Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (312)

Search Parameters:
Keywords = plasmonic modulator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4734 KiB  
Article
Research on the Terahertz Modulation Performance of VO2 Thin Films with Surface Plasmon Polaritons Structure
by Tao Chen, Qi Zhang, Jin Wang, Jiran Liang and Weibin Zhou
Coatings 2025, 15(7), 838; https://doi.org/10.3390/coatings15070838 - 17 Jul 2025
Viewed by 288
Abstract
This paper focuses on the switching and modulation techniques of terahertz waves, develops VO2 thin-film materials with an SPP structure, and uses terahertz time-domain spectroscopy (THz-TDS) to study the semiconductor–metal phase transition characteristics of VO2 thin films, especially the photoinduced semiconductor–metal [...] Read more.
This paper focuses on the switching and modulation techniques of terahertz waves, develops VO2 thin-film materials with an SPP structure, and uses terahertz time-domain spectroscopy (THz-TDS) to study the semiconductor–metal phase transition characteristics of VO2 thin films, especially the photoinduced semiconductor–metal phase transition characteristics of silicon-based VO2 thin films. The optical modulation characteristics of silicon-based VO2 thin films to terahertz waves under different light excitation modes, such as continuous light irradiation at different wavelengths and femtosecond pulsed laser irradiation, were analyzed. Combining the optical modulation characteristics of silicon-based VO2 thin films with the filtering characteristics of SPP structures, composite structures of VO2 thin films with metal hole arrays, composite structures of VO2 thin films with metal block arrays, and silicon-based VO2 microstructure arrays were designed. The characteristics of this dual-function device were tested experimentally. The experiment proves that the VO2 film material with an SPP structure has a transmission rate dropping sharply from 32% to 1% under light excitation; the resistivity changes by more than six orders of magnitude, and the modulation effect is remarkable. By applying the SPP structure to the VO2 material, the material can simultaneously possess modulation and filtering functions, enhancing its optical performance in the terahertz band. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

14 pages, 2161 KiB  
Article
Enhanced Power Distribution and Symmetry in Terahertz Waveguides Using Graphene-Based Power Dividers
by Amin Honarmand, Hamed Dehdashti Jahromi, Mohsen Maesoumi, Masoud Jabbari and Farshad Pesaran
Photonics 2025, 12(7), 658; https://doi.org/10.3390/photonics12070658 - 30 Jun 2025
Viewed by 286
Abstract
This paper investigates a graphene-on-insulator power divider designed for terahertz applications based on spoof surface plasmon polaritons. We optimize structural parameters to maximize signal transmission from input to output ports while achieving a uniform and symmetrical electric field distribution at the output cross-section. [...] Read more.
This paper investigates a graphene-on-insulator power divider designed for terahertz applications based on spoof surface plasmon polaritons. We optimize structural parameters to maximize signal transmission from input to output ports while achieving a uniform and symmetrical electric field distribution at the output cross-section. Our findings indicate that utilizing three graphene layers significantly enhances power distribution and symmetry at output ports. We demonstrate electrical control over waveguide transmission properties by modulating the graphene chemical potential from 0 to 0.5 eV. The proposed device holds promise for applications in plasmonic circuits and on-chip interconnects operating within the terahertz frequency range. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

