A Plasmonic Modulator with High Modulation Depth Based on the Dual-Control Mechanism
Abstract
:1. Introduction
2. Model Analysis
2.1. Three-Dimensional Model
2.2. Simulation Model
3. Analysis of Simulation Results
3.1. Influence of Different Lengths
3.2. Influence of Different Widths
3.3. Influence of Different Periods
3.4. Influence of Different Wavelengths
4. Conclusions
5. Methods
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haffner, C.; Heni, W.; Fedoryshyn, Y.; Niegemann, J.; Melikyan, A.; Elder, D.L.; Baeuerle, B.; Salamin, Y.; Josten, A.; Koch, U.; et al. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat. Photonics 2015, 9, 525–528. [Google Scholar] [CrossRef]
- Liu, M.; Yin, X.; Zhang, X. Double-Layer Graphene Optical Modulator. Nano Lett. 2012, 12, 1482–1485. [Google Scholar] [CrossRef] [PubMed]
- Ai, Z.; Liu, H.; Cheng, S.; Zhang, H.; Yi, Z.; Zeng, Q.; Wu, P.; Zhang, J.; Tang, C.; Hao, Z. Four peak and high angle tilted insensitive surface plasmon resonance graphene absorber based on circular etching square window. J. Phys. D Appl. Phys. 2025, 58, 185305. [Google Scholar] [CrossRef]
- Gan, X.; Shiue, R.J.; Gao, Y.; Mak, K.F.; Yao, X.; Li, L.; Szep, A.; Walker, D., Jr.; Hone, J.; Heinz, T.F.; et al. High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Lett. 2013, 13, 691–696. [Google Scholar] [CrossRef]
- Dionne, J.A.; Diest, K.; Sweatlock, L.A.; Atwater, H.A. PlasMOStor: A Metal-Oxide-Si Field Effect Plasmonic Modulator. Nano Lett. 2009, 9, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhou, L.; Zhu, H.; Wu, Q.; Li, X.; Chen, J. Design and Analysis of a Miniature Intensity Modulator Based on a Silicon-Polymer-Metal Hybrid Plasmonic Waveguide. IEEE Photonics J. 2014, 6, 1–10. [Google Scholar] [CrossRef]
- Shi, K.; Haque, R.R.; Zhao, B.; Zhao, R.; Lu, Z. Broadband electro-optical modulator based on transparent conducting oxide. Opt. Lett. 2014, 39, 4978–4981. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Cheng, S.; Zhang, H.; Yang, W.; Yi, Z.; Yi, Y.; Wang, J.; Ahmad, S.; Raza, R. Ultrathin broadband terahertz metamaterial based on single-layer nested patterned graphene. Phys. Lett A 2025, 534, 130262. [Google Scholar] [CrossRef]
- Emani, N.K.; Chung, T.F.; Ni, X.; Kildishev, A.K.; Chen, Y.P.; Boltasseva, A. Electrically tunable damping of plasmonic resonances with graphene. Nano lett. 2012, 12, 5202–5206. [Google Scholar] [CrossRef]
- Brar, V.W.; Sherrott, M.C.; Jang, M.S.; Kim, S.; Kim, L.; Choi, M.; Sweatlock, L.A.; Atwater, H.A. Electronic modulation of infrared radiation in graphene plasmonic resonators. Nat. Commun. 2015, 6, 7032. [Google Scholar] [CrossRef]
- Gan, X.; Shiue, R.-J.; Gao, Y.; Meric, I.; Heinz, T.F.; Shepard, K.; Hone, J.; Assefa, S.; Englund, D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 2013, 7, 883–887. [Google Scholar] [CrossRef]
- Feigenbaum, E.; Diest, K.; Atwater, H.A. Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies. Nano Lett. 2010, 10, 2111–2116. [Google Scholar] [CrossRef]
- Kim, S.; Jang, M.S.; Brar, V.W.; Tolstova, Y.; Mauser, K.W.; Atwater, H.A. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays. Nat. Commun. 2016, 7, 12323. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.-Y.; Ni, G.-X.; Addison, Z.; Shi, J.K.; Liu, X.; Zhao, S.Y.F.; Kim, P.; Mele, E.J.; Basov, D.N.; Fogler, M.M. Plasmon Reflections by Topological Electronic Boundaries in Bilayer Graphene. Nano Lett. 2017, 17, 7080–7085. [Google Scholar] [CrossRef]
- Chauhan, D.; Sbeah, Z.; Dwivedi, R.P.; Nunzi, J.-M.; Thakur, M.S. An investigation and analysis of plasmonic modulators: A review. J. Opt. Commun. 2024, 45, 483–511. [Google Scholar] [CrossRef]
