Hypoxic Status in COPD and ARDS Patients: Impact on Lipid Signature
Abstract
1. Introduction
2. Results
2.1. Subjects and Clinical Assessment
2.2. Lipid Alterations
2.3. Correlations
3. Discussion
3.1. Clinical Panel
3.2. Lipid Classes
3.3. Role of Mitochondria
3.4. The Limits and Strengths of the Study
4. Materials and Methods
4.1. Patients
4.2. Blood Gas Analysis
4.3. Blood Samples
4.3.1. Hepcidin
4.3.2. Soluble Transferrin Receptor
4.3.3. Ferric Reducing Antioxidant Power
4.3.4. Malondialdehyde
4.3.5. dROMs
4.3.6. Interleukin 6
4.4. Lipidome Signature
4.4.1. Chemicals and Reagents
4.4.2. Lipids Extraction
4.4.3. Untargeted Lipidomic
4.4.4. LC-HR-MS Data Processing
4.5. Statistics and Data Visualization
4.6. GenAI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Duca, L.; Ottolenghi, S.; Coppola, S.; Rinaldo, R.; Cas, M.D.; Rubino, F.M.; Paroni, R.; Samaja, M.; Chiumello, D.A.; Motta, I. Differential Redox State and Iron Regulation in Chronic Obstructive Pulmonary Disease, Acute Respiratory Distress Syndrome and Coronavirus Disease 2019. Antioxidants 2021, 10, 1460. [Google Scholar] [CrossRef] [PubMed]
- Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; van Haren, F.; Larsson, A.; McAuley, D.F.; et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016, 315, 788–800. [Google Scholar] [CrossRef] [PubMed]
- Maselli, D.J.; Bhatt, S.P.; Anzueto, A.; Bowler, R.P.; DeMeo, D.L.; Diaz, A.A.; Dransfield, M.T.; Fawzy, A.; Foreman, M.G.; Hanania, N.A.; et al. Clinical Epidemiology of COPD: Insights From 10 Years of the COPDGene Study. Chest 2019, 156, 228–238. [Google Scholar] [CrossRef]
- Horovitz, J.H.; Carrico, C.J.; Shires, G.T. Pulmonary response to major injury. Arch. Surg. 1974, 108, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, N.; Blaivas, M.; Caroselli, C. A Case Report of Radial Artery Pseudoaneurysm After Repeated Radial Puncture for Arterial Blood Gas. Acta Med. Port. 2024, 37, 42–45. [Google Scholar] [CrossRef]
- Cas, M.D.; Ottolenghi, S.; Morano, C.; Rinaldo, R.; Roda, G.; Chiumello, D.; Centanni, S.; Samaja, M.; Paroni, R. Link between serum lipid signature and prognostic factors in COVID-19 patients. Sci. Rep. 2021, 11, 21633. [Google Scholar] [CrossRef]
- Cas, M.D.; Morano, C.; Ottolenghi, S.; Dicasillati, R.; Roda, G.; Samaja, M.; Paroni, R. Inside the Alterations of Circulating Metabolome in Antarctica: The Adaptation to Chronic Hypoxia. Front. Physiol. 2022, 13, 819345. [Google Scholar] [CrossRef]
- Gattinoni, L.; Chiumello, D.; Rossi, S. COVID-19 pneumonia: ARDS or not? Crit. Care 2020, 24, 154. [Google Scholar] [CrossRef]
- Liebisch, G.; Fahy, E.; Aoki, J.; Dennis, E.A.; Durand, T.; Ejsing, C.S.; Fedorova, M.; Feussner, I.; Griffiths, W.J.; Köfeler, H.; et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 2020, 61, 1539–1555. [Google Scholar] [CrossRef]
- Nath, S.; Qurashi, H.; Kitsios, G.D.; Bain, W.; Aneis, H.; Suber, T.; Prendergast, N.; Hensley, M.; Schaefer, C.; Zhang, Y.; et al. Clinical and biologic profiles of patients with acute respiratory distress syndrome by prevalence of chronic obstructive pulmonary disease or emphysema; a cohort study. Respir. Res. 2024, 25, 400. [Google Scholar] [CrossRef]