20 pages, 4340 KiB  
Article
Spectral Tuning and Angular–Gap Interrogation of Terahertz Spoof Surface Plasmon Resonances Excited on Rectangular Subwavelength Grating Using Attenuated Total Reflection in Otto Configuration
by Oleg Kameshkov, Vasily Gerasimov, Boris Goldenberg and Vladimir Nazmov
Photonics 2025, 12(7), 651; https://doi.org/10.3390/photonics12070651 - 26 Jun 2025
Viewed by 353
Abstract
In this paper, we experimentally investigated the excitation of spoof surface plasmon polaritons (SSPPs) supported by a 1D subwavelength grating with a rectangular profile in the terahertz (THz) frequency range. Using the attenuated total reflection technique and the THz radiation of the Novosibirsk [...] Read more.
In this paper, we experimentally investigated the excitation of spoof surface plasmon polaritons (SSPPs) supported by a 1D subwavelength grating with a rectangular profile in the terahertz (THz) frequency range. Using the attenuated total reflection technique and the THz radiation of the Novosibirsk free electron laser, we carried out detailed studies of both angular and gap spectra at several wavelengths. A shallow grating supporting a fundamental mode was fabricated by means of multibeam X-ray lithography and used as a test sample. The results indicated that we achieved 1-THz tunability of resonance in the frequency range from 1.51 to 2.54 THz on a single grating, which cannot be obtained with active tunable metamaterials. The Q factors of the resonances in the angular spectra were within the range of 19.4–37.6, while the resonances of the gap spectra had a Q factor lying within the 1.17–2.03 range. The gap adjustment capability of the setup shown in the work has great potential in modulation of the absorption efficiency, whereas the angular tuning and recording data from each point of the grating will enable real-time monitoring of changes in the surrounding medium. All of this is highly important for enhanced terahertz real-time absorption spectroscopy and imaging. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

12 pages, 2278 KiB  
Communication
An All-Optical Plasmon Modulator with a High Extinction Ratio Based on the Resonance of a Silver Block
by Jimi Fang, Sisi Yang, Xuefang Hu, Changgui Lu and Mengjia Lu
Photonics 2025, 12(7), 646; https://doi.org/10.3390/photonics12070646 - 25 Jun 2025
Viewed by 293
Abstract
Conventional all-optical modulators based on surface plasmon polaritons (SPPs) primarily utilize the nonlinear effect of a given material for modulation. Their performance is heavily dependent on the optical properties of the dielectric materials used and requires high pumping power. However, manipulating SPPs by [...] Read more.
Conventional all-optical modulators based on surface plasmon polaritons (SPPs) primarily utilize the nonlinear effect of a given material for modulation. Their performance is heavily dependent on the optical properties of the dielectric materials used and requires high pumping power. However, manipulating SPPs by controlling electron concentrations offers a material-independent approach suitable for all-optical modulators. In this paper, we propose a hybrid gold–ITO–silver block structure integrated within a Mach–Zehnder interferometer configuration to address this problem. The gold–ITO interface effectively localizes propagating SPPs. The pump light excites localized surface plasmons (LSPs) in the silver block, generating surface electric fields that modulate the electron concentration in the adjacent ITO layer. The extinction ratio is 50.8 dB when the electron concentration changes by 3.3 × 1020 cm−3, indicating that this structure is an all-optical modulator with a high extinction ratio. This approach shows significant promise for reducing pump power and enhancing the performance of all-optical modulators. Full article
Show Figures

Figure 1

20 pages, 23355 KiB  
Article
Unveiling Thickness-Dependent Oxidation Effect on Optical Response of Room Temperature RF-Sputtered Nickel Ultrathin Films on Amorphous Glass: An Experimental and FDTD Investigation
by Dylan A. Huerta-Arteaga, Mitchel A. Ruiz-Robles, Srivathsava Surabhi, S. Shiva Samhitha, Santhosh Girish, María J. Martínez-Carreón, Francisco Solís-Pomar, A. Martínez-Huerta, Jong-Ryul Jeong and Eduardo Pérez-Tijerina
Materials 2025, 18(12), 2891; https://doi.org/10.3390/ma18122891 - 18 Jun 2025
Viewed by 463
Abstract
Nickel (Ni) ultrathin films exhibit phase-dependent electrical, magnetic, and optical characteristics that are significantly influenced by deposition methods. However, these films are inherently prone to rapid oxidation, with the oxidation rate dependent on substrate, temperature, and deposition parameters. The focus of this research [...] Read more.
Nickel (Ni) ultrathin films exhibit phase-dependent electrical, magnetic, and optical characteristics that are significantly influenced by deposition methods. However, these films are inherently prone to rapid oxidation, with the oxidation rate dependent on substrate, temperature, and deposition parameters. The focus of this research is to investigate the temporal oxidation of RF-sputtered Ni ultrathin films on Corning glass under ambient atmospheric conditions and its impact on their structural, surface, and optical characteristics. Controlled film thicknesses were achieved through precise manipulation of deposition parameters, enabling the analysis of oxidation-induced modifications. Atomic force microscopy (AFM) revealed that films with high structural integrity and surface uniformity are exhibiting roughness values (Rq) from 0.679 to 4.379 nm of corresponding thicknesses ranging from 4 to 85 nm. Scanning electron microscopy (SEM) validated the formation of Ni grains interspersed with NiO phases, facilitating SPR-like effects. UV-visible spectroscopy is demonstrating thickness-dependent spectral (plasmonic peak) shifts. Finite Difference Time Domain (FDTD) simulations corroborate the observed thickness-dependent optical absorbance and the resultant shifts in the absorbance-induced plasmonic peak position and bandgap. Increased NiO presence primarily drives the enhancement of electromagnetic (EM) field localization and the direct impact on power absorption efficiency, which are modulated by the tunability of the plasmonic peak position. Our work demonstrates that controlled fabrication conditions and optimal film thickness selection allow for accurate manipulation of the Ni oxidation process, significantly altering their optical properties. This enables the tailoring of these Ni films for applications in transparent conductive electrodes (TCEs), magneto-optic (MO) devices, spintronics, wear-resistant coatings, microelectronics, and photonics. Full article
Show Figures

