Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (266)

Search Parameters:
Keywords = plasma lipidomics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2735 KiB  
Article
Dietary Intake of a Milk Sphingolipid-Rich MFGM/EV Concentrate Ameliorates Age-Related Metabolic Dysfunction
by Richard R. Sprenger, Kat F. Kiilerich, Mikael Palner, Arsênio Rodrigues Oliveira, Mikaël Croyal, Marie S. Ostenfeld, Ann Bjørnshave, Gitte M. Knudsen and Christer S. Ejsing
Nutrients 2025, 17(15), 2529; https://doi.org/10.3390/nu17152529 - 31 Jul 2025
Viewed by 242
Abstract
Background/Objectives: Nutraceuticals containing milk fat globule membranes (MFGMs) and extracellular vesicles (EVs) are purported to abate age-related metabolic dysfunction due to their richness in milk sphingolipids. As such, nutraceuticals offer a compelling strategy to improve metabolic health through dietary means, especially for elderly [...] Read more.
Background/Objectives: Nutraceuticals containing milk fat globule membranes (MFGMs) and extracellular vesicles (EVs) are purported to abate age-related metabolic dysfunction due to their richness in milk sphingolipids. As such, nutraceuticals offer a compelling strategy to improve metabolic health through dietary means, especially for elderly persons who are unable to adhere to common therapeutic interventions. To address this, we examined the effects of supplementing aged sedentary rats with an MFGM/EV-rich concentrate. Methods/Results: In a 25-week study, 89-week-old male rats received either a milk sphingolipid-rich MFGM/EV concentrate or a control supplement. Analysis of metabolic health using a battery of tests, including MSALL lipidomics of plasma, liver, and other peripheral tissues, revealed that MFGM/EV supplementation promotes accretion of unique sphingolipid signatures, ameliorates ceramide biomarkers predictive of cardiovascular death, and has a general lipid-lowering effect. At the functional level, we find that these health-promoting effects are linked to increased lipoprotein particle turnover, showcased by reduced levels of triglyceride-rich particles, as well as a metabolically healthier liver, assessed using whole-body lipidomic flux analysis. Conclusions: Altogether, our work unveils that MFGM/EV-containing food holds a potential for ameliorating age-related metabolic dysfunction in elderly individuals. Full article
(This article belongs to the Special Issue Diet and Nutrition: Metabolic Diseases---2nd Edition)
Show Figures

