An empirical study. J. Bus. Res. 2023, 154, 113315. [Google Scholar] [CrossRef]
- Kazancoglu, I.; Ozbiltekin-Pala, M.; Mangla, S.K.; Kazancoglu, Y.; Jabeen, F. Role of flexibility, agility and responsiveness for sustainable supply chain resilience during COVID-19. J. Clean. Prod. 2022, 362, 132431. [Google Scholar] [CrossRef]
- Addy, A.L.F.R.E.D. Artificial intelligence in the supply chain management for vaccine distribution in the West Africa n healthcare sector with a focus on Ghana. Int. J. Leg. Sci. Innov. 2023, 10, 1–25. [Google Scholar]
- Makarevic, M.; Tas, P.G. Strategic decision-making in process optimization of healthcare technology manufacturing. J. Supply Chain. Manag. Sci. 2024, 5, 117–142. [Google Scholar] [CrossRef]
- Jum’a, L.; Zimon, D.; Madzik, P. Impact of big data technological and personal capabilities on sustainable performance on Jordanian manufacturing companies: The mediating role of innovation. J. Enterp. Inf. Manag. 2024, 37, 329–354. [Google Scholar] [CrossRef]
- Kumar, R.R.; Raj, A. Big data adoption and performance: Mediating mechanisms of innovation, supply chain integration and resilience. Supply Chain Manag. Int. J. 2025, 30, 67–85. [Google Scholar] [CrossRef]
- Tetteh, F.K.; Amoako, D.K.; Kyeremeh, A.; Atiki, G.; Degbe, F.D.; Nyame, P.E.D. Unraveling the interplay between supply chain analytics and healthcare supply chain performance: Establishing an underlying mechanism and a boundary condition. Int. J. Qual. Reliab. Manag. 2025, 42, 752–783. [Google Scholar] [CrossRef]
- Fernando, Y.; Tseng, M.L.; Nur, G.M.; Ikhsan, R.B.; Lim, M.K. Practising circular economy performance in Malaysia: Managing supply chain disruption and technological innovation capability under industry 4.0. Int. J. Logist. Res. Appl. 2023, 26, 1704–1727. [Google Scholar] [CrossRef]
- Javan-Molaei, B.; Tavakkoli-Moghaddam, R.; Ghanavati-Nejad, M.; Asghari-Asl, A. A data-driven robust decision-making model for configuring a resilient and responsive relief supply chain under mixed uncertainty. Ann. Oper. Res. 2024, 1–38. [Google Scholar] [CrossRef]
- Adana, S.; Manuj, I.; Herburger, M.; Cevikparmak, S.; Celik, H.; Uvet, H. Linking decentralization in decision-making to resilience outcomes: A supply chain orientation perspective. Int. J. Logist. Manag. 2024, 35, 256–280. [Google Scholar] [CrossRef]
- Sadeghi, K.; Ojha, D.; Kaur, P.; Mahto, R.V.; Dhir, A. Explainable artificial intelligence and agile decision-making in supply chain cyber resilience. Decis. Support Syst. 2024, 180, 114194. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, X.; Liu, W.; Luo, F.; Wang, M. Enhancing chromium supply chain security through resilience strategies: Decision support based on system dynamics simulations. J. Clean. Prod. 2025, 493, 144981. [Google Scholar] [CrossRef]
- Vega, D.; Arvidsson, A.; Saiah, F. Resilient supply management systems in times of crisis. Int. J. Oper. Prod. Manag. 2023, 43, 70–98. [Google Scholar] [CrossRef]
- Qureshi, K.M.; Mewada, B.G.; Kaur, S.; Alghamdi, S.Y.; Almakayeel, N.; Almuflih, A.S.; Qureshi, M.R.N.M. Sustainable manufacturing supply chain performance enhancement through technology utilization and process innovation in industry 4.0: A SEM-PLS approach. Sustainability 2023, 15, 15388. [Google Scholar] [CrossRef]