Graphical abstract

12 pages, 1925 KiB  
Article
Large-Area Nanogap Platforms for Surface-Enhanced Raman Spectroscopy Toward Sensing Applications: Comparison Between Ag and Au
by Arunkumar Alagurasu, Satyabrat Behera, Joon-Mo Yang, Dai-Sik Kim and Seon Namgung
Biosensors 2025, 15(6), 369; https://doi.org/10.3390/bios15060369 - 9 Jun 2025
Viewed by 619
Abstract
Sub-wavelength metallic nanostructures allow the squeezing of light within nanoscale regions, called plasmonic hotspots. Squeezed near-field light has been demonstrated to detect, modulate, and generate light in more effective ways. The enhanced electric field in the plasmonic hotspots are also utilized for identifying [...] Read more.
Sub-wavelength metallic nanostructures allow the squeezing of light within nanoscale regions, called plasmonic hotspots. Squeezed near-field light has been demonstrated to detect, modulate, and generate light in more effective ways. The enhanced electric field in the plasmonic hotspots are also utilized for identifying molecular fingerprints in a more sensitive manner, i.e., surface-enhanced Raman spectroscopy (SERS). SERS is a versatile tool used to characterize chemicals and biomolecules with the advantages of label-free detection, specificity, and high sensitivity compared to fluorescence and colorimetric sensing methods. With its practical and diverse applications such as biomedical sensing, the evaluation of SERS on diverse nano-structure platforms and materials is highly in demand. Nanogap structures are promising SERS platforms which can be fabricated over a large area with uniform nanoscale gap size. Here, we demonstrate the fabrication of large-area metal–insulator–metal nanogap structures with different metals (i.e., Au and Ag) and analyze material dependence on SERS. While both nanometer-sized gap structures exhibit a large enhancement factor for Raman spectroscopy, Ag-based structures exhibit 58- and 15-times-larger enhancement factors for bottom and top plasmonic hotspots, respectively. The enhanced detection on a silver nanogap platform is attributed to enhanced electric field in the gap, as confirmed by simulation. Our findings provide not only a way to better understand SERS in different metallic nano platforms but also insights for designing highly sensitive nanoscale chemical and biomedical sensors. Full article
(This article belongs to the Special Issue Surface-Enhanced Raman Scattering in Biosensing Applications)
Show Figures