- Gandini, L.; Fior, G.; Schibler, A.; Obonyo, N.G.; Bassi, G.L.; Suen, J.Y.; Fraser, J.F. Interleukin-6 inhibitors in non-COVID-19 ARDS: Analyzing the past to step into the post-COVID-19 era. Crit. Care 2023, 27, 124. [Google Scholar] [CrossRef] [PubMed]
- Pigazzani, F.; Gorni, D.; Dyar, K.A.; Pedrelli, M.; Kennedy, G.; Costantino, G.; Bruno, A.; Mackenzie, I.; MacDonald, T.M.; Tietge, U.J.F.; et al. The Prognostic Value of Derivatives-Reactive Oxygen Metabolites (d-ROMs) for Cardiovascular Disease Events and Mortality: A Review. Antioxidants 2022, 11, 1541. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Prior, R.L. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin. Chem. 1998, 44, 1309–1315. [Google Scholar] [CrossRef]
- Yue, L.; Yan, Y. Metabolic Regulation in Acute Respiratory Distress Syndrome: Implications for Inflammation and Oxidative Stress. Int. J. Chron. Obs. Pulmon Dis. 2025, 20, 373–388. [Google Scholar] [CrossRef] [PubMed]
- Panov, A.V.; Dikalov, S.I. Cardiolipin, Perhydroxyl Radicals, and Lipid Peroxidation in Mitochondrial Dysfunctions and Aging. Oxidative Med. Cell. Longev. 2020, 2020, 1323028. [Google Scholar] [CrossRef]
- Kumar, K.V.; Rao, S.M.; Gayani, R.; Mohan, I.K.; Naidu, M.U. Oxidant stress and essential fatty acids in patients with risk and established ARDS. Clin. Chim. Acta 2000, 298, 111–120. [Google Scholar] [CrossRef]
- Shaikh, S.R.; Fessler, M.B.; Gowdy, K.M. Role for phospholipid acyl chains and cholesterol in pulmonary infections and inflammation. J. Leukoc. Biol. 2016, 100, 985–997. [Google Scholar] [CrossRef]
- Coates, H.W.; Capell-Hattam, I.M.; Olzomer, E.M.; Du, X.; Farrell, R.; Yang, H.; Byrne, F.L.; Brown, A.J. Hypoxia truncates and constitutively activates the key cholesterol synthesis enzyme squalene monooxygenase. Elife 2023, 12, e82843. [Google Scholar] [CrossRef]
- Vockeroth, D.; Gunasekara, L.; Amrein, M.; Possmayer, F.; Lewis, J.F.; Veldhuizen, R.A. Role of cholesterol in the biophysical dysfunction of surfactant in ventilator-induced lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2010, 298, L117–L125. [Google Scholar] [CrossRef]
- Al-Saiedy, M.; Pratt, R.; Lai, P.; Kerek, E.; Joyce, H.; Prenner, E.; Green, F.; Ling, C.C.; Veldhuizen, R.; Ghandorah, S.; et al. Dysfunction of pulmonary surfactant mediated by phospholipid oxidation is cholesterol-dependent. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 1040–1049. [Google Scholar] [CrossRef]
- Choi, S.H.; Sviridov, D.; Miller, Y.I. Oxidized cholesteryl esters and inflammation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Dushianthan, A.; Goss, V.; Cusack, R.; Grocott, M.P.; Postle, A.D. Altered molecular specificity of surfactant phosphatidycholine synthesis in patients with acute respiratory distress syndrome. Respir. Res. 2014, 15, 128. [Google Scholar] [CrossRef]
- Ellis, S.R.; Hall, E.; Panchal, M.; Flinders, B.; Madsen, J.; Koster, G.; Heeren, R.M.A.; Clark, H.W.; Postle, A.D. Mass spectrometry imaging of phosphatidylcholine metabolism in lungs administered with therapeutic surfactants and isotopic tracers. J. Lipid Res. 2021, 62, 100023. [Google Scholar] [CrossRef]
- Bonnans, C.; Levy, B.D. Lipid mediators as agonists for the resolution of acute lung inflammation and injury. Am. J. Respir. Cell Mol. Biol. 2007, 36, 201–205. [Google Scholar] [CrossRef]
