Plasma Diacylglycerols Are Associated with Carotid Intima-Media Thickness Among Patients with Type 2 Diabetes: Findings from a Supercritical Fluid Chromatography/Mass Spectrometry-Based Semi-Targeted Lipidomic Analysis
Abstract
1. Introduction
2. Results
2.1. Associations Between Plasma Lipids and CIMT (Cross-Sectional Analyses)
2.2. Associations Between Plasma DGs and the Progression of CIMT (Longitudinal Analyses)
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Study Protocol
4.3. Measurement of CIMT
4.4. Lipidomic Measurement
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CIMT | carotid intima-media thickness |
DG | diacylglycerol |
FA | fatty acid |
CVD | cardiovascular disease |
HbA1c | glycated hemoglobin |
SFC/MS/MS | supercritical fluid chromatography coupled with tandem mass spectrometry |
PG | phosphatidylglycerol |
TG | triacylglycerol |
CAD | coronary artery disease |
CI | confidence interval |
EC | endothelial cell |
PKC | protein kinase C |
VSMC | vascular smooth muscle cell |
NAFLD | non-alcoholic fatty liver disease |
MRM | multiple reaction monitoring |
DEA | diethylamine |
FFA | free fatty acid |
CE | cholesterol ester |
PC | phosphatidylcholine |
PE | phosphatidylethanolamine |
PI | phosphatidylinositol |
PS | phosphatidylserine |
LPC | lysophosphatidylcholine |
LPE | lysophosphatidylethanolamine |
LPI | lysophosphatidylinositol |
Cer | ceramide |
HexCer | hexosylceramide |
SM | sphingomyelin |
Appendix A
Appendix A.1. DEA-SFC/MS/MS Analysis for Determination of Monoacylglycerols, DGs, PCs, PEs, PIs, PGs, PSs, Phosphatidic Acids, LPCs, LPEs, LPIs, Cers, HexCers, and SMs
Appendix A.2. C18-SFC/MS/MS Analysis for Determination of FFAs, TGs, CEs, and Cholesterol
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.W.; Jandeleit-Dahm, K.A.M. Atherosclerosis in diabetes mellitus: Novel mechanisms and mechanism-based therapeutic approaches. Nat. Rev. Cardiol. 2025, 22, 482–496. [Google Scholar] [CrossRef] [PubMed]
- McGranaghan, P.; Kirwan, J.A.; Garcia-Rivera, M.A.; Pieske, B.; Edelmann, F.; Blaschke, F.; Appunni, S.; Saxena, A.; Rubens, M.; Veledar, E.; et al. Lipid metabolite biomarkers in cardiovascular disease: Discovery and biomechanism translation from human studies. Metabolites 2021, 11, 621. [Google Scholar] [CrossRef] [PubMed]
- Havulinna, A.S.; Sysi-Aho, M.; Hilvo, M.; Kauhanen, D.; Hurme, R.; Ekroos, K.; Salomaa, V.; Laaksonen, R. Circulating ceramides predict cardiovascular outcomes in the population-based FINRISK 2002 cohort. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 2424–2430. [Google Scholar] [CrossRef] [PubMed]
- Laaksonen, R.; Ekroos, K.; Sysi-Aho, M.; Hilvo, M.; Vihervaara, T.; Kauhanen, D.; Suoniemi, M.; Hurme, R.; März, W.; Scharnagl, H.; et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J. 2016, 37, 1967–1976. [Google Scholar] [CrossRef] [PubMed]
- Sigruener, A.; Kleber, M.E.; Heimerl, S.; Liebisch, G.; Schmitz, G.; Maerz, W. Glycerophospholipid and sphingolipid species and mortality: The Ludwigshafen Risk and cardiovascular Health (LURIC) study. PLoS ONE 2014, 9, e85724. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Ramachandran, R.; Wierzbicki, A.S. Lipidomics in diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2022, 29, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef] [PubMed]
- Wali, J.A.; Jarzebska, N.; Raubenheimer, D.; Simpson, S.J.; Rodionov, R.N.; O’Sullivan, J.F. Cardio-metabolic effects of high-fat diets and their underlying mechanisms-A narrative review. Nutrients 2020, 12, 1505. [Google Scholar] [CrossRef] [PubMed]