Figure 1

29 pages, 5856 KiB  
Review
Advanced TiO2-Based Photoelectrocatalysis: Material Modifications, Charge Dynamics, and Environmental–Energy Applications
by Xiongwei Liang, Shaopeng Yu, Bo Meng, Xiaodi Wang, Chunxue Yang, Chuanqi Shi and Junnan Ding
Catalysts 2025, 15(6), 542; https://doi.org/10.3390/catal15060542 - 29 May 2025
Cited by 1 | Viewed by 777
Abstract
This review presents a comprehensive overview of recent advances in TiO2-based photoelectrocatalysis (PEC), with an emphasis on material design strategies to enhance visible-light responsiveness and charge carrier dynamics. Key approaches—including elemental doping, defect engineering, heterojunction construction, and plasmonic enhancement—are systematically discussed [...] Read more.
This review presents a comprehensive overview of recent advances in TiO2-based photoelectrocatalysis (PEC), with an emphasis on material design strategies to enhance visible-light responsiveness and charge carrier dynamics. Key approaches—including elemental doping, defect engineering, heterojunction construction, and plasmonic enhancement—are systematically discussed in relation to their roles in modulating energy band structures and promoting charge separation. Beyond fundamental mechanisms, the review highlights the broad environmental and energy-related applications of TiO2-driven PEC systems, encompassing the degradation of persistent organic pollutants, microbial disinfection, heavy metal removal, photoelectrochemical water splitting for hydrogen production, and CO2 reduction. Recent progress in integrating PEC systems with energy harvesting modules to construct self-powered platforms is critically examined. Current limitations and future directions are also outlined to guide the rational development of next-generation TiO2-based photoelectrocatalytic systems for sustainable environmental remediation and solar fuel conversion. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

10 pages, 2879 KiB  
Communication
Tunable Plasmonic Bandwidth Broadening via DC Electrical Bias
by Chen Wei, Fuhua Gao and Fan Yang
Nanomaterials 2025, 15(11), 794; https://doi.org/10.3390/nano15110794 - 25 May 2025
Viewed by 366
Abstract
The ability to broaden the bandwidth of nanodevices holds significant promise for applications in modern science and technology. In this work, we demonstrate a tunable approach to the bandwidth modulation of nanoresonators by applying a direct current electric field. Quantum hydrodynamic theory reveals [...] Read more.
The ability to broaden the bandwidth of nanodevices holds significant promise for applications in modern science and technology. In this work, we demonstrate a tunable approach to the bandwidth modulation of nanoresonators by applying a direct current electric field. Quantum hydrodynamic theory reveals that the biased electric field redistributes surface charges, inducing positively and negatively charged regions on the metal surface. This charge asymmetry splits the plasmonic modes, resulting in bandwidth broadening. The optical response can be finely tuned by varying the amplitude and polarization direction of the bias field. This mechanism offers a versatile strategy for developing nanodevices, including metasurfaces with dynamically adjustable bandwidths. Full article
Show Figures

Graphical abstract

22 pages, 2282 KiB  
Article
Enhancement of Photovoltaic Systems Using Plasmonic Technology
by Humam Al-Baidhani, Saif Hasan Abdulnabi and Maher A. R. Sadiq Al-Baghdadi
Processes 2025, 13(5), 1568; https://doi.org/10.3390/pr13051568 - 19 May 2025
Viewed by 453
Abstract
The rise in temperature worldwide, especially in hot regions with extreme weather conditions, has made climate change one of the critical issues that degrades the solar photovoltaic (PV) system performance. In this paper, a new design of solar cells based on plasmonic thin-film [...] Read more.
The rise in temperature worldwide, especially in hot regions with extreme weather conditions, has made climate change one of the critical issues that degrades the solar photovoltaic (PV) system performance. In this paper, a new design of solar cells based on plasmonic thin-film Silver (Ag) technology is introduced. The new design is characterized by enhancing thermal effects, optical power absorption, and output power significantly, thus compensating for the deterioration in the solar cells efficiency when the ambient temperature rises to high levels. The temperature distribution on a PV solar module is determined using a three-dimensional computational fluid dynamics (CFD) model that includes the front glass, crystalline cells, and back sheet. Experimental and analytical results are presented to validate the CFD model. The parameters of temperature distribution, absorbed optical power, and output electrical power are considered to evaluate the device performance during daylight hours in summer. The effects of solar radiation falling on the solar cell, actual temperature of the environment, and wind speed are investigated. The results show that the proposed cells’ temperature is reduced by 1.2 °C thanks to the plasmonic Ag thin-film technology, which leads to enhance 0.48% real value as compared to that in the regular solar cells. Consequently, the absorbed optical power and output electrical power of the new solar cells are improved by 2.344 W and 0.38 W, respectively. Full article
Show Figures

