Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (595)

Search Parameters:
Keywords = plastic circular economy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 9076 KiB  
Article
Performance Evaluation of Waste Toner and Recycled LDPE-Modified Asphalt Pavement: A Mechanical and Carbon Assessment-Based Optimization Approach Towards Sustainability
by Muhammad Usman Siddiq, Muhammad Kashif Anwar, Faris H. Almansour, Jahanzeb Javed and Muhammad Ahmed Qurashi
Sustainability 2025, 17(15), 7003; https://doi.org/10.3390/su17157003 - 1 Aug 2025
Viewed by 273
Abstract
Due to the increasing environmental concerns and the growing generation of electronic waste and plastic, sustainable waste management solutions are essential for the construction industry. This study explores the potential of using electronic waste toner powder (WTP) and recycled low-density polyethylene (LDPE), either [...] Read more.
Due to the increasing environmental concerns and the growing generation of electronic waste and plastic, sustainable waste management solutions are essential for the construction industry. This study explores the potential of using electronic waste toner powder (WTP) and recycled low-density polyethylene (LDPE), either individually or in combination as modifiers for asphalt binder to enhance pavement performance and reduce environmental impact. The analysis focused on three key components: (1) binder development and testing; (2) performance evaluation through Marshall stability, indirect tensile strength, and Dynamic Shear Rheometer (DSR) testing for rutting resistance; and (3) sustainability assessment in terms of carbon footprint reduction. The results revealed that the formulation of 25% WTP and 8% LDPE processed at 160 °C achieved the best mechanical performance and lowest carbon index, enhancing Marshall stability by 32% and rutting resistance by 41%. Additionally, this formulation reduced the carbon footprint by 27% compared to conventional asphalt. The study demonstrated that the combination of WTP and LDPE significantly improves the sustainability and performance of asphalt pavements, offering mechanical, environmental, and economic benefits. By providing a quantitative assessment of waste-modified asphalt, this study uniquely demonstrates the combined use of WTP and LDPE in asphalt, offering a novel dual-waste valorization approach that enhances pavement performance while promoting circular economy practices. Full article
(This article belongs to the Special Issue Sustainable Development of Asphalt Materials and Pavement Engineering)
Show Figures

Figure 1

19 pages, 1637 KiB  
Article
Comparative Analysis of Plastic Waste Management Options Sustainability Profiles
by Madalina-Maria Enache, Daniela Gavrilescu and Carmen Teodosiu
Polymers 2025, 17(15), 2117; https://doi.org/10.3390/polym17152117 - 31 Jul 2025
Viewed by 312
Abstract
Efficient plastic waste end-of-life management is a serious worldwide environmental issue motivated by growing waste production and negative effects of wrongful disposal. This study presents a comparative overview of plastic waste management regimes within the European Union (EU), the United States of America [...] Read more.
Efficient plastic waste end-of-life management is a serious worldwide environmental issue motivated by growing waste production and negative effects of wrongful disposal. This study presents a comparative overview of plastic waste management regimes within the European Union (EU), the United States of America (USA), and Romania, ranked with circular economy goals. By using the United States Environmental Protection Agency (US EPA) Waste Reduction Model (WARM), version 16, the study provides a quantified score to greenhouse gas (GHG) emissions within three large options of management: recycling, energy recovery through combustion, and landfilling. The model setup utilizes region-specific information on legislation, base technology, and recycling efficiency. The outcomes show that recycling always entails net GHG emissions reductions, i.e., −4.49 kg CO2e/capita/year for EU plastic waste and −20 kg CO2e/capita/year for USA plastic waste. Combustion and landfilling have positive net emissions from 1.76 to 14.24 kg CO2e/capita/year. Economic indicators derived from the model also show significant variation: salaries for PET management amounted to USD 2.87 billion in the EU and USD 377 million in the USA, and tax collection was USD 506 million and USD 2.01 billion, respectively. The conclusions highlight the wider environmental and socioeconomic benefits of recycling and reinforce its status as a cornerstone of circular-economy sustainable plastic waste management and a strategic element of national development agendas, with special reference to Romania’s national agenda. Full article
(This article belongs to the Special Issue Polymers for Environmental Applications)
Show Figures