Graphical abstract

24 pages, 7845 KiB  
Article
Metabolomics and Lipidomics Explore Phenotype-Specific Molecular Signatures for Phenylketonuria
by Buket Yurteri Şahiner, Ali Dursun and Basri Gülbakan
Int. J. Mol. Sci. 2025, 26(15), 7171; https://doi.org/10.3390/ijms26157171 - 25 Jul 2025
Viewed by 299
Abstract
Phenylketonuria (PKU) is a monogenic disorder caused by pathogenic variants in the gene encoding phenylalanine hydroxylase (PAH), an enzyme essential for phenylalanine (Phe) metabolism. It is characterized by elevated Phe levels, leading to a wide spectrum of clinical phenotypes. These phenotypes are characterized [...] Read more.
Phenylketonuria (PKU) is a monogenic disorder caused by pathogenic variants in the gene encoding phenylalanine hydroxylase (PAH), an enzyme essential for phenylalanine (Phe) metabolism. It is characterized by elevated Phe levels, leading to a wide spectrum of clinical phenotypes. These phenotypes are characterized by varying Phe accumulation, dietary tolerance, and heterogeneous cognitive and neurological outcomes, but current monitoring methods, focused primarily on blood Phe levels, are limited in capturing this variability. In this study, we applied mass spectrometry-based advanced quantitative amino acid analyses, untargeted metabolomics, and lipidomics analyses. We examined the plasma metabolite and lipid profiles in a total of 73 individuals with various PKU phenotypes against healthy controls to see how the metabolome and lipidome of the patients change in different phenotypes. We investigated whether novel markers could be associated with metabolic control status. By elucidating the metabolic and lipid fingerprints of PKU’s phenotypic variability, our findings may provide novel insights that could inform the refinement of dietary and pharmacological interventions, thereby supporting the development of more personalized treatment strategies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 273 KiB  
Article
Plasma Diacylglycerols Are Associated with Carotid Intima-Media Thickness Among Patients with Type 2 Diabetes: Findings from a Supercritical Fluid Chromatography/Mass Spectrometry-Based Semi-Targeted Lipidomic Analysis
by Naohiro Taya, Naoto Katakami, Kazuo Omori, Shigero Hosoe, Hirotaka Watanabe, Mitsuyoshi Takahara, Kazuyuki Miyashita, Yutaka Konya, Sachiko Obara, Ayako Hidaka, Motonao Nakao, Masatomo Takahashi, Yoshihiro Izumi, Takeshi Bamba and Iichiro Shimomura
Int. J. Mol. Sci. 2025, 26(14), 6977; https://doi.org/10.3390/ijms26146977 - 20 Jul 2025
Viewed by 314
Abstract
Abnormalities in plasma lipoproteins observed in patients with diabetes promote atherosclerosis. However, the association between various lipid species and classes and atherosclerosis remains unclear. Here, we aimed to identify the plasma lipid characteristics associated with atherosclerosis progression in patients with diabetes. We performed [...] Read more.
Abnormalities in plasma lipoproteins observed in patients with diabetes promote atherosclerosis. However, the association between various lipid species and classes and atherosclerosis remains unclear. Here, we aimed to identify the plasma lipid characteristics associated with atherosclerosis progression in patients with diabetes. We performed semi-targeted lipidomic analysis of fasting plasma samples using supercritical fluid chromatography coupled with mass spectrometry in two independent patient groups with type 2 diabetes (n = 223 and 31) and evaluated cross-sectional associations between plasma lipids and carotid intima-media thickness (CIMT). Ten plasma lipid species, including eight diacylglycerols (DGs), and total DG levels were significantly associated with CIMT in both groups. Patients of the former group were partly observed for 5 years, and we investigated associations between DGs and CIMT progression in these patients (n = 101). As a result, 22 DGs among the 26 identified DGs and total DG (β = 0.398, p < 0.001) were significantly associated with the annual change in CIMT. Furthermore, plasma DG levels improved the predictive ability for CIMT progression, with an adjusted R-squared increase of 0.105 [95% confidence interval: 0.010, 0.232] in the models. Plasma DGs are associated with CIMT progression in patients with type 2 diabetes. Measurement of total plasma DG levels may be beneficial in assessing the risk of atherosclerosis progression. Full article
23 pages, 3006 KiB  
Article
Machine Learning Framework for Ovarian Cancer Diagnostics Using Plasma Lipidomics and Metabolomics
by Alisa Tokareva, Mariia Iurova, Natalia Starodubtseva, Vitaliy Chagovets, Anastasia Novoselova, Evgenii Kukaev, Vladimir Frankevich and Gennady Sukhikh
Int. J. Mol. Sci. 2025, 26(14), 6630; https://doi.org/10.3390/ijms26146630 - 10 Jul 2025
Viewed by 339
Abstract
Ovarian cancer (OC), the third most common gynecologic malignancy, exhibits distinct metabolic alterations that could enable early detection via liquid biopsy. We developed an advanced machine learning pipeline integrating lipidomics (HPLC-MS, positive/negative ion modes) and NMR-based metabolomics to analyze plasma samples from 229 [...] Read more.
Ovarian cancer (OC), the third most common gynecologic malignancy, exhibits distinct metabolic alterations that could enable early detection via liquid biopsy. We developed an advanced machine learning pipeline integrating lipidomics (HPLC-MS, positive/negative ion modes) and NMR-based metabolomics to analyze plasma samples from 229 subjects, including 103 serous OC patients, 107 benign cases, and 19 healthy controls. By systematically evaluating feature selection methods and machine learning architectures, we identified optimal biomarker combinations for OC detection. Convolutional Neural Network (CNN) model based on Mann–Whitney-selected features demonstrated strong discriminatory power (81% accuracy) in distinguishing malignant from benign cases, while Extreme Gradient Boosting (XGBoost) combined with Support Vector Machine-Recursive Feature Elimination (SVM-RFE) achieved exceptional performance (96% accuracy) in differentiating benign from control samples. For multiclass classification, XGBoost with Kruskal–Wallis-selected features achieved 77% accuracy, while one-versus-one CNN models utilizing Mann–Whitney-selected features attained 78% accuracy, demonstrating optimal performance among tested approaches. The complementary strengths of deep learning and ensemble methods underscore their potential for tailored diagnostic applications. While clinical implementation requires further standardization, these findings provide both a methodological framework for metabolic biomarker discovery and biological insights into OC pathophysiology, paving the way for integrated multi-omics approaches in gynecologic oncology. Full article
Show Figures