Figure 1

18 pages, 4240 KiB  
Article
Experimental Validation of Designs for Permeable Diffractive Lenses Based on Photon Sieves for the Sensing of Running Fluids
by Veronica Pastor-Villarrubia, Angela Soria-Garcia, Joaquin Andres-Porras, Jesus del Hoyo, Mahmoud H. Elshorbagy, Luis Miguel Sanchez-Brea and Javier Alda
Photonics 2025, 12(5), 486; https://doi.org/10.3390/photonics12050486 - 14 May 2025
Viewed by 375
Abstract
This study reports the experimental validation of several designs of photon sieves with focusing capabilities. These permeable optical elements were implemented with a spatial light modulator working in pure-amplitude mode. The focal region was scanned using a traveling stage, holding a camera. Using [...] Read more.
This study reports the experimental validation of several designs of photon sieves with focusing capabilities. These permeable optical elements were implemented with a spatial light modulator working in pure-amplitude mode. The focal region was scanned using a traveling stage, holding a camera. Using this experimental setup, we characterized the focal region of the photon sieves and determined some parameters of interest, such as the depth of focus and the transverse extent of the focal region. These parameters and their evolution were measured and analyzed to compare the optical performance of different designs. Moreover, the permeability of the mask was also evaluated and is included in the discussion. When the photon sieve is intended to be used as an optical element for the monitoring of running fluids, one of the designs studied, labeled the Ring-by-Ring method, behaves in a quite balanced manner and thus has become the preferred choice. Through simulations for a refractometric sensor, we obtained the Figure of Merit of the Ring-by-Ring mask, which reached a maximum value of 7860 RIU−1, which is competitive with plasmonic sensing devices. Full article
(This article belongs to the Special Issue Advanced Photonic Integration Technology and Devices)
Show Figures

Figure 1

9 pages, 2102 KiB  
Article
Engagement of CD300c by a Novel Monoclonal Antibody Ameliorates Behavioral Deficits in a 5xFAD Mouse Model of Alzheimer’s Disease
by Suin Lee, Chang Ki Lim, Jongyeob Kim, Joon Kim, Hee Kyung Jin, Jae-sung Bae and Jae-Won Jeon
Biomedicines 2025, 13(5), 1169; https://doi.org/10.3390/biomedicines13051169 - 10 May 2025
Viewed by 550
Abstract
Background: Current treatment modalities for Alzheimer’s disease (AD), which is characterized by the accumulation of amyloid β (Aβ), have limitations with regard to their efficacy and safety, posing significant challenges for advances in healthcare. However, recent studies indicated that AD can be [...] Read more.
Background: Current treatment modalities for Alzheimer’s disease (AD), which is characterized by the accumulation of amyloid β (Aβ), have limitations with regard to their efficacy and safety, posing significant challenges for advances in healthcare. However, recent studies indicated that AD can be treated using monocyte-derived macrophages (MDMs). Reportedly, the protein CD300c regulates monocyte differentiation, indicating that targeting CD300c could offer a treatment for AD. Methods: To confirm this, we developed CB201, a fully human anti-CD300c antibody, and demonstrated its strong and specific binding to CD300c using surface plasmon resonance and binding ELISAs. Results: Treatment of THP-1 and human peripheral blood mononuclear cells with CB201 led to increased levels of pro-inflammatory cytokines and the differentiation of macrophages to MDMs. Moreover, the CB201-differentiated macrophages expressed cytokines and chemokines in a pattern that alleviates AD symptoms. In a 5xFAD mouse model, CB201 treatment improved memory and behavior in both the early and late stages of AD and reduced cerebral Aβ plaque load. Conclusions: These results indicate that CB201 promotes the differentiation of macrophages to MDMs and modulates AD-related inflammatory responses, thereby ameliorating the pathological features of AD. These findings identify CD300c as a potential therapeutic target for AD and indicate that CB201 is a promising candidate for its treatment. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