Figure 1

19 pages, 5847 KiB  
Article
Parametric Analysis of Rammed Earth Walls in the Context of the Thermal Protection of Environmentally Friendly Buildings
by Piotr Kosiński, Wojciech Jabłoński and Krystian Patyna
Sustainability 2025, 17(15), 6886; https://doi.org/10.3390/su17156886 - 29 Jul 2025
Viewed by 285
Abstract
Rammed earth (RE), a traditional material aligned with circular economy (CE) principles, has been gaining renewed interest in contemporary construction due to its low environmental impact and compatibility with sustainable building strategies. Though not a modern invention, it is being reintroduced in response [...] Read more.
Rammed earth (RE), a traditional material aligned with circular economy (CE) principles, has been gaining renewed interest in contemporary construction due to its low environmental impact and compatibility with sustainable building strategies. Though not a modern invention, it is being reintroduced in response to the increasingly strict European Union (EU) regulations on carbon footprint, life cycle performance, and thermal efficiency. RE walls offer multiple benefits, including humidity regulation, thermal mass, plasticity, and structural strength. This study also draws attention to their often-overlooked ability to mitigate indoor overheating. To preserve these advantages while enhancing thermal performance, this study explores insulation strategies that maintain the vapor-permeable nature of RE walls. A parametric analysis using Delphin 6.1 software was conducted to simulate heat and moisture transfer in two main configurations: (a) a ventilated system insulated with mineral wool (MW), wood wool (WW), hemp shives (HS), and cellulose fiber (CF), protected by a jute mat wind barrier and finished with wooden cladding; (b) a closed system using MW and WW panels finished with lime plaster. In both cases, clay plaster was applied on the interior side. The results reveal distinct hygrothermal behavior among the insulation types and confirm the potential of natural, low-processed materials to support thermal comfort, moisture buffering, and the alignment with CE objectives in energy-efficient construction. Full article
Show Figures

Figure 1

33 pages, 3709 KiB  
Review
A Review of Methods and Data on the Recycling of Plastics from the European Waste Stream of Electric and Electronic Equipment
by Nicolas Nève, Xavier Mackré-Delannoy, Bruno Fayolle, Matthieu Gervais, Stéphane Pompidou, Carole Charbuillet, Cyrille Sollogoub and Nicolas Perry
Recycling 2025, 10(4), 148; https://doi.org/10.3390/recycling10040148 - 28 Jul 2025
Viewed by 319
Abstract
Plastics make up a significant proportion of the stream of the European Waste of Electric and Electronic Equipment (WEEE), yet the use of recycled plastic materials is very low in new manufactured products. A description of the WEEE waste stream in Europe is [...] Read more.
Plastics make up a significant proportion of the stream of the European Waste of Electric and Electronic Equipment (WEEE), yet the use of recycled plastic materials is very low in new manufactured products. A description of the WEEE waste stream in Europe is given, with a focus on the plastic materials commonly found in WEEE that include four principal polymers: polypropylene (PP), polycarbonate (PC), acrylonitrile-butadiene-styrene (ABS) and polystyrene (PS). Furthermore, the legislative aspects related to WEEE and plastics recycling in Europe are complex, and numerous norms have been dictated by the European Commission. These norms are crucial to the sector of polymer recycling and production in Europe. Moreover, an overview of the entire treatment chain is presented. More specifically, each step of a typical recycling chain is introduced, with a focus on the sorting of plastics and the separation of polymers. Lastly, the influence of contaminants in the plastic fraction is discussed, both in terms of polymer particles and unwanted additives. By showing the impact of the purity rate on the mechanical properties of recycled plastics, the consequences of inadequate end-of-life treatment for WEEE-plastics is highlighted, hence linking the quality of recycled plastics to the separation step and the re-compounding of recycled granulates. Full article
Show Figures