- Taya, N.; Katakami, N.; Omori, K.; Hosoe, S.; Watanabe, H.; Takahara, M.; Miyashita, K.; Nishizawa, H.; Konya, Y.; Obara, S.; et al. Change in fatty acid composition of plasma triglyceride caused by a 2 week comprehensive risk management for diabetes: A prospective observational study of type 2 diabetes patients with supercritical fluid chromatography/mass spectrometry-based semi-target lipidomic analysis. J. Diabetes Investig. 2023, 14, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Takeda, H.; Izumi, Y.; Takahashi, M.; Paxton, T.; Tamura, S.; Koike, T.; Yu, Y.; Kato, N.; Nagase, K.; Shiomi, M.; et al. Widely-targeted quantitative lipidomics method by supercritical fluid chromatography triple quadrupole mass spectrometry. J. Lipid Res. 2018, 59, 1283–1293. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Okamura, T.; Watanabe, M.; Nakai, M.; Takegami, M.; Higashiyama, A.; Kokubo, Y.; Okayama, A.; Miyamoto, Y. Predicting coronary heart disease using risk factor categories for a Japanese urban population, and comparison with the Framingham risk score: The suita study. J. Atheroscler. Thromb. 2014, 21, 784–798. [Google Scholar] [CrossRef] [PubMed]
- Meikle, P.J.; Wong, G.; Tsorotes, D.; Barlow, C.K.; Weir, J.M.; Christopher, M.J.; MacIntosh, G.L.; Goudey, B.; Stern, L.; Kowalczyk, A.; et al. Plasma lipidomic analysis of stable and unstable coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2723–2732. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Yang, J.S.; Lee, S.-H.; Moon, M.H. Analysis of lipoprotein-specific lipids in patients with acute coronary syndrome by asymmetrical flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1099, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Toledo, E.; Wang, D.D.; Ruiz-Canela, M.; Clish, C.B.; Razquin, C.; Zheng, Y.; Guasch-Ferré, M.; Hruby, A.; Corella, D.; Gómez-Gracia, E.; et al. Plasma lipidomic profiles and cardiovascular events in a randomized intervention trial with the Mediterranean diet. Am. J. Clin. Nutr. 2017, 106, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Lind, L. The metabolomic profile of carotid artery intima-media thickness and echogenicity. Atherosclerosis 2021, 335, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.C.; Deik, A.A.; Hua, S.; Wang, T.; Hanna, D.B.; Xue, X.; Haberlen, S.A.; Shah, S.J.; Suh, Y.; Lazar, J.M.; et al. Association of lipidomic profiles with progression of carotid artery atherosclerosis in HIV infection. JAMA Cardiol. 2019, 4, 1239–1249. [Google Scholar] [CrossRef] [PubMed]
- Moerman, A.M.; Visscher, M.; Slijkhuis, N.; Van Gaalen, K.; Heijs, B.; Klein, T.; Burgers, P.C.; De Rijke, Y.B.; Van Beusekom, H.M.M.; Luider, T.M.; et al. Lipid signature of advanced human carotid atherosclerosis assessed by mass spectrometry imaging. J. Lipid Res. 2021, 62, 100020. [Google Scholar] [CrossRef] [PubMed]
- Kolczynska, K.; Loza-Valdes, A.; Hawro, I.; Sumara, G. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: A review. Lipids Health Dis. 2020, 19, 113. [Google Scholar] [CrossRef] [PubMed]
- Lien, C.F.; Chen, S.J.; Tsai, M.C.; Lin, C.S. Potential role of protein kinase C in the pathophysiology of diabetes-associated atherosclerosis. Front. Pharmacol. 2021, 12, 716332. [Google Scholar] [CrossRef] [PubMed]
- Harper, M.T.; Poole, A.W. Diverse functions of protein kinase C isoforms in platelet activation and thrombus formation. J. Thromb. Haemost. 2010, 8, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Visigalli, R.; Barilli, A.; Parolari, A.; Sala, R.; Rotoli, B.M.; Bussolati, O.; Gazzola, G.C.; Dall’Asta, V. Regulation of arginine transport and metabolism by protein kinase Calpha in endothelial cells: Stimulation of CAT2 transporters and arginase activity. J. Mol. Cell. Cardiol. 2010