23 pages, 18738 KiB  
Article
Interaction Between Glucagon-like Peptide 1 and Its Analogs with Amyloid-β Peptide Affects Its Fibrillation and Cytotoxicity
by Ekaterina A. Litus, Marina P. Shevelyova, Alisa A. Vologzhannikova, Evgenia I. Deryusheva, Alina V. Chaplygina, Victoria A. Rastrygina, Andrey V. Machulin, Valeria D. Alikova, Aliya A. Nazipova, Maria E. Permyakova, Victor V. Dotsenko, Sergei E. Permyakov and Ekaterina L. Nemashkalova
Int. J. Mol. Sci. 2025, 26(9), 4095; https://doi.org/10.3390/ijms26094095 - 25 Apr 2025
Viewed by 938
Abstract
Clinical data as well as animal and cell studies indicate that certain antidiabetic drugs, including glucagon-like peptide 1 receptor agonists (GLP-1RAs), exert therapeutic effects in Alzheimer’s disease (AD) by modulating amyloid-β peptide (Aβ) metabolism. Meanwhile, the direct interactions between GLP-1RAs and Aβ and [...] Read more.
Clinical data as well as animal and cell studies indicate that certain antidiabetic drugs, including glucagon-like peptide 1 receptor agonists (GLP-1RAs), exert therapeutic effects in Alzheimer’s disease (AD) by modulating amyloid-β peptide (Aβ) metabolism. Meanwhile, the direct interactions between GLP-1RAs and Aβ and their functional consequences remain unexplored. In this study, the interactions between monomeric Aβ40/Aβ42 of GLP-1(7-37) and its several analogs (semaglutide (Sema), liraglutide (Lira), exenatide (Exen)) were studied using biolayer interferometry and surface plasmon resonance spectroscopy. The quaternary structure of GLP-1RAs was investigated using dynamic light scattering. The effects of GLP-1RAs on Aβ fibrillation were assessed using the thioflavin T assay and electron microscopy. The impact of GLP-1RAs on Aβ cytotoxicity was evaluated via the MTT assay. Monomeric Aβ40 and Aβ42 directly bind to GLP-1(7-37), Sema, Lira, and Exen, with the highest affinity for Lira (the lowest estimates of equilibrium dissociation constants were 42–60 nM). GLP-1RAs are prone to oligomerization, which may affect their binding to Aβ. GLP-1(7-37) and Exen inhibit Aβ40 fibrillation, whereas Sema promotes it. GLP-1 analogs decrease Aβ cytotoxicity toward SH-SY5Y cells, while GLP-1(7-37) enhances Aβ40 cytotoxicity without affecting the cytotoxic effect of Aβ42. Overall, GLP-1RAs interact with Aβ and differentially modulate its fibrillation and cytotoxicity, suggesting the need for further studies of our observed effects in vivo. Full article
Show Figures

Figure 1

12 pages, 3644 KiB  
Communication
A Plasmonic Modulator with High Modulation Depth Based on the Dual-Control Mechanism
by Zesheng Chen, Sisi Yang, Xuefang Hu, Changgui Lu and Mengjia Lu
Photonics 2025, 12(4), 397; https://doi.org/10.3390/photonics12040397 - 18 Apr 2025
Viewed by 404
Abstract
The dispersion relationship of plasmons can be modulated by changing the carrier density of the propagating medium, which provides a new degree of freedom for optical modulation. Traditional graphene plasmonic modulators based on carrier control mainly revolve around chemical doping or voltage control [...] Read more.
The dispersion relationship of plasmons can be modulated by changing the carrier density of the propagating medium, which provides a new degree of freedom for optical modulation. Traditional graphene plasmonic modulators based on carrier control mainly revolve around chemical doping or voltage control methods, but using a single method of modulation limits the optimization of modulation depth. Herein, we propose a hybrid substrate–dielectric–silicon–graphene structure, which can achieve periodic control of the carrier density in graphene through chemical doping of silicon gratings and overall control of the carrier density by applying an external voltage between the substrate and graphene. The numerical results show that the optical transmission can reach 54.6 dB when the grating length, width, period, and working wavelength are 54 nm, 30 nm, 60 nm, and 8 μm, respectively. The modulation depth of the modulator is significantly optimized by combining the above control mechanisms. This structure will have potential applications in optoelectronic sensing, optoelectronic detection, and optical modulation. Full article
Show Figures