Graphical abstract

27 pages, 36926 KiB  
Article
Comparison of Additive Manufacturing and Injection Molding of Biocomposites Reinforced with Alkali-Treated Wood Flour Derived from Recycled Wooden Pallets
by Mehmet Demir, Nilgül Çetin and Nasır Narlıoğlu
Polymers 2025, 17(15), 2004; https://doi.org/10.3390/polym17152004 - 22 Jul 2025
Viewed by 392
Abstract
Biodegradable polymer composites offer promising alternatives to petroleum-based plastics, supporting the principles of a zero waste and circular economy. This study investigates the reinforcing potential of alkali-treated wood flour derived from recycled pine (Pinus brutia Ten.) and poplar (Populus alba L.) [...] Read more.
Biodegradable polymer composites offer promising alternatives to petroleum-based plastics, supporting the principles of a zero waste and circular economy. This study investigates the reinforcing potential of alkali-treated wood flour derived from recycled pine (Pinus brutia Ten.) and poplar (Populus alba L.) waste wooden pallets in poly(lactic acid) (PLA) biocomposites. Wood flour was initially recovered through grinding and screening during recycling, followed by alkali treatment via a green chemistry approach to enhance interfacial bonding with the PLA matrix. The impact of alkali concentration and two fabrication methods—additive manufacturing (AM) and injection molding (IM)—on the properties of developed biocomposite materials was assessed through mechanical, physical, morphological, and thermal analyses. IM samples outperformed AM counterparts, with the IM PLA containing 30 wt% wood flour (alkali-treated with 10% solution) showing the highest mechanical gains: tensile (+71.35%), flexural (+64.74%), and hardness (+2.62%) compared to untreated samples. Moreover, the AM sample with 10 wt% wood flour and 10% alkali treatment showed a 49.37% decrease in water absorption compared to the untreated sample, indicating improved hydrophobicity. Scanning electron microscopy confirmed that alkali treatment reduced void content and enhanced morphological uniformity, while thermal properties remained consistent across fabrication methods. This work introduces a green composite using non-toxic materials and treatments, facilitating eco-friendly production aligned with zero waste and circular economy principles throughout the manufacturing lifecycle. Full article
(This article belongs to the Special Issue Polymer Composites: Structure, Properties and Processing, 2nd Edition)
Show Figures

Graphical abstract

26 pages, 796 KiB  
Article
Developing an Integrated Circular Economy Framework for Nanomaterial-Enhanced Recycled PET (nrPET): Advancing Sustainable and Resilient Road Construction Practices
by Demiss A. Belachew and Walied A. Elsaigh
Recycling 2025, 10(4), 146; https://doi.org/10.3390/recycling10040146 - 22 Jul 2025
Viewed by 277
Abstract
The rapid growth in plastic consumption, particularly polyethylene terephthalate (PET), has led to a significant increase in plastic waste, posing a major environmental challenge. Developing an integrated circular economy framework for nanomaterial-enhanced recycled PET (nrPET) can be a promising approach to address this [...] Read more.
The rapid growth in plastic consumption, particularly polyethylene terephthalate (PET), has led to a significant increase in plastic waste, posing a major environmental challenge. Developing an integrated circular economy framework for nanomaterial-enhanced recycled PET (nrPET) can be a promising approach to address this issue and advance sustainable and resilient road construction practices. This comprehensive review examines the current use of rPET in road construction, its existing limitations, and the role of nanomaterials in enhancing the performance of these materials. The review explores the mechanisms by which nanomaterials, such as carbon nanotubes, graphene, nanosilica, and clay nanoplatelets, can improve the properties of rPET, leading to more durable, weather-resistant, and cost-effective road materials. Furthermore, the review analyzes the environmental and sustainability benefits of using nrPET in road construction, focusing on carbon footprint reduction, conservation of natural resources, and alignment with circular economy principles. The potential for job creation, social benefits, and support for circular economy initiatives are also discussed. The review then delves into the challenges associated with the implementation of this framework, including technical barriers, economic and market barriers, regulatory and policy challenges, and environmental and safety considerations. Strategies to address these challenges, such as advancements in nanotechnology, scaling up circular economy models, and fostering collaborative research, are presented. Finally, the article proposes a framework and outlines future directions and research opportunities, emphasizing the exploration of emerging nanomaterials, scaling up circular economy models, and encouraging collaborations between researchers, industry stakeholders, policymakers, and communities. Full article
(This article belongs to the Special Issue Recycled Materials in Sustainable Pavement Innovation)
Show Figures