- Junaid, M.; Zhang, Q.; Cao, M.; Luqman, A. Nexus between technology enabled supply chain dynamic capabilities, integration, resilience, and sustainable performance: An empirical examination of healthcare organizations. Technol. Forecast. Soc. Change 2023, 196, 122828. [Google Scholar] [CrossRef]
- Olaleye, B.R.; Lekunze, J.N.; Sekhampu, T.J.; Khumalo, N.; Ayeni, A.A.W. Leveraging innovation capability and organizational resilience for business sustainability among small and medium enterprises: A PLS-SEM approach. Sustainability 2024, 16, 9201. [Google Scholar] [CrossRef]
- Taghizadeh, S.K.; Rahman, S.A.; Nikbin, D.; Radomska, M.; Maleki Far, S. Dynamic capabilities of the SMEs for sustainable innovation performance: Role of environmental turbulence. J. Organ. Eff. People Perform 2024, 11, 767–787. [Google Scholar] [CrossRef]
- Atieh Ali, A.A.; Sharabati, A.A.A.; Allahham, M.; Nasereddin, A.Y. The relationship between supply chain resilience and digital supply chain and the impact on sustainability: Supply chain dynamism as a moderator. Sustainability 2024, 16, 3082. [Google Scholar] [CrossRef]
- Su, X.; Mou, C.; Zhou, S. Institutional environment, technological innovation capability and service-oriented transformation. PLoS ONE 2023, 18, e0281403. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, N.C.; Ferreira, J.J. The field of resource-based view research: Mapping past, present and future trends. Manag. Decis. 2025, 63, 1124–1153. [Google Scholar] [CrossRef]
- Tyagi, S. Analytics in healthcare supply chain management in the new normal era: A review and future research agenda. Benchmarking Int. J. 2024, 31, 2151–2175. [Google Scholar] [CrossRef]
- Hussain, M.; Ajmal, M.; Subramanian, G.; Khan, M.; Anas, S. Challenges of big data analytics for sustainable supply chains in healthcare–a resource-based view. Benchmarking Int. J. 2024, 31, 2897–2918. [Google Scholar] [CrossRef]
- Joshi, A.; Kale, S.; Chandel, S.; Pal, D.K. Likert scale: Explored and explained. Br. J. Appl. Sci. Technol. 2015, 7, 396. [Google Scholar] [CrossRef]
- Le, T.V.; Fan, R. Digital twins for logistics and supply chain systems: Literature review, conceptual framework, research potential, and practical challenges. Comput. Ind. Eng. 2024, 187, 109768. [Google Scholar] [CrossRef]
- Wu, C.H.; Tsang, Y.P.; Lee, C.K.M.; Ching, W.K. A blockchain-IoT platform for the smart pallet pooling management. Sensors 2021, 21, 6310. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, H.F.; Rice, J. Little Jiffy, Mark Iv. Educ. Psychol. Meas. 1974, 34, 111–117. [Google Scholar] [CrossRef]
- Arsham, H.; Lovric, M. Bartlett’s Test. Int. Encycl. Stat. Sci. 2011, 2, 20–23. [Google Scholar]
- Suhr, D.D. Principal component analysis vs. exploratory factor analysis. SUGI 30 Proc. 2005, 203, 1–11. [Google Scholar]
- Fabrigar, L.R.; Wegener, D.T.; MacCallum, R.C.; Strahan, E.J. Evaluating the use of exploratory factor analysis in psychological research. Psychol. Methods 1999, 4, 272. [Google Scholar] [CrossRef]
- Babbie, E.; Wagner-Huang, W.E.; Zaino, J. Adventures in Social Research: Data Analysis Using IBM SPSS Statistics; Sage Publications: Thousand Oaks, CA, USA, 2022. [Google Scholar]
- Fornell, C.; Larcker, D.F. Structural equation models with unobservable variables and measurement error: Algebra and statistics. J. Mark. Res. 1981, 18, 382–388. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Alwin, D.F.; Hauser, R.M. The decomposition of effects in path analysis. Am. Sociol. Rev. 1975, 40, 37–47. [Google Scholar] [CrossRef]