Figure 1

37 pages, 31186 KiB  
Review
Application of Graphene-Based Solar Driven Interfacial Evaporation-Coupled Photocatalysis in Water Treatment
by Yining Zhang, Huiqin Wang and Jisheng Zhang
Catalysts 2025, 15(4), 336; https://doi.org/10.3390/catal15040336 - 31 Mar 2025
Cited by 1 | Viewed by 1280
Abstract
The global shortage of freshwater resources and the energy crisis have propelled solar-driven interfacial evaporation (SDIE) coupled with photocatalytic technology to become a research focus in efficient and low-carbon water treatment. Graphene-based materials demonstrate unique advantages in SDIE–photocatalysis integrated systems, owing to their [...] Read more.
The global shortage of freshwater resources and the energy crisis have propelled solar-driven interfacial evaporation (SDIE) coupled with photocatalytic technology to become a research focus in efficient and low-carbon water treatment. Graphene-based materials demonstrate unique advantages in SDIE–photocatalysis integrated systems, owing to their broadband light absorption, ultrafast thermal carrier dynamics, tunable electronic structure, and low evaporation enthalpy characteristics. This review systematically investigates the enhancement mechanisms of graphene photothermal conversion on photocatalytic processes, including (1) improving light absorption through surface morphology modulation, defect engineering, and plasmonic material compositing; (2) reducing water evaporation enthalpy via hydrophilic functional group modification and porous structure design; (3) suppressing heat loss through thermal insulation layers and 3D structural optimization; and (4) enhancing water transport efficiency via fluid channel engineering and wettability control. Furthermore, salt resistance strategies and structural optimization significantly improve system practicality and stability. In water treatment applications, graphene-based SDIE systems achieve synergistic “adsorption–catalysis–evaporation” effects, enabling efficient the degradation of organic pollutants, reduction in/fixation of heavy metal ions, and microbial inactivation. However, practical implementation still faces challenges including low steam condensation efficiency, insufficient long-term material durability, and high scaling-up costs. Future research should prioritize enhancing heat and mass transfer in condensation systems, optimizing material environmental adaptability, and developing low-cost manufacturing processes to promote widespread application of graphene-based SDIE–photocatalysis integrated systems. Full article
(This article belongs to the Special Issue Mineral-Based Composite Catalytic Materials)
Show Figures

Figure 1

14 pages, 6310 KiB  
Article
Tunable Dual Plasmon-Induced Transparency Based on Homogeneous Graphene-Metal Metasurfaces at Terahertz Frequency
by Guanqi Wang and Hao Meng
Crystals 2025, 15(4), 328; https://doi.org/10.3390/cryst15040328 - 29 Mar 2025
Viewed by 339
Abstract
In recent years, the active control of terahertz waves using artificial microstructures has attracted increasing attention, especially toward the ones that have multiple plasmon-induced transparency (PIT) responses. Here, a homogeneous graphene-metal metasurface, exhibiting tunable dual-PIT in its terahertz (THz) spectral response, is investigated [...] Read more.
In recent years, the active control of terahertz waves using artificial microstructures has attracted increasing attention, especially toward the ones that have multiple plasmon-induced transparency (PIT) responses. Here, a homogeneous graphene-metal metasurface, exhibiting tunable dual-PIT in its terahertz (THz) spectral response, is investigated numerically and theoretically. Individual and simultaneous control of the two PIT transmission windows and the two slow-light effects are achieved by reconstructing the Fermi energies of the graphene strips. The modulation behavior can be expounded by the classical coupled three-particle model, which is confirmed by the simulation results. Moreover, the electric field distribution is introduced to analyze the dual-PIT active modulation mechanism. This work provides theoretical guidance for versatile applications in multi-function terahertz switches and slow-light devices. Full article
Show Figures

Figure 1

Back to TopTop