Figure 1

27 pages, 1337 KiB  
Review
Incorporating Waste Plastics into Pavement Materials: A Review of Opportunities, Risks, Environmental Implications, and Monitoring Strategies
by Ali Ghodrati, Nuha S. Mashaan and Themelina Paraskeva
Appl. Sci. 2025, 15(14), 8112; https://doi.org/10.3390/app15148112 - 21 Jul 2025
Viewed by 372
Abstract
The integration of waste plastics into pavement materials offers a dual benefit of enhancing road performance and mitigating the environmental burden of plastic waste. This review critically examines the opportunities and challenges associated with incorporating waste plastics in pavement construction, with an emphasis [...] Read more.
The integration of waste plastics into pavement materials offers a dual benefit of enhancing road performance and mitigating the environmental burden of plastic waste. This review critically examines the opportunities and challenges associated with incorporating waste plastics in pavement construction, with an emphasis on their impact on the mechanical properties, durability, and life cycle performance of pavements. Special attention is given to the environmental implications, particularly the potential generation and release of micro- and nano-plastics during the pavement life cycle. This paper further evaluates current monitoring and analytical methodologies for detecting plastic emissions from road surfaces and explores emerging approaches for minimizing environmental risks. By providing a comprehensive synthesis of existing knowledge, this review seeks to support sustainable practices and inform policy development within the frameworks of circular economy and environmental stewardship. Full article
Show Figures

Figure 1

31 pages, 832 KiB  
Review
Depolymerization to Decontamination: Transforming PET Waste into Tailored MOFs for Advanced Pollutant Adsorption
by Asma Nouira and Imene Bekri-Abbes
Physchem 2025, 5(3), 28; https://doi.org/10.3390/physchem5030028 - 19 Jul 2025
Viewed by 447
Abstract
Plastic waste and water pollution demand circular economy-driven innovations. This review examines metal–organic framework (MOF) synthesis from polyethylene terephthalate (PET) waste for wastewater treatment. Depolymerized PET yields terephthalic acid and ethylene glycol—essential MOF precursors. We evaluate the following: (1) PET depolymerization (hydrolysis, glycolysis, [...] Read more.
Plastic waste and water pollution demand circular economy-driven innovations. This review examines metal–organic framework (MOF) synthesis from polyethylene terephthalate (PET) waste for wastewater treatment. Depolymerized PET yields terephthalic acid and ethylene glycol—essential MOF precursors. We evaluate the following: (1) PET depolymerization (hydrolysis, glycolysis, ammonolysis) for monomer recovery efficiency; (2) MOF synthesis (solvothermal, microwave, mechanochemical) using PET-derived linkers; (3) performance in adsorbing heavy metals, dyes, and emerging contaminants. PET-based MOFs match or exceed commercial adsorbents in pollutant removal while lowering costs. Their tunable porosity and surface chemistry enhance selectivity and capacity. By converting waste plastics into functional materials, this strategy tackles dual challenges: diverting PET from landfills and purifying water. The review underscores the environmental and economic benefits of waste-sourced MOFs, proposing scalable routes for sustainable water remediation aligned with zero-waste goals. Full article
(This article belongs to the Section Surface Science)
Show Figures

Figure 1

61 pages, 2268 KiB  
Review
Biodegradable Polymers: Properties, Applications, and Environmental Impact
by Rashid Dallaev, Nikola Papež, Mohammad M. Allaham and Vladimír Holcman
Polymers 2025, 17(14), 1981; https://doi.org/10.3390/polym17141981 - 18 Jul 2025
Viewed by 650
Abstract
The accelerating global demand for sustainable materials has brought biodegradable polymers to the forefront of scientific and industrial innovation. These polymers, capable of decomposing through biological processes into environmentally benign byproducts, are increasingly seen as viable alternatives to conventional plastics in sectors such [...] Read more.
The accelerating global demand for sustainable materials has brought biodegradable polymers to the forefront of scientific and industrial innovation. These polymers, capable of decomposing through biological processes into environmentally benign byproducts, are increasingly seen as viable alternatives to conventional plastics in sectors such as packaging, agriculture, and biomedicine. However, despite significant advancements, the field remains fragmented due to the diversity of raw materials, synthesis methods, degradation mechanisms, and application requirements. This review aims to provide a comprehensive synthesis of the current state of biodegradable polymer development, including their classifications, sources (natural, synthetic, and microbially derived), degradation pathways, material properties, and commercial applications. It highlights critical scientific and technological challenges—such as optimizing degradation rates, ensuring mechanical performance, and scaling up production from renewable feedstocks. By consolidating recent research findings and regulatory considerations, this review serves as a crucial reference point for researchers, material scientists, and policymakers. It strives to bridge knowledge gaps in order to accelerate the deployment of biodegradable polymers as integral components of a circular and low-impact material economy. Full article
Show Figures