- Lan, G.; Tang, L.; Dong, J.; Nong, J.; Luo, P.; Li, X.; Li, Z.; Zhang, Y.; Dai, Y.; Wang, W.; et al. Enhanced Asymmetric Light-Plasmon Coupling in Graphene Nanoribbons for High-Efficiency Transmissive Infrared Modulation. Laser Photonics Rev. 2024, 18, 2300469. [Google Scholar] [CrossRef]
- Zemtsov, D.S.; Pshenichnyuk, I.A.; Kosolobov, S.S.; Zemtsova, A.K.; Zhigunov, D.M.; Smirnov, A.S.; Garbuzov, K.N.; Drachev, V.P. Plasmon-Assisted Si-ITO Integrated Electro-Optical Rib-Shape Modulator. J. Light. Technol. 2023, 41, 6310–6314. [Google Scholar] [CrossRef]
- Dhingra, N.; Mehrvar, H.; Berini, P. High-speed polarization-independent plasmonic modulator on a silicon waveguide. Opt. Express 2023, 31, 22481–22496. [Google Scholar] [CrossRef]
- Bareza, N., Jr.; Gopalan, K.K.; Alani, R.; Paulillo, B.; Pruneri, V. Mid-infrared Gas Sensing Using Graphene Plasmons Tuned by Reversible Chemical Doping. ACS Photonics 2020, 7, 879–884. [Google Scholar] [CrossRef]
- Abeysinghe, D.C.; Nader, N.; Myers, J.; Hendrickson, J.R.; Cleary, J.W.; Walker, D.E., Jr.; Chen, K.-H.; Liu, Y.; Mou, S. Edge Doping Effect to the Surface Plasmon Resonances in Graphene Nanoribbons. J. Phys. Chem. 2019, 123, 19820–19827. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, M. Graphene surface plasmon bandgap based on two dimensional Si gratings. AIP Adv. 2017, 7, 1–3. [Google Scholar] [CrossRef]
- Tyagaraj, H.B.; Mahamiya, V.; Marje, S.J.; Safarkhani, M.; K, G.S.; Al-Hajri, E.; Chodankar, N.R.; Huh, Y.S.; Han, Y.-K. Waste-to-energy material: Winery-waste derived heteroatoms containing graphene-like porous carbon for high-voltage supercapacitor. Mater. Today Sustain. 2024, 27, 100901. [Google Scholar] [CrossRef]
- Kovalev, S.; Hafez, H.A.; Tielrooij, K.-J.; Deinert, J.-C.; Ilyakov, I.; Awari, N.; Alcaraz, D.; Soundarapandian, K.; Saleta, D.; Germanskiy, S.; et al. Electrical tunability of terahertz nonlinearity in graphene. Sci. Adv. 2021, 7, eabf9809. [Google Scholar] [CrossRef]
- Hu, X.; Lu, C.; Zhao, X.; Gu, Y.; Lu, M.; Sun, D. A multi-parameter tunable plasmon modulator. Sci. Rep. 2023, 13, 11483. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhao, X.; Gu, Y.; Jin, S.; Shafqat, H.; Cui, Y.; Lu, C. A plasmon modulator by dynamically controlling the spatial distribution of carrier density in graphene. Opt. Commun. 2022, 513, 128093. [Google Scholar] [CrossRef]
- Zhu, L.; Fan, Y.; Wu, S.; Yu, L.; Zhang, K.; Zhang, Y. Electrical control of terahertz polarization by graphene microstructure. Opt. Commun. 2015, 346, 120–123. [Google Scholar] [CrossRef]
- Bao, Q.; Loh, K.P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 2012, 6, 3677–3694. [Google Scholar] [CrossRef]
- Karimkhani, H.; Karim, M.A. Wide-band high performance optical modulator based on a stack of graphene and h-BN layers with plasmonic edge mode. Opt Quant Electron. 2025, 57, 1–23. [Google Scholar] [CrossRef]
- Forouzmand, A.; Mosallaei, H. Electro-optical Amplitude and Phase Modulators Based on Tunable Guided-Mode Resonance Effect. ACS Photonics 2019, 6, 2860–2869. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Yang, S.; Hu, X.; Lu, C.; Lu, M. A Plasmonic Modulator with High Modulation Depth Based on the Dual-Control Mechanism. Photonics 2025, 12, 397. https://doi.org/10.3390/photonics12040397
Chen Z, Yang S, Hu X, Lu C, Lu M. A Plasmonic Modulator with High Modulation Depth Based on the Dual-Control Mechanism. Photonics. 2025; 12(4):397. https://doi.org/10.3390/photonics12040397
Chicago/Turabian StyleChen, Zesheng, Sisi Yang, Xuefang Hu, Changgui Lu, and Mengjia Lu. 2025. "A Plasmonic Modulator with High Modulation Depth Based on the Dual-Control Mechanism" Photonics 12, no. 4: 397. https://doi.org/10.3390/photonics12040397
APA StyleChen, Z., Yang, S., Hu, X., Lu, C., & Lu, M. (2025). A Plasmonic Modulator with High Modulation Depth Based on the Dual-Control Mechanism. Photonics, 12(4), 397. https://doi.org/10.3390/photonics12040397