- Wen, Z.; Ye, B. Analyses of mediating effects: The development of methods and models. Adv. Psychol. Sci. 2014, 22, 731. [Google Scholar] [CrossRef]
- Senapati, T.; Sarkar, A.; Chen, G. Enhancing healthcare supply chain management through artificial intelligence-driven group decision-making with Sugeno–Weber triangular norms in a dual hesitant q-rung orthopair fuzzy context. Eng. Appl. Artif. Intell. 2024, 135, 108794. [Google Scholar] [CrossRef]
- Tiwari, M.K.; Bidanda, B.; Geunes, J.; Fernandes, K.; Dolgui, A. Supply chain digitisation and management. Int. J. Prod. Res. 2024, 62, 2918–2926. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, H.; Grebinevych, O.; Chen, M. Sustainable development with Artificial Intelligence: Examining the absorptive capacity pathways to green innovation. J. Environ. Manag. 2025, 381, 125219. [Google Scholar] [CrossRef] [PubMed]
- Kalnins, A. Should moderated regressions include or exclude quadratic terms? Present both! Then apply our linear algebraic analysis to identify the preferable specification. Organ. Res. Methods 2024, 27, 29–63. [Google Scholar] [CrossRef]
- Xiao, J.; Bao, Y. Partners’ knowledge utilization and exploratory innovation: The moderating effect of competitive and collaborative relationships. Int. J. Oper. Prod. Manag. 2022, 42, 1356–1383. [Google Scholar] [CrossRef]
- Tank, Y.T. Research Report on the Current Status and Capabilities of Digital Transformation of China’s Medical Industry in 2023. 2023. Available online: https://www.iyiou.com/research/202308141255 (accessed on 20 July 2025).
- Nanda, S.K.; Panda, S.K.; Dash, M. Medical supply chain integrated with blockchain and IoT to track the logistics of medical products. Multimed. Tools Appl. 2023, 82, 32917–32939. [Google Scholar] [CrossRef] [PubMed]
- Roosevelt, S.C.; Veemaraj, E.; Kirubakaran, S. Real Time Stock Inventory Management System. In Proceedings of the 2024 8th International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 29–30 July 2024; pp. 156–162. [Google Scholar]
- Tayab, A.; Li, Y. The contribution of the RPA technology in enhancing better business performance in Warehouse management. IEEE Access 2024, 12, 142419–142426. [Google Scholar] [CrossRef]
- Mousa, B.A.; Al-Khateeb, B. Predicting medicine demand using deep learning techniques: A review. J. Intell. Syst. 2023, 32, 20220297. [Google Scholar] [CrossRef]
- Cresswell, K.; Sheikh, A.; Krasuska, M.; Heeney, C.; Franklin, B.D.; Lane, W.; Williams, R. Reconceptualising the digital maturity of health systems. Lancet Digit. Health 2019, 1, e200–e201. [Google Scholar] [CrossRef] [PubMed]
- Rehman, O.U.; Ali, Y. Enhancing healthcare supply chain resilience: Decision-making in a fuzzy environment. Int. J. Logist. Manag. 2022, 33, 520–546. [Google Scholar] [CrossRef]
- Contreras, N.A.; Guerrero, W.; Besiou, M. Pharmaceutical Inventory Management Using Industry 4.0 Technologies Based on Collaborative Demand: A System Dynamics Approach. In Proceedings of the 7th European Conference on Industrial Engineering and Operations Management, Augsburg, Germany, 16–18 July 2024; pp. 957–973. [Google Scholar]
- Beaulieu, M.; Bentahar, O. Digitalization of the healthcare supply chain: A roadmap to generate benefits and effectively support healthcare delivery. Technol. Forecast. Soc. Change 2021, 167, 120717. [Google Scholar] [CrossRef]