Figure 1

18 pages, 2154 KiB  
Article
Performance Limits of Hydraulic-Binder Stabilization for Dredged Sediments: Comparative Case Studies
by Abdeljalil Zri, Nor-Edine Abriak, Amine el Mahdi Safhi, Shima Pilehvar and Mahdi Kioumarsi
Buildings 2025, 15(14), 2484; https://doi.org/10.3390/buildings15142484 - 15 Jul 2025
Viewed by 387
Abstract
Maintenance dredging produces large volumes of fine sediments that are commonly discarded, despite increasing pressure for beneficial reuse. Lime–cement stabilization offers one pathway, yet field performance is highly variable. This study juxtaposes two French marine dredged sediments—DS-F (low plasticity, organic matter (OM) ≈ [...] Read more.
Maintenance dredging produces large volumes of fine sediments that are commonly discarded, despite increasing pressure for beneficial reuse. Lime–cement stabilization offers one pathway, yet field performance is highly variable. This study juxtaposes two French marine dredged sediments—DS-F (low plasticity, organic matter (OM) ≈ 2 wt.%) and DS-M (high plasticity, OM ≈ 18 wt.%)—treated with practical hydraulic road binder (HRB) dosages. This is the first French study that directly contrasts two different DS types under identical HRB treatment and proposes practical boundary thresholds. Physical indexes (particle size, methylene-blue value, Atterberg limits, OM) were measured; mixtures were compacted (Modified Proctor) and tested for immediate bearing index (IBI). IBI, unconfined compressive strength, indirect tensile strength, and elastic modulus were determined. DS-F reached IBI ≈ 90–125%, UCS ≈ 4.7–5.9 MPa, and ITS ≈ 0.40–0.47 MPa with only 6–8 wt.% HRB, satisfying LCPC-SETRA class S2–S3 requirements for road subgrades. DS-M never exceeded IBI ≈ 8%, despite 3 wt.% lime + 6 wt.% cement. A decision matrix distilled from these cases and recent literature shows that successful stabilization requires MBV < 3 g/100 g, plastic index < 25%, OM < 7 wt.%, and fine particles < 35%. These thresholds permit rapid screening of dredged lots before costly treatment. Highlighting both positive and negative evidence clarifies the realistic performance envelope of soil–cement reuse and supports circular-economy management of DS. Full article
(This article belongs to the Collection Advanced Concrete Materials in Construction)
Show Figures

Figure 1

21 pages, 903 KiB  
Article
Preliminary Analysis of Printed Polypropylene Foils and Pigments After Thermal Treatment Using DSC and Ames Tests
by Lukas Prielinger, Eva Ortner, Martin Novak, Lea Markart and Bernhard Rainer
Materials 2025, 18(14), 3325; https://doi.org/10.3390/ma18143325 - 15 Jul 2025
Viewed by 354
Abstract
In order to recycle plastic waste back to food contact materials (FCMs), it is necessary to identify hazardous substances in plastic packaging that pose a toxicological risk. Printing inks on plastics are not yet designed to withstand the high heat stress of mechanical [...] Read more.
In order to recycle plastic waste back to food contact materials (FCMs), it is necessary to identify hazardous substances in plastic packaging that pose a toxicological risk. Printing inks on plastics are not yet designed to withstand the high heat stress of mechanical recycling processes and therefore require hazard identification. In this study, virgin polypropylene (PP) foils were printed with different types of inks (UV-cured, water-based) and colour shades. Thermal analysis of printed foils and pigments was performed using differential scanning calorimetry (DSC). Samples were then thermally treated below and above measured thermal events at 120 °C, 160 °C, 200 °C or 240 °C for 30 min. Subsequently, migration tests and miniaturised Ames tests were performed. Four out of thirteen printed foils and all three pigments showed positive results for mutagenicity in miniaturised Ames tests after thermal treatment at 240 °C. Additionally, pre-incubation Plate Ames tests (according to OECD 471) were performed on three pigments and one printed foil, yielding two positive results after thermal treatment at 240 °C. These results indicate that certain ink components form hazardous decomposition products when heated up to a temperature of 240 °C. However, further research is needed to gain a better understanding of the chemical processes that occur during high thermal treatment. Full article
Show Figures