Figure 1

17 pages, 3192 KiB  
Article
Hypoxic Status in COPD and ARDS Patients: Impact on Lipid Signature
by Camillo Morano, Aldijana Sadikovic, Michele Dei Cas, Rocco Francesco Rinaldo, Lorena Duca, Federico Maria Rubino, Michele Mondoni, Davide Chiumello, Sara Ottolenghi, Michele Samaja and Rita Paroni
Int. J. Mol. Sci. 2025, 26(13), 6405; https://doi.org/10.3390/ijms26136405 - 3 Jul 2025
Viewed by 295
Abstract
In patients with respiratory diseases, a panel of markers is often used to assess disease severity and progression. Here we test whether the serum lipid signature may surge as a reliable alternative marker to monitor systemic hypoxia, a frequent unfavourable outcome in acute [...] Read more.
In patients with respiratory diseases, a panel of markers is often used to assess disease severity and progression. Here we test whether the serum lipid signature may surge as a reliable alternative marker to monitor systemic hypoxia, a frequent unfavourable outcome in acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary diseases (COPD). We recruited 9 healthy controls, 10 COPD patients, and 10 ARDS patients. Various markers related to inflammation, redox imbalance, and iron handling were measured alongside lipid profiles obtained through untargeted lipidomic analysis. The results show that serum lipids were moderately lower in COPD patients and significantly reduced in ARDS patients compared to the controls. Six lipid classes (cholesteryl esters, coenzyme Q, phosphatidylinositol, sterols, hexosylceramides, and phosphatidylethanolamine) exhibited significant changes (ANOVA p < 0.05) and correlated with the Horowitz index (P/F), suggesting their potential as markers of hypoxia severity. While conventional markers also correlated with P/F, the lipid signature was more specific and reliable. This study highlights that hypoxia in pulmonary diseases depresses circulating lipids, with certain lipid classes offering more precise predictions of hypoxia severity. Expanding this research to larger populations could support the lipid signature as a clinical tool. Full article
Show Figures

Graphical abstract

13 pages, 2287 KiB  
Article
Imbalance of ω3 and ω6 Fatty Acids in Breast Milk of Overweight/Obese Women
by Michael G. Ross, Manasa P. Kavasery, Guang Han, MacKenzie K. Cervantes, Lihiri Bora, Kevin J. Williams and Mina Desai
Nutrients 2025, 17(13), 2158; https://doi.org/10.3390/nu17132158 - 28 Jun 2025
Viewed by 569
Abstract
Background/Objectives: Studies demonstrate better health outcomes for infants consuming milk with higher concentrations of ω3 (ALA and DHA) and negative health outcomes associated with higher ω6 (LA and AA) PUFAs. We studied the relationship between maternal BMI and PUFA levels in maternal [...] Read more.
Background/Objectives: Studies demonstrate better health outcomes for infants consuming milk with higher concentrations of ω3 (ALA and DHA) and negative health outcomes associated with higher ω6 (LA and AA) PUFAs. We studied the relationship between maternal BMI and PUFA levels in maternal plasma and breast milk. Methods: Women at 7–8 weeks postpartum were grouped according to normal BMI (18–24.9 kg/m2) and overweight/obese (OW/OB; ≥25 kg/m2). Maternal blood and continuous breast milk samples obtained from foremilk to hindmilk were analyzed for lipidomics. Results: The plasma levels of ω3 and ω6 PUFA were significantly lower in OW/OB subjects, with a total ω3 and ω6 FA level of 50% for women with normal BMI. Conversely, breastmilk levels of total ω3 and ω6, including their respective precursors of LCFAs (ALA and LA), were significantly increased in both foremilk and hindmilk samples of OW/OB. Despite this, DHA (ω3 PUFA) levels in OW/OB women were similar in foremilk and significantly decreased in hindmilk samples as compared to normal BMI women. Consequently, the ratio of DHA/Total ω3 significantly decreased in foremilk and hindmilk samples of OW/OB women. However, proinflammatory AA (ω6 PUFA) levels increased, resulting in an increased ratio of AA/DHA in OW/OB women. Breast milk DHA was positively correlated, whereas AA was negatively correlated with maternal plasma. Conclusions: Marked differences in maternal plasma and breast milk ω3 and ω6 FA concentrations among women with OW/OB indicate significant differences in nutritional exposures for their infants. Reduced milk DHA may be a consequence of reduced mammary peroxisomal conversion of ALA to DHA due to increased insulin/reactive species within the maternal obese environment. The imbalance of ω3 and ω6 FAs suggests that DHA supplementation and approaches to limit plasma to breast milk AA transfer in OW/OB subjects may be of value. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