- Anthony, O.C.; Oluwagbade, E.; Bakare, A.; Animasahun, B. Evaluating the economic and clinical impacts of pharmaceutical supply chain centralization through AI-driven predictive analytics: Comparative lessons from large-scale centralized procurement systems and implications for drug pricing, availability, and cardiovascular health outcomes in the US. Int. J. Res. Publ. Rev. 2024, 5, 5148–5161. [Google Scholar]
- Asa, K.J.; Zosu, S.J. Enhancing procurement and supply chain management for sustainable development through digital transformation. Int. J. Afr. Res. Sustain. Stud. 2023, 2, 62–76. [Google Scholar]
Author(s) | Theory | Context | Key Findings | Research Gaps |
---|---|---|---|---|
Ning & Yao, 2023 [70] | RBV | General supply chain transformation | Digital transformation enhances supply chain capabilities and competitive performance through capability development. | Lacks focus on healthcare context and detailed mechanisms linking digital capabilities to resilience and DO. |
Wang et al., 2024 [71] | DOI & CIMO | HSC resilience | Integration of IoT, cloud computing, and big data enables digital transformation from initiation to execution. | Limited evidence on resilience-building and sector-specific adaptation mechanisms. |
Tiwari et al., 2024 [72] | OIPT | HSC resilience | Digital technologies enhance resilience under high environmental dynamism. | Focused on direct relationships without exploring mediation or innovation mechanisms. |
Belhadi et al., 2024 [59] | DRBV | Volatile supply chain environment | AI-driven innovation enhances resilience and supply chain performance under high dynamism. | Does not decompose resilience into specific dimensions or examine sequential mediation paths. |
Moderno et al., 2024 [36] | RBV | Organizational digital strategy | RPA and AI capabilities support digital strategy execution. | Focus on strategy; lacks SCR or healthcare angle. |
Lima et al., 2025 [73] | RBV | Blockchain in supply chain management | Blockchain capabilities, as foundational digital resources, play a key role in driving operational efficiency and digital transformation. | Limited integration with dynamic capability mechanisms in healthcare-specific supply chains. |
Tonsi et al., 2025 [74] | DRBV | IT capabilities and supply chain viability in retail manufacturing | IT resources enhance internal operations and boost supply chain survivability in dynamic environments. | Lacks healthcare-specific application and examination of technological interaction effects. |
Moraes et al., 2025 [75] | DOI | Blockchain adoption in supply chains | Proposes a three-stage adoption framework focusing on scalability, standardization, and interoperability. | Does not address resilience outcomes or healthcare domain applicability. |
Mehmood et al., 2025 [76] | RBV | Chinese SMEs, general supply chain | Sustainability and performance are supported by resilience, innovation, and information sharing. | Focuses on general SMEs; healthcare-specific operational insights are missing. |
Seifi et al., 2025 [77] | MCDM | HSCs with AI and blockchain | Prioritizes integration factors for AI and blockchain in HSCs. | No process mechanism or resilience/innovation mediating perspective offered. |
Variables | Items | Sources | |
---|---|---|---|