- Dushianthan, A.; Cusack, R.; Grocott, M.P.W.; Postle, A.D. Abnormal liver phosphatidylcholine synthesis revealed in patients with acute respiratory distress syndrome. J. Lipid Res. 2018, 59, 1034–1045. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Mariscal, F.M.; Arenas-de Larriva, A.P.; Limia-Perez, L.; Romero-Cabrera, J.L.; Yubero-Serrano, E.M.; López-Miranda, J. Coenzyme Q(10) Supplementation for the Reduction of Oxidative Stress: Clinical Implications in the Treatment of Chronic Diseases. Int. J. Mol. Sci. 2020, 21, 7870. [Google Scholar] [CrossRef]
- Liparulo, I.; Bergamini, C.; Bortolus, M.; Calonghi, N.; Gasparre, G.; Kurelac, I.; Masin, L.; Rizzardi, N.; Rugolo, M.; Wang, W.; et al. Coenzyme Q biosynthesis inhibition induces HIF-1alpha stabilization and metabolic switch toward glycolysis. FEBS J. 2021, 288, 1956–1974. [Google Scholar] [CrossRef] [PubMed]
- Petrache, I.; Berdyshev, E.V. Ceramide Signaling and Metabolism in Pathophysiological States of the Lung. Annu. Rev. Physiol. 2016, 78, 463–480. [Google Scholar] [CrossRef]
- Garcia-Ruiz, C.; Morales, A.; Fernández-Checa, J.C. Glycosphingolipids and cell death: One aim, many ways. Apoptosis 2015, 20, 607–620. [Google Scholar] [CrossRef]
- Yin, J.; Miyazaki, K.; Shaner, R.L.; Merrill, A.H., Jr.; Kannagi, R. Altered sphingolipid metabolism induced by tumor hypoxia—New vistas in glycolipid tumor markers. FEBS Lett. 2010, 584, 1872–1878. [Google Scholar] [CrossRef]
- Tanaka, K.; Tamiya-Koizumi, K.; Yamada, M.; Murate, T.; Kannagi, R.; Kyogashima, M. Hypoxia remodels the composition of the constituent ceramide species of HexCer and Hex2Cer with phytosphingosine and hydroxy fatty acids in human colon cancer LS174T cells. Glycoconj. J. 2015, 32, 615–623. [Google Scholar] [CrossRef]
- Mylonis, I.; Simos, G.; Paraskeva, E. Hypoxia-Inducible Factors and the Regulation of Lipid Metabolism. Cells 2019, 8, 214. [Google Scholar] [CrossRef] [PubMed]
- Rockenfeller, P.; Koska, M.; Pietrocola, F.; Minois, N.; Knittelfelder, O.; Sica, V.; Franz, J.; Carmona-Gutierrez, D.; Kroemer, G.; Madeo, F. Phosphatidylethanolamine positively regulates autophagy and longevity. Cell Death Differ. 2015, 22, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Merceron, C.; Mangiavini, L.; Seifert, E.L.; Schipani, E.; Shapiro, I.M.; Risbud, M.V. Hypoxia promotes noncanonical autophagy in nucleus pulposus cells independent of MTOR and HIF1A signaling. Autophagy 2016, 12, 1631–1646. [Google Scholar] [CrossRef]
- Kawashima, M.; Tokiwa, M.; Nishimura, T.; Kawata, Y.; Sugimoto, M.; Kataoka, T.R.; Sakurai, T.; Iwaisako, K.; Suzuki, E.; Hagiwara, M.; et al. High-resolution imaging mass spectrometry combined with transcriptomic analysis identified a link between fatty acid composition of phosphatidylinositols and the immune checkpoint pathway at the primary tumour site of breast cancer. Br. J. Cancer 2020, 122, 245–257. [Google Scholar] [CrossRef]
- Huang, H.; Sun, Z.; Pan, H.; Chen, M.; Tong, Y.; Zhang, J.; Chen, D.; Su, X.; Li, L. Serum metabolomic signatures discriminate early liver inflammation and fibrosis stages in patients with chronic hepatitis B. Sci. Rep. 2016, 6, 30853. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S.E.; Daum, G. Lipids of mitochondria. Prog. Lipid Res. 2013, 52, 590–614. [Google Scholar] [CrossRef] [PubMed]