31 pages, 1461 KiB  
Review
Plasma and Serum LC-MS Lipidomic Fingerprints of Bipolar Disorder and Schizophrenia
by Marija Takić, Vesna Jovanović, Suzana Marković, Zoran Miladinović, Milka Jadranin, Gordana Krstić, Čedo Miljević, Vele Tešević and Boris Mandić
Int. J. Mol. Sci. 2025, 26(13), 6134; https://doi.org/10.3390/ijms26136134 - 26 Jun 2025
Viewed by 651
Abstract
Bipolar disorder (BD) and schizophrenia (SCH) are results of the complex interactions between genetic and environmental factors, and the underlying pathophysiology is not yet completely understood. The current diagnostic criteria for psychiatric diagnosis are based purely on clinical phenomenology and they are limited [...] Read more.
Bipolar disorder (BD) and schizophrenia (SCH) are results of the complex interactions between genetic and environmental factors, and the underlying pathophysiology is not yet completely understood. The current diagnostic criteria for psychiatric diagnosis are based purely on clinical phenomenology and they are limited to psychiatrist judgment after a standardized clinical interview, with no precise biomarkers used to discriminate between the disorders. Besides gaps in the understanding and diagnosis of these diseases, there is also a need for personalized and precise approaches to patients through customized medical treatment and reliable monitoring of treatment response. To fulfill existing gaps, the establishment of disorder biomarker sets is a necessary step. LC-MS lipidomic blood sample analysis is one of the ongoing omics approaches. In the last ten years, several studies have identified alterations in lipid metabolism associated with BD and SCH, and this review summarizes current knowledge on their lipidomic patterns, which is essential for identifying lipid biomarkers. Currently, findings indicate decreases in plasmalogens and acyl-carnitines, along with increases in certain triacylglycerol species, shared by both conditions. In contrast, serum LC-MS lipidomic profiles of sphingolipids including ceramides could be unique to BD, indicating the need for further investigation in future studies. Full article
(This article belongs to the Special Issue Lipidomics and Lipid Metabolism in Health and Disease)
Show Figures

Figure 1

18 pages, 1567 KiB  
Article
Immune Cells as Mediators of Lipidome Influence on Osteoporosis: Evidence from a Mediation Analysis
by Jiheng Xiao, Wei Zhou, Jiatai He, Yanbin Zhu, Yingze Zhang and Liming Xiong
Diagnostics 2025, 15(10), 1287; https://doi.org/10.3390/diagnostics15101287 - 20 May 2025
Viewed by 513
Abstract
Background: Although clinical studies have indicated a possible association between dyslipidemia and osteoporosis, the underlying genetic basis and mechanistic pathways remain insufficiently defined. Most prior research has concentrated on conventional lipid markers, which are prone to confounding and limit causal inference. Exploring [...] Read more.
Background: Although clinical studies have indicated a possible association between dyslipidemia and osteoporosis, the underlying genetic basis and mechanistic pathways remain insufficiently defined. Most prior research has concentrated on conventional lipid markers, which are prone to confounding and limit causal inference. Exploring lipidomic profiles offers a more comprehensive view of lipid metabolism and may reveal novel genetic links beyond traditional lipid traits. Additionally, alterations in immune cell function, often triggered by metabolic disturbances, may contribute to osteoporosis development; however, the potential mediating role of immune cells in the lipid–bone axis has not been systematically investigated. Methods: A total of 179 lipid species across 13 lipid classes were analyzed in 7174 Finnish individuals from the GeneRISK cohort. Genome-Wide Association Study (GWAS) summary statistics for osteoporosis and 731 immune cell immunophenotypes were sourced from the GWAS Catalog. A two-step, two-sample Mendelian randomization analysis, using inverse variance weighting (IVW), was conducted to explore the potential causal effects of lipids on osteoporosis and the mediating role of immune cells in the relationship between lipids and osteoporosis. Results: Mendelian randomization analysis indicated that triacylglycerol levels of 48:0 were possibly associated with an increased risk of osteoporosis (IVW: odds ratio [OR] 1.1320, 95% CI 1.0401–1.2321; p = 0.004), while triacylglycerol levels of 48:3 appeared to be associated with a reduced risk of osteoporosis (IVW: OR 0.9053, 95% CI 0.8364–0.9800; p = 0.014). Two statistically significant mediating effects were identified: First, IgD− CD38dim %B cells appeared to partially negatively mediate the association between triacylglycerol levels of 48:3 and osteoporosis, with a negative mediating effect of −0.00669 (95% CI: −0.0214, 0.00805), which accounted for 6.73% of the total effect. That is, the protective effect of triacylglycerol levels of 48:3 against osteoporosis was attenuated by IgD− CD38dim %B cells. Second, HLA DR++ monocytes% leukocytes also partially negatively mediated this relationship, with a mediating effect of −0.023 (95% CI: −0.0434, −0.00266), accounting for 23.2% of the total effect. This indicates that other immune cells, HLA DR++ monocytes %leukocytes, resisted the protective effect of triacylglycerol levels of 48:3 against osteoporosis, with a weakening effect stronger than that of IgD− CD38dim %B cells. Conclusions: Our findings contribute to the growing understanding of the potential causal relationships and shared pathogenic mechanisms between dyslipidemia and osteoporosis. The results suggest that the potential genetic effects of plasma lipid metabolites on osteoporosis may be partially down-regulated by specific kinds of immune cells. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