Graphical abstract

44 pages, 10756 KiB  
Review
The Road to Re-Use of Spice By-Products: Exploring Their Bioactive Compounds and Significance in Active Packaging
by Di Zhang, Efakor Beloved Ahlivia, Benjamin Bonsu Bruce, Xiaobo Zou, Maurizio Battino, Dragiša Savić, Jaroslav Katona and Lingqin Shen
Foods 2025, 14(14), 2445; https://doi.org/10.3390/foods14142445 - 11 Jul 2025
Viewed by 723
Abstract
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit [...] Read more.
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit controlled release antimicrobial and antioxidant effects with environmental responsiveness to pH, humidity, and temperature changes. Their distinctive advantage is in preserving volatile bioactives, demonstrating enzyme-inhibiting properties, and maintaining thermal stability during processing. This review encompasses a comprehensive characterization of phytochemicals, an assessment of the re-utilization pathway from waste to active materials, and an investigation of processing methods for transforming by-products into films, coatings, and nanoemulsions through green extraction and packaging film development technologies. It also involves the evaluation of their mechanical strength, barrier performance, controlled release mechanism behavior, and effectiveness of food preservation. Key findings demonstrate that ginger and onion residues significantly enhance antioxidant and antimicrobial properties due to high phenolic acid and sulfur-containing compound concentrations, while cinnamon and garlic waste effectively improve mechanical strength and barrier attributes owing to their dense fiber matrix and bioactive aldehyde content. However, re-using these residues faces challenges, including the long-term storage stability of certain bioactive compounds, mechanical durability during scale-up, natural variability that affects standardization, and cost competitiveness with conventional packaging. Innovative solutions, including encapsulation, nano-reinforcement strategies, intelligent polymeric systems, and agro-biorefinery approaches, show promise for overcoming these barriers. By utilizing these spice by-products, the packaging industry can advance toward a circular bio-economy, depending less on traditional plastics and promoting environmental sustainability in light of growing global population and urbanization trends. Full article
Show Figures