Digital Intelligence | DI1 | We use smart technologies to control and optimize production processes. | [81] |
DI2 | We use smart technologies to analyze data and support decision-making. | ||
DI3 | We use smart technologies to plan and allocate resources effectively. | ||
DI4 | We use smart technologies to monitor and control inventory levels. | ||
DI5 | We use smart technologies to estimate and control costs more accurately. | ||
Innovation Capability | IC1 | We continuously innovate in our supply chain collaborations and partnerships. | [96] |
IC2 | We continuously upgrade our digital technology systems to support innovation. | ||
IC3 | We are committed to delivering innovative supply services. | ||
IC4 | We pursue innovation in our supply chain process management. | ||
IC5 | We continuously develop supply market resources for innovative capability. | ||
Absorptive Capability | AC1 | We are able to prepare backup resources in advance to respond to potential supply chain disruptions. | [45,83] |
AC2 | We are able to anticipate potential risks before supply chain disruptions occur. | ||
AC3 | We are able to sense market changes before supply chain disruptions happen. | ||
Response Capability | RPC1 | We are able to make the right risk management decisions at the time of supply chain disruptions. | [45,93] |
RPC2 | We are able to maintain supply chain connectivity and collaboration at the time of disruptions. | ||
RPC3 | We are able to adapt our response strategies during supply chain disruptions. | ||
Restorative Capability | RTC1 | We are able to extract useful knowledge from disruptions and achieve better supply chain operations. | [45] |
RTC2 | We are able to speedily and efficiently return to normal operations after being disrupted. | ||
RTC3 | We are able to restructure resources and develop new continuity plans after being disrupted. | ||
Decision Optimization | DO1 | We make managerial decisions more efficiently and accurately with the support of digital technologies. | [82] |
DO2 | We identify and respond to risks more effectively by leveraging digital technologies. | ||
DO3 | We improve our strategic planning through the use of digital tools and data analytics. | ||
DO4 | We optimize our operational decision-making with the aid of digital technologies. | ||
DO5 | We make product development decisions that are increasingly driven by data and digital intelligence. |
Variables | Category | Frequency | Ratio (%) |
---|---|---|---|
Gender | Male | 160 | 44.4 |
Female | 200 | 55.6 | |
Age | <35 | 249 | 69.2 |
35~50 | 106 | 29.4 | |
>50 | 5 | 1.4 | |
Education Background | Associate Degree | 53 | 14.7 |
Bachelor | 224 | 62.2 | |
Master | 54 | 15.0 | |
Doctor | 29 | 8.1 | |
Professional Experience | <5 | 196 | 54.4 |
5~15 | 136 | 37.8 | |
>5 | 28 | 7.8 | |
Annual Revenue of the Respondent’s Organization (CNY) | <40 million | 197 | 54.7 |
40~400 million | 113 | 31.4 | |
>400 million | 50 | 13.9 | |
Ownership Type of the Organization | Domestic Enterprise | 223 | 61.9 |
Sino-Foreign Joint Venture | 112 | 31.3 | |
Wholly Foreign-Owned Enterprise | 25 | 6.9 |
Variables | Codes | Factor Loading | Cronbach’s α | |||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |||
Digital Intelligence | DI1 | 0.050 | 0.054 | 0.772 | 0.155 | 0.061 | 0.170 | 0.874 |
DI2 | 0.197 | 0.052 | 0.709 | 0.117 | 0.150 | 0.119 | ||
DI3 | 0.252 | 0.101 | 0.811 | 0.104 | 0.089 | 0.096 | ||