17 pages, 2932 KiB  
Article
Time Course of Plasma Proteomic and Oxylipin Changes Induced by LPS Challenge and Modulated by Antioxidant Supplementation in a Randomized Controlled Trial
by Gerhard Hagn, Andrea Bileck, Thomas Mohr, Doreen Schmidl, David M. Baron, Bernd Jilma, Leopold Schmetterer, Gerhard Garhöfer and Christopher Gerner
Antioxidants 2025, 14(5), 536; https://doi.org/10.3390/antiox14050536 - 29 Apr 2025
Viewed by 695
Abstract
Systemic molecular responses to pathogen-associated molecular patterns and their modulation by antioxidants are poorly understood in humans. Here, we present a two-stage clinical interventional study in healthy humans challenged with lipopolysaccharide. In the first step, the kinetics of inflammatory modulators within 8 h [...] Read more.
Systemic molecular responses to pathogen-associated molecular patterns and their modulation by antioxidants are poorly understood in humans. Here, we present a two-stage clinical interventional study in healthy humans challenged with lipopolysaccharide. In the first step, the kinetics of inflammatory modulators within 8 h were investigated by plasma proteomics and lipidomics. In a second step, the effects of a placebo-controlled antioxidant intervention on the individual responses prior to another lipopolysaccharide challenge were determined. Plasma proteomics revealed an early involvement of the endothelium and platelets, followed by the induction of liver-derived acute phase proteins and an innate immune cell response. Untargeted lipidomics revealed an early release of fatty acids and taurocholic acid, followed by complex regulatory events exerted by oxylipins. The consistent lipopolysaccharide-induced downregulation of lysophospholipids suggested the involvement of the Lands cycle, and the downregulation of deoxycholic acid reinforced emerging links between the inflammasome and bile acids. Groups of molecules with similar kinetics to lipopolysaccharide challenge were observed to share precursors, synthesizing enzymes or cellular origin. Dietary antioxidant supplementation prior to lipopolysaccharide challenge had no detectable effect on protein kinetics but significantly downregulated pro-inflammatory sphingosine-1-phosphate and increased levels of oxylipins, 20-HEPE, and 22-HDoHE, which have been described to facilitate the resolution of inflammation. The present study identified a complex network of lipid mediators deregulated in plasma upon lipopolysaccharide challenge and highlighted the role of platelets, endothelial cells, and erythrocytes as potential inflammatory modulators. While dietary antioxidant supplementation hardly affected the initiation of inflammation, it may exert its effects supporting the resolution of inflammation. Full article
(This article belongs to the Special Issue Oxidative Stress in Hemoglobin and Red Blood Cells)
Show Figures

Graphical abstract

18 pages, 2137 KiB  
Article
Complex Metabolomic Changes in a Combined Defect of Glycosylation and Oxidative Phosphorylation in a Patient with Pathogenic Variants in PGM1 and NDUFA13
by Silvia Radenkovic, Isabelle Adant, Matthew J. Bird, Johannes V. Swinnen, David Cassiman, Tamas Kozicz, Sarah C. Gruenert, Bart Ghesquière and Eva Morava
Cells 2025, 14(9), 638; https://doi.org/10.3390/cells14090638 - 25 Apr 2025
Viewed by 1201
Abstract
Inherited metabolic disorders (IMDs) are genetic disorders that occur in as many as 1:2500 births worldwide. Nevertheless, they are quite rare individually and even more rare is the co-occurrence of two IMDs in one individual. To better understand the metabolic cross-talk between glycosylation [...] Read more.
Inherited metabolic disorders (IMDs) are genetic disorders that occur in as many as 1:2500 births worldwide. Nevertheless, they are quite rare individually and even more rare is the co-occurrence of two IMDs in one individual. To better understand the metabolic cross-talk between glycosylation changes and deficient energy metabolism, and its potential effect on outcomes, we evaluated patient fibroblasts with likely pathogenic variants in PGM1 and pathogenic variants in NDUFA13 derived from a patient who passed away at 16 years of age. The patient presented with characteristic of PGM1-CDG including bifid uvula, muscle involvement, abnormal glycosylation in blood, and elevated liver transaminases. In addition, hearing loss, seizures, elevated plasma and CSF lactate and a Leigh-like MRI brain pattern were present, which are commonly associated with Leigh syndrome. PGM1-CDG has been reported in about 70 individuals, while NDUFA13 deficiency has so far only been reported in 13 patients. As abundant energy is essential for glycosylation, and both PGM1 and NDUFA13 are linked to energy metabolism, we sought to better understand the underlying biochemical cause of the patient’s clinical presentation. To do so, we performed extensive investigations including tracer metabolomics, lipidomics and enzymatic studies on the patient’s fibroblasts. We found a profound depletion of UDP-hexoses, consistent with PGM1-CDG. Complex I enzyme activity and mitochondrial function were also impaired, corroborating complex I deficiency and Leigh syndrome. Further, lipidomics analysis showed similarities with both PGM1-CDG and OXPHOS-deficient patients. Based on our results, the patient was diagnosed with both PGM1-CDG and Leigh syndrome. In summary, we present the first case of combined CDG and Leigh syndrome, caused by (likely) pathogenic variants in PGM1 and NDUFA13, and underline the importance of considering the synergistic effects of multiple disease-causing variants in patients with complex clinical presentation, leading to the patient’s early demise. Full article
Show Figures