Figure 1

34 pages, 338 KiB  
Article
Systemic Gaps in Circular Plastics: A Role-Specific Assessment of Quality and Traceability Barriers in Australia
by Benjamin Gazeau, Atiq Zaman, Roberto Minunno and Faiz Shaikh
Sustainability 2025, 17(14), 6323; https://doi.org/10.3390/su17146323 - 10 Jul 2025
Viewed by 326
Abstract
The effective adoption of quality assurance and traceability systems is increasingly recognised as a critical enabler of circular economy (CE) outcomes in the plastics sector. This study examines the factors that influence the implementation of such systems within Australia’s recycled plastics industry, with [...] Read more.
The effective adoption of quality assurance and traceability systems is increasingly recognised as a critical enabler of circular economy (CE) outcomes in the plastics sector. This study examines the factors that influence the implementation of such systems within Australia’s recycled plastics industry, with a focus on how these factors vary by company size, supply chain role, and adoption of CE strategy. Recycled plastics are defined here as post-consumer or post-industrial polymers that have been reprocessed for reintegration into manufacturing applications. A mixed-methods survey was conducted with 65 stakeholders across the Australian plastics value chain, comprising recyclers, compounders, converters, and end-users. Respondents assessed a structured set of regulatory, technical, economic, and systemic factors, identifying whether each currently operates as an enabler or barrier in their organisational context. The analysis employed a comparative framework adapted from a 2022 European study, enabling a cross-regional interpretation of patterns and a comparison between CE-aligned and non-CE firms. The results show that firms with CE strategies report greater alignment with innovation-oriented enablers such as digital traceability, standardisation, and closed-loop models. However, these firms also express heightened sensitivity to systemic weaknesses, particularly in areas such as infrastructure limitations, inconsistent material quality, and data fragmentation. Small- and medium-sized enterprises (SMEs) highlighted compliance costs and operational uncertainty as primary barriers, while larger firms frequently cited frustration with regulatory inconsistency and infrastructure underperformance. These findings underscore the need for differentiated policy mechanisms that account for sectoral and organisational disparities in capacity, scale, and readiness for traceability. The study also cautions against the direct transfer of European circular economy models into the Australian context without consideration of local structural, regulatory, and geographic complexities. Full article
16 pages, 1822 KiB  
Article
Upcycling Microalgal Residues: Physicochemical Insights and Biocomposite Enhancement
by Valerio Cuboni, Raffaella Lettieri, Alice Caravella, Martina Corvino, Viviana Scognamiglio, Amina Antonacci and Emanuela Gatto
Macromol 2025, 5(3), 32; https://doi.org/10.3390/macromol5030032 - 8 Jul 2025
Viewed by 350
Abstract
The growing concern for environmental sustainability has led to an increased interest in biodegradable materials derived from renewable resources. This study explores the innovative use of residual biomass from the green photosynthetic microalga Chlamydomonas reinhardtii, left over after polysaccharide extraction, as a [...] Read more.
The growing concern for environmental sustainability has led to an increased interest in biodegradable materials derived from renewable resources. This study explores the innovative use of residual biomass from the green photosynthetic microalga Chlamydomonas reinhardtii, left over after polysaccharide extraction, as a natural filler in the development of the compostable protein-based material SP-Milk®. The microalgal biomass was characterized using Fourier transform infrared spectroscopy (FTIR) and UV-Visible Spectroscopy to assess its chemical and structural composition. Subsequently, it was incorporated into a biodegradable protein matrix, and the resulting biocomposites were evaluated for mechanical and thermal properties. The results demonstrate that the incorporation of algal filler improves the mechanical strength and elasticity of the material while reducing its glass transition temperature, highlighting its potential for use in sustainable applications as a possible substitute for conventional plastics. The biocomposite materials developed, based on the protein-based material SP-Milk® and residual microalgal biomass, are environmentally friendly, contributing to the reduction in pollution and the risks associated with plastic accumulation. Thus, this study offers a simple, effective, and sustainable strategy for the valorization of microalgal biomass, enabling the production of biodegradable materials with enhanced mechanical performance, suitable for applications such as sustainable packaging within a circular economy framework. Full article
Show Figures

Figure 1

18 pages, 303 KiB  
Article
The Hidden Cost of Global Trade: Evidence from Plastic Waste Trade and Its Ecological Ramifications Across Major Waste-Trading Nations
by Ayberk Şeker, Nizamettin Öztürkçü and Muhammed Fatih Aydemir
Sustainability 2025, 17(13), 6176; https://doi.org/10.3390/su17136176 - 5 Jul 2025
Viewed by 471
Abstract
The rapid expansion of plastic waste trade has intensified environmental pressures, accelerating ecosystem degradation and climate change. We examine the long-term impacts of plastic waste imports and domestic waste production on ecological footprints and greenhouse gas emissions across 20 countries representing 70% of [...] Read more.
The rapid expansion of plastic waste trade has intensified environmental pressures, accelerating ecosystem degradation and climate change. We examine the long-term impacts of plastic waste imports and domestic waste production on ecological footprints and greenhouse gas emissions across 20 countries representing 70% of global plastic waste trade and 45% of world GDP. Under the Environmental Kuznets Curve (EKC) framework, we explore nonlinear interactions among economic growth, urbanization, and sustainability goals. Using a panel simultaneous equations approach, we apply Pedroni, Kao, and Westerlund cointegration tests and Fully Modified and Dynamic OLS estimators to address endogeneity and heterogeneity. Robustness checks include alternative environmental indicators and the Dumitrescu–Hurlin panel causality test. Results demonstrate a stable long-run equilibrium: plastic waste imports substantially increase ecological footprints and emissions, while progress on sustainable development goals mitigates some damage. The negative GDP squared coefficient supports the EKC hypothesis, indicating that environmental impacts rise initially with growth but decline once income exceeds a threshold. These findings highlight the need for stronger international regulations, enhanced waste management infrastructures, and circular economy strategies. Focused investment in sustainable technologies and global cooperation is essential to lower environmental costs of plastic waste trade. Full article
(This article belongs to the Section Waste and Recycling)
Back to TopTop