DI4 | 0.231 | 0.170 | 0.745 | 0.122 | 0.121 | 0.158 | ||
DI5 | 0.194 | 0.165 | 0.764 | 0.055 | 0.153 | 0.095 | ||
Innovation Capability | IC1 | 0.020 | 0.779 | 0.116 | 0.091 | 0.117 | 0.150 | 0.880 |
IC2 | 0.086 | 0.790 | 0.093 | 0.079 | 0.072 | 0.108 | ||
IC3 | 0.023 | 0.765 | 0.131 | 0.069 | 0.115 | 0.125 | ||
IC4 | 0.066 | 0.802 | 0.101 | 0.110 | 0.146 | 0.055 | ||
IC5 | 0.075 | 0.853 | 0.033 | 0.096 | 0.029 | 0.127 | ||
Absorptive Capability | AC1 | 0.252 | 0.140 | 0.179 | 0.893 | 0.114 | 0.067 | 0.963 |
AC2 | 0.247 | 0.174 | 0.146 | 0.891 | 0.072 | 0.075 | ||
AC3 | 0.250 | 0.143 | 0.175 | 0.902 | 0.078 | 0.093 | ||
Response Capability | RPC1 | 0.251 | 0.151 | 0.189 | 0.079 | 0.839 | 0.124 | 0.898 |
RPC2 | 0.263 | 0.189 | 0.135 | 0.131 | 0.800 | 0.137 | ||
RPC3 | 0.237 | 0.147 | 0.180 | 0.056 | 0.850 | 0.115 | ||
Restorative Capability | RTC1 | 0.327 | 0.248 | 0.187 | 0.155 | 0.118 | 0.736 | 0.842 |
RTC2 | 0.251 | 0.212 | 0.249 | 0.090 | 0.137 | 0.777 | ||
RTC3 | 0.287 | 0.263 | 0.269 | 0.024 | 0.200 | 0.692 | ||
Decision Optimization | DO1 | 0.790 | 0.163 | 0.217 | 0.179 | 0.178 | 0.217 | 0.931 |
DO2 | 0.833 | 0.004 | 0.191 | 0.215 | 0.194 | 0.170 | ||
DO3 | 0.680 | 0.120 | 0.276 | 0.179 | 0.207 | 0.138 | ||
DO4 | 0.840 | 0.044 | 0.195 | 0.175 | 0.185 | 0.163 | ||
DO5 | 0.771 | 0.007 | 0.218 | 0.255 | 0.232 | 0.245 | ||
Eigen Value(Rotated) | 3.921 | 3.629 | 3.531 | 2.776 | 2.490 | 2.028 | - | |
Explained Variance(%) | 16.339 | 15.122 | 14.711 | 11.568 | 10.376 | 8.449 | ||
Cumulative Variance(%) | 16.339 | 31.461 | 46.172 | 57.740 | 68.117 | 76.565 | ||
KMO = 0.914, Bartlett = 6574.182, Sig = 0.000, df = 276. |
Variables | Codes | Estimate | SE | T-Value | p | Std. | CR | AVE |
---|---|---|---|---|---|---|---|---|
Digital Intelligence | DI1 | 1 | 0.703 | 0.876 | 0.587 | |||
DI2 | 1.069 | 0.087 | 12.249 | *** | 0.698 | |||
DI3 | 1.217 | 0.084 | 14.501 | *** | 0.840 | |||
DI4 | 1.319 | 0.094 | 14.032 | *** | 0.809 | |||
DI5 | 1.189 | 0.089 | 13.414 | *** | 0.769 | |||
Innovation Capability | IC1 | 1 | 0.764 | 0.883 | 0.602 | |||
IC2 | 1.001 | 0.069 | 14.416 | *** | 0.756 | |||
IC3 | 1.001 | 0.072 | 13.970 | *** | 0.735 | |||
IC4 | 1.127 | 0.075 | 15.079 | *** | 0.787 | |||
IC5 | 0.967 | 0.060 | 16.019 | *** | 0.833 | |||
Absorptive Capability | AC1 | 1 | 0.947 | 0.963 | 0.896 | |||
AC2 | 0.987 | 0.029 | 34.594 | *** | 0.926 | |||
AC3 | 1.030 | 0.025 | 40.989 | *** | 0.966 | |||
Response Capability | RPC1 | 1 | 0.887 | 0.899 | 0.748 | |||
RPC2 | 0.919 | 0.046 | 19.876 | *** | 0.827 | |||
RPC3 | 0.995 | 0.046 | 21.738 | *** | 0.880 | |||
Restorative Capability | RTC1 | 1 | 0.817 | 0.851 | 0.656 | |||
RTC2 | 1.000 | 0.060 | 16.550 | *** | 0.815 | |||
RTC3 | 1.251 | 0.077 | 16.172 | *** | 0.798 | |||
Decision Optimization | DO1 | 1 | 0.849 | 0.932 | 0.734 | |||
DO2 | 1.110 | 0.047 | 23.376 | *** | 0.908 | |||
DO3 | 0.812 | 0.050 | 16.360 | *** | 0.732 | |||
DO4 | 1.091 | 0.048 | 22.778 | *** | 0.895 | |||
DO5 | 1.079 | 0.048 | 22.413 | *** | 0.887 | |||
CMIN = 411.783, df = 237, CMIN/df = 1.737, GFI = 0.916, AGFI = 0.893, NFI = 0.939, RFI = 0.929, IFI = 0.973, TLI = 0.969, CFI = 0.973, RMSEA = 0.045, SRMR = 0.036. |
Variables | M | SD | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|---|
Digital Intelligence | 3.343 | 0.754 | 0.766 | |||||
Innovation Capability | 3.114 | 0.603 | 0.307 ** | 0.776 | ||||