Figure 1

22 pages, 2773 KiB  
Article
Metabolic and Structural Consequences of GM3 Synthase Deficiency: Insights from an HEK293-T Knockout Model
by Elena Chiricozzi, Giulia Lunghi, Manuela Valsecchi, Emma Veronica Carsana, Rosaria Bassi, Erika Di Biase, Dorina Dobi, Maria Grazia Ciampa, Laura Mauri, Massimo Aureli, Kei-ichiro Inamori, Jin-ichi Inokuchi, Sandro Sonnino and Maria Fazzari
Biomedicines 2025, 13(4), 843; https://doi.org/10.3390/biomedicines13040843 - 1 Apr 2025
Viewed by 758
Abstract
Background: GM3 Synthase Deficiency (GM3SD) is a rare autosomal recessive neurodevelopmental disease characterized by recurrent seizures and neurological deficits. The disorder stems from mutations in the ST3GAL5 gene, encoding GM3 synthase (GM3S), a key enzyme in ganglioside biosynthesis. While enzyme deficiencies affecting [...] Read more.
Background: GM3 Synthase Deficiency (GM3SD) is a rare autosomal recessive neurodevelopmental disease characterized by recurrent seizures and neurological deficits. The disorder stems from mutations in the ST3GAL5 gene, encoding GM3 synthase (GM3S), a key enzyme in ganglioside biosynthesis. While enzyme deficiencies affecting ganglioside catabolism are well-documented, the consequences of impaired ganglioside biosynthesis remain less explored. Methods: To investigate GM3SD, we used a Human Embryonic Kidney 293-T (HEK293-T) knockout (KO) cell model generated via CRISPR/Cas9 technology. Lipid composition was assessed via high-performance thin-layer chromatography (HPTLC); glycohydrolase activity in lysosomal and plasma membrane (PM) fractions was enzymatically analyzed. Lysosomal homeostasis was evaluated through protein content analysis and immunofluorescence, and cellular bioenergetics was measured using a luminescence-based assay. Results: Lipidome profiling revealed a significant accumulation of lactosylceramide (LacCer), the substrate of GM3S, along with increased levels of monosialyl-globoside Gb5 (MSGb5), indicating a metabolic shift in glycosphingolipid biosynthesis. Lipid raft analysis revealed elevated cholesterol levels, which may impair microdomain fluidity and signal transduction. Furthermore, altered activity of lysosomal and plasma membrane (PM)-associated glycohydrolases suggests secondary deregulation of glycosphingolipid metabolism, potentially contributing to abnormal lipid patterns. In addition, we observed increased lysosomal mass, indicating potential lysosomal homeostasis dysregulation. Finally, decreased adenosine triphosphate (ATP) levels point to impaired cellular bioenergetics, emphasizing the metabolic consequences of GM3SD. Conclusions: Together, these findings provide novel insights into the molecular alterations associated with GM3SD and establish the HEK293-T KO model as a promising platform for evaluating potential therapeutic strategies. Full article
Show Figures