- Pak, O.; Nolte, A.; Knoepp, F.; Giordano, L.; Pecina, P.; Huttemann, M.; Grossman, L.I.; Weissmann, N.; Sommer, N. Mitochondrial oxygen sensing of acute hypoxia in specialized cells—Is there a unifying mechanism? Biochim. Biophys. Acta Bioenerg. 2022, 1863, 148911. [Google Scholar] [CrossRef]
- Ware, S.A.; Kliment, C.R.; Giordano, L.; Redding, K.M.; Rumsey, W.L.; Bates, S.; Zhang, Y.; Sciurba, F.C.; Nouraie, S.M.; Kaufman, B.A. Cell-free DNA levels associate with COPD exacerbations and mortality. Respir. Res. 2024, 25, 42. [Google Scholar] [CrossRef]
- Zhang, W.Z.; Hoffman, K.L.; Schiffer, K.T.; Oromendia, C.; Rice, M.C.; Barjaktarevic, I.; Peters, S.P.; Putcha, N.; Bowler, R.P.; Wells, J.M.; et al. Association of plasma mitochondrial DNA with COPD severity and progression in the SPIROMICS cohort. Respir. Res. 2021, 22, 126. [Google Scholar] [CrossRef]
- Huang, L.; Chang, W.; Huang, Y.; Xu, X.; Yang, Y.; Qiu, H. Prognostic value of plasma mitochondrial DNA in acute respiratory distress syndrome (ARDS): A single-center observational study. J. Thorac. Dis. 2020, 12, 1320–1328. [Google Scholar] [CrossRef] [PubMed]
- Xian, H.; Liu, Y.; Rundberg Nilsson, A.; Gatchalian, R.; Crother, T.R.; Tourtellotte, W.G.; Zhang, Y.; Aleman-Muench, G.R.; Lewis, G.; Chen, W.; et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity 2021, 54, 1463–1477.e11. [Google Scholar] [CrossRef]
- Giordano, L.; Ware, S.A.; Lagranha, C.J.; Kaufman, B.A. Mitochondrial DNA signals driving immune responses: Why, How, Where? Cell Commun. Signal 2025, 23, 192. [Google Scholar] [CrossRef]
- Torta, F.; Hoffmann, N.; Burla, B.; Alecu, I.; Arita, M.; Bamba, T.; Bennett, S.A.L.; Bertrand-Michel, J.; Brugger, B.; Cala, M.P.; et al. Concordant inter-laboratory derived concentrations of ceramides in human plasma reference materials via authentic standards. Nat. Commun. 2024, 15, 8562. [Google Scholar] [CrossRef]
- Züllig, T.; Trötzmüller, M.; Köfeler, H.C. Lipidomics from sample preparation to data analysis: A primer. Anal. Bioanal. Chem. 2020, 412, 2191–2209. [Google Scholar] [CrossRef] [PubMed]
- Lipidomics Standards Initiative Consortium. Lipidomics needs more standardization. Nat. Metab. 2019, 1, 745–747. [Google Scholar] [CrossRef]
- Samaja, M.; Ottolenghi, S. The Oxygen Cascade from Atmosphere to Mitochondria as a Tool to Understand the (Mal) adaptation to Hypoxia. Int. J. Mol. Sci. 2023, 24, 3670. [Google Scholar] [CrossRef] [PubMed]
- Force, A.D.T.; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Galesloot, T.E.; Vermeulen, S.H.; Geurts-Moespot, A.J.; Klaver, S.M.; Kroot, J.J.; van Tienoven, D.; Wetzels, J.F.; Kiemeney, L.A.; Sweep, F.C.; den Heijer, M.; et al. Serum hepcidin: Reference ranges and biochemical correlates in the general population. Blood 2011, 117, e218–e225. [Google Scholar] [CrossRef]
- Hunter, C.A.; Jones, S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 2015, 16, 448–457. [Google Scholar] [CrossRef]
- Morano, C.; Roda, G.; Paroni, R.; Cas, M.D. Tip-tip filtration ameliorates single-phase extraction methods for plasma large-scale lipidomics analysis. J. Chromatogr. 2022, 1189, 123099. [Google Scholar] [CrossRef] [PubMed]
R2 | Slope | ± | SE | Y-Intercept | ± | SE | F | p Value | ||
---|---|---|---|---|---|---|---|---|---|---|