Absorptive Capability | 3.900 | 0.830 | 0.392 ** | 0.311 ** | 0.947 | |||
Response Capability | 3.131 | 0.823 | 0.423 ** | 0.348 ** | 0.314 ** | 0.865 | ||
Restorative Capability | 3.223 | 0.742 | 0.532 ** | 0.464 ** | 0.351 ** | 0.473 ** | 0.810 | |
Decision Optimization | 3.940 | 0.932 | 0.536 ** | 0.240 ** | 0.531 ** | 0.557 ** | 0.613 ** | 0.857 |
Hypothesis | Path | Estimate | SE | CR | p | Results |
---|---|---|---|---|---|---|
H1 | DI --> DO | 0.132 | 0.084 | 1.571 | 0.116 | Rejected |
H2 | DI --> IC | 0.308 | 0.057 | 5.419 | *** | Supported |
H3-1 | DI --> AC | 0.482 | 0.078 | 6.168 | *** | Supported |
H3-2 | DI --> RPC | 0.538 | 0.081 | 6.660 | *** | Supported |
H3-3 | DI --> RTC | 0.518 | 0.063 | 8.272 | *** | Supported |
H4 | IC --> DO | −0.420 | 0.082 | −5.126 | *** | Rejected |
H5-1 | IC --> AC | 0.314 | 0.081 | 3.855 | *** | Supported |
H5-2 | IC --> RPC | 0.362 | 0.083 | 4.393 | *** | Supported |
H5-3 | IC --> RTC | 0.417 | 0.063 | 6.627 | *** | Supported |
H6-1 | AC --> DO | 0.351 | 0.048 | 7.371 | *** | Supported |
H6-2 | RPC --> DO | 0.341 | 0.054 | 6.354 | *** | Supported |
H6-3 | RTC --> DO | 0.666 | 0.095 | 6.997 | *** | Supported |
CMIN = 431.904, df = 240, CMIN/df = 1.80, GFI = 0.912, AGFI = 0.890, NFI = 0.936, RFI = 0.926, IFI = 0.970, TLI = 0.966, CFI = 0.970, RMSEA = 0.047, SRMR = 0.045. |
Hypothesis | Path | Estimation | S.E. | Bias-Corrected 95% CI | Results | ||
---|---|---|---|---|---|---|---|
Lover | Upper | p | |||||
Total effect | |||||||
DI --> DO | 0.858 | 0.101 | 0.668 | 1.065 | *** | - | |
Direct effect | |||||||
DI --> DO | 0.132 | 0.099 | −0.054 | 0.333 | 0.172 | - | |
Indirect effect | |||||||
DI --> DO | 0.726 | 0.102 | 0.547 | 0.941 | *** | - | |
H7 | DI --> IC --> DO | −0.130 | 0.040 | −0.223 | −0.067 | *** | Rejected |
H8-1 | DI --> AC --> DO | 0.169 | 0.041 | 0.100 | 0.261 | *** | Supported |
H8-2 | DI --> RPC --> DO | 0.183 | 0.041 | 0.115 | 0.278 | *** | Supported |
H8-3 | DI --> RTC --> DO | 0.345 | 0.070 | 0.230 | 0.505 | *** | Supported |
H9-1 | DI --> IC --> AC --> DO | 0.034 | 0.011 | 0.018 | 0.063 | *** | Supported |
H9-2 | DI --> IC --> RPC --> DO | 0.038 | 0.015 | 0.017 | 0.077 | *** | Supported |
H9-3 | DI --> IC --> RTC --> DO | 0.086 | 0.025 | 0.048 | 0.155 | *** | Supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.-Y.; Kang, T.-W. Digital Intelligence and Decision Optimization in Healthcare Supply Chain Management: The Mediating Roles of Innovation Capability and Supply Chain Resilience. Sustainability 2025, 17, 6706. https://doi.org/10.3390/su17156706
Ma J-Y, Kang T-W. Digital Intelligence and Decision Optimization in Healthcare Supply Chain Management: The Mediating Roles of Innovation Capability and Supply Chain Resilience. Sustainability. 2025; 17(15):6706. https://doi.org/10.3390/su17156706
Chicago/Turabian StyleMa, Jing-Yan, and Tae-Won Kang. 2025. "Digital Intelligence and Decision Optimization in Healthcare Supply Chain Management: The Mediating Roles of Innovation Capability and Supply Chain Resilience" Sustainability 17, no. 15: 6706. https://doi.org/10.3390/su17156706
APA StyleMa, J.-Y., & Kang, T.-W. (2025). Digital Intelligence and Decision Optimization in Healthcare Supply Chain Management: The Mediating Roles of Innovation Capability and Supply Chain Resilience. Sustainability, 17(15), 6706. https://doi.org/10.3390/su17156706