Figure 1

17 pages, 4781 KiB  
Article
Plasma Lipidomics and Proteomics Analyses Pre- and Post-5000 m Race in Yili Horses
by Jianwen Wang, Wanlu Ren, Zexu Li, Luling Li, Ran Wang, Shikun Ma, Yaqi Zeng, Jun Meng and Xinkui Yao
Animals 2025, 15(7), 994; https://doi.org/10.3390/ani15070994 - 30 Mar 2025
Viewed by 537
Abstract
The impact of exercise on human metabolism has been extensively studied, yet limited research exists on the effects of high-intensity racing on equine metabolism. The aim of this study was to screen the effect of a 5000 m race on lipids and proteins [...] Read more.
The impact of exercise on human metabolism has been extensively studied, yet limited research exists on the effects of high-intensity racing on equine metabolism. The aim of this study was to screen the effect of a 5000 m race on lipids and proteins in the plasma of Yili horses for the breeding of racehorses. Blood samples were collected from the top three finishers, and lipidomics and proteomics analyses were performed. Lipidomic analysis identified 10 differential lipids. Compared to pre-race levels, phosphatidylethanolamine (18:0/16:0) (PE (18:0/16:0)) and phosphatidylcholine (18:0/18:2) (PC (18:0/18:2)) were significantly upregulated, while triglyceride (26:4/29:4) (TG (26:4/29:4)) and phosphatidylcholine (46:14CHO) (PC (46:14CHO)) were notably downregulated. These lipids were primarily associated with the regulation of lipolysis in adipocytes and glycerolipid metabolism pathways. Proteomic analysis revealed 79 differentially expressed proteins. Post-race, proteasome subunits (alpha type_2, alpha type_5 isoform X1, alpha type_6, and beta type_2), carboxypeptidase E, and S-phase kinase-associated protein 1 showed significant downregulation. These proteins were primarily involved in the cellular catabolic process (Gene Ontology term) and pathways related to the proteasome and type I diabetes mellitus (Kyoto Encyclopedia of Genes and Genomes terms). Correlation analysis indicated a significant positive correlation between proteasome subunits (alpha type_2 and beta type_2) and PC (18:0/18:2), while a significant negative correlation was found with PC (46:14CHO). Conversely, S-phase kinase-associated protein 1, along with proteasome subunits (alpha type_5 isoform X1 and alpha type_6), exhibited a significant negative correlation with PE (18:0/16:0) and a positive correlation with TG (26:4/29:4). In conclusion, Yili horses may sustain energy balance and physiological equilibrium during racing by suppressing protein degradation and optimizing lipid metabolism. The differentially expressed substances identified could serve as key biomarkers for assessing exercise load in horses. Full article
(This article belongs to the Section Equids)
Show Figures

Figure 1

15 pages, 1984 KiB  
Article
Absolute Quantitative Lipidomics Reveals Differences in Lipid Compounds in the Blood of Trained and Untrained Yili Horses
by Tongliang Wang, Jun Meng, Jianwen Wang, Wanlu Ren, Xixi Yang, Wusiman Adina, Yike Bao, Yaqi Zeng and Xinkui Yao
Vet. Sci. 2025, 12(3), 255; https://doi.org/10.3390/vetsci12030255 - 10 Mar 2025
Viewed by 770
Abstract
The purpose of this study was to explore the relationship between blood lipid levels and the differences in cardiac structure and function of trained and untrained Yili horses as related to exercise performance. We utilized quantitative lipidomics technology to elucidate how the differences [...] Read more.
The purpose of this study was to explore the relationship between blood lipid levels and the differences in cardiac structure and function of trained and untrained Yili horses as related to exercise performance. We utilized quantitative lipidomics technology to elucidate how the differences in lipid compounds in the blood influenced performance outcomes. Sixteen 18-month-old Yili horses were selected, ten of which received a 15-week training regimen, and six were kept as untrained controls. Cardiac structure and function were assessed by echocardiography, while plasma lipid metabolites were detected and identified by liquid chromatography–mass spectrometry. The results showed that key cardiac structural indices, such as left ventricular end-diastolic diameter, left ventricular end-systolic diameter, and left ventricular posterior wall thickness, were significantly greater in the trained group compared with the untrained group, indicating that exercise training promotes adaptive cardiac remodeling. Regarding lipid metabolites, significant differences were observed between the trained and untrained groups, with a total of 281 lipids identified—212 upregulated and 69 downregulated. These differentially expressed lipids were primarily enriched in pathways such as necroptosis, ether lipid metabolism, and sphingolipid signaling, which are associated with cell migration, survival, proliferation, and regulation of lipid metabolism. Further correlation analysis revealed that differences in certain lipids, such as PE (20:4_18:0), PC (17:0_18:1), and LPC subclasses, were significantly correlated with exercise-mediated cardiac structural and functional changes and exercise performance enhancement. These findings provide novel molecular insights into the effects of exercise training on cardiac structure and lipid metabolism in horses and can serve as a reference for training strategies and preserving cardiac health in performance horses. Full article
(This article belongs to the Special Issue The Progress of Equine Medical Research in China and Beyond)
Show Figures

Figure 1

14 pages, 1078 KiB  
Article
Early Changes in the Plasma Lipidome of People at Very High Cardiovascular Risk: A New Approach to Assessing the Risk of Cardiovascular Changes
by Joanna Waś, Piotr Dobrowolski, Aleksander Prejbisz, Magdalena Niedolistek, Ilona Kowalik, Anna Drohomirecka, Dorota Sokołowska and Jolanta Krzysztoń-Russjan
Biomedicines 2025, 13(3), 643; https://doi.org/10.3390/biomedicines13030643 - 6 Mar 2025
Viewed by 755
Abstract
Background/Objectives: Cardiovascular disease (CVD) remains the leading cause of death worldwide and requires a deeper understanding of its pathogenesis for effective prevention and treatment. Familial hypercholesterolemia (FH), characterized by high levels of LDL cholesterol, is a significant risk factor for CVD. FH background [...] Read more.
Background/Objectives: Cardiovascular disease (CVD) remains the leading cause of death worldwide and requires a deeper understanding of its pathogenesis for effective prevention and treatment. Familial hypercholesterolemia (FH), characterized by high levels of LDL cholesterol, is a significant risk factor for CVD. FH background remains unexplained despite advances in genetic testing. The aim was identification early changes in the plasma lipidome of individuals at high cardiovascular risk (HCVR) using liquid chromatography coupled with mass spectrometry. Methods: The lipidomic analysis examined over 400 compounds. Twenty individuals with suspected FH, very high cardiovascular risk (VHCVR), and undetectable mutations in the LDLR, APOB, or PCSK9 genes were compared to control group in a qualitative-quantitative analysis. Results: Multivariate analyses revealed statistically significant alterations in glycerophospholipids (GC), with a notable increase in phosphatidylcholines ((O-36:0/16:0), OR (95% CI): 1.246 (1.042–1.490), p = 0.0157), phosphatidylethanolamines ((O-40:7/22:6), OR (95% CI): 1.119 (1.039–1.205), p = 0.0028), and phosphatidylglycerol ((40:8/20:4), OR (95% CI): 1.053 (1.008–1.101), p = 0.0219) only in patients with HCVR. These changes, particularly in major classes of GC, underscored their potential as biomarkers for early assessment of cardiovascular risk. Lipidomic profiling revealed associations between specific lipid species and the comorbidities of arterial hypertension, atherosclerosis, and insulin resistance, implicating their role in atherosclerotic cardiovascular disease (ASCVD). Conclusions: This study points early changes in the plasma lipidome in individuals at HCVR, underline potential biomarkers, therapeutic targets for ASCVD, and offer opportunities to improve ASCVD diagnosis, therapy, and risk management strategies through detailed personalized medical approach. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

17 pages, 2103 KiB  
Article
Untargeted Lipidomic Reveals Potential Biomarkers in Plasma Samples for the Discrimination of Patients Affected by Parkinson’s Disease
by Kateryna Tkachenko, Jose María González-Sáiz and Consuelo Pizarro
Molecules 2025, 30(4), 850; https://doi.org/10.3390/molecules30040850 - 12 Feb 2025
Viewed by 1192
Abstract
Nowadays, the diagnosis of Parkinson’s disease (PD) remains essentially clinical, based on the subjective observations of clinicians. In addition, misdiagnosis with other neuro disorders, such as Alzheimer’s (AD), can occur. Herein, an untargeted lipidomic analysis of 75 plasma samples was performed to identify [...] Read more.
Nowadays, the diagnosis of Parkinson’s disease (PD) remains essentially clinical, based on the subjective observations of clinicians. In addition, misdiagnosis with other neuro disorders, such as Alzheimer’s (AD), can occur. Herein, an untargeted lipidomic analysis of 75 plasma samples was performed to identify lipid species capable of discriminating between these two neuro groups. Therefore, PLS-DA and OPLS-DA analysis revealed significant differences in patient profiles in the sphingolipid and glycerophospholipid categories. As a result, a putative lipid biomarker panel was developed, which included HexCer (40:1; O2) and PC (O-32:0), with an area under the receiver operating characteristic curve (AUC) > 80, respectively. This panel was effective in discriminating between diseased and healthy subjects, but most importantly, it could discriminate between two neurodegenerative disorders that can present similar symptoms, namely PD and AD. Together, these findings suggest that the dysregulated metabolism of lipids plays a critical role in AD and PD pathology and may represent a valuable clinical tool for their diagnosis. Thus, further targeted studies are encouraged to better understand the underlying mechanisms of PD and confirm the diagnostic potency of the identified lipid metabolites. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

Back to TopTop