Clinical Panel | WBC | 0.3937 | −0.0309 | ± | 0.00767 | 18.58 | ± | 2.486 | 16.24 | 0.0005 |
IL-6 | 0.2434 | −0.3284 | ± | 0.1746 | 128.7 | ± | 41.46 | 3.539 | 0.0867 | |
Hb | 0.4195 | 0.01027 | ± | 0.00237 | 9.828 | ± | 0.7643 | 18.79 | 0.0002 | |
Hep | 0.2448 | −0.07671 | ± | 0.02593 | 54.07 | ± | 8.498 | 8.753 | 0.0064 | |
sTfR | 0.4256 | −0.004612 | ± | 0.001051 | 2.859 | ± | 0.3388 | 19.27 | 0.0002 | |
MDA | 0.1635 | −0.0007516 | ± | 0.0003546 | 0.7413 | ± | 0.115 | 4.494 | 0.045 | |
dROMs | 0.1417 | 0.3474 | ± | 0.1783 | 243 | ± | 57.06 | 3.798 | 0.0636 | |
FRAP | 0.2897 | 0.001046 | ± | 0.0003276 | 0.5327 | ± | 0.1038 | 10.2 | 0.0038 | |
Most significant lipid classes | CE | 0.6588 | 1657 | ± | 229.5 | −105,214 | ± | 75,210 | 52.13 | <0.0001 |
CoQ | 0.433 | 89.46 | ± | 19.7 | −11,472 | ± | 6456 | 20.62 | 0.0001 | |
HexCer | 0.3183 | 58 | ± | 16.33 | 4795 | ± | 5353 | 12.61 | 0.0014 | |
PE | 0.1622 | −475.5 | ± | 208 | 393,418 | ± | 68,179 | 5.226 | 0.0303 | |
PI | 0.6483 | 39.82 | ± | 5.645 | 2057 | ± | 1850 | 49.77 | <0.0001 | |
St | 0.5151 | 6705 | ± | 1252 | 1,029,601 | ± | 410,325 | 28.68 | <0.0001 |
Correlation with Hypoxia Severity, or Inverse Correlation with the Horowitz Index (P/F) | p Value | ||
---|---|---|---|
Clinical Panel | White blood cell count (WBC) | ↑↑↑ | 0.0005 |
Interleukin-6 (IL-6) | NS | 0.0867 | |
Blood hemoglobin concentration (Hb) | ↓↓↓ | 0.0002 | |
Hepcidin (Hep) | ↑↑ | 0.0064 | |
Soluble isoform of the transferrin receptor (sTfR) | ↑↑↑ | 0.0002 | |
Malondialdehyde (MDA) | ↑ | 0.045 | |
Reactive oxygen metabolites (dROMs) | NS | 0.0636 | |
Ferric reducing antioxidant power (FRAP) | ↓↓ | 0.0038 | |
Most significant lipid classes | Cholesteryl esters (CE) | ↓↓↓↓ | <0.0001 |
Coenzyme Q (CoQ) | ↓↓↓ | 0.0001 | |
Hexosylceramides (HexCer) | ↓↓ | 0.0014 | |
Phosphatidylethanolamine (PE) | ↑ | 0.0303 | |
Phosphatidylinositol (PI) | ↓↓↓↓ | <0.0001 | |
Sterols (ST) | ↓↓↓↓ | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morano, C.; Sadikovic, A.; Dei Cas, M.; Rinaldo, R.F.; Duca, L.; Rubino, F.M.; Mondoni, M.; Chiumello, D.; Ottolenghi, S.; Samaja, M.; et al. Hypoxic Status in COPD and ARDS Patients: Impact on Lipid Signature. Int. J. Mol. Sci. 2025, 26, 6405. https://doi.org/10.3390/ijms26136405
Morano C, Sadikovic A, Dei Cas M, Rinaldo RF, Duca L, Rubino FM, Mondoni M, Chiumello D, Ottolenghi S, Samaja M, et al. Hypoxic Status in COPD and ARDS Patients: Impact on Lipid Signature. International Journal of Molecular Sciences. 2025; 26(13):6405. https://doi.org/10.3390/ijms26136405
Chicago/Turabian StyleMorano, Camillo, Aldijana Sadikovic, Michele Dei Cas, Rocco Francesco Rinaldo, Lorena Duca, Federico Maria Rubino, Michele Mondoni, Davide Chiumello, Sara Ottolenghi, Michele Samaja, and et al. 2025. "Hypoxic Status in COPD and ARDS Patients: Impact on Lipid Signature" International Journal of Molecular Sciences 26, no. 13: 6405. https://doi.org/10.3390/ijms26136405
APA StyleMorano, C., Sadikovic, A., Dei Cas, M., Rinaldo, R. F., Duca, L., Rubino, F. M., Mondoni, M., Chiumello, D., Ottolenghi, S., Samaja, M., & Paroni, R. (2025). Hypoxic Status in COPD and ARDS Patients: Impact on Lipid Signature. International Journal of Molecular Sciences, 26(13), 6405. https://doi.org/10.3390/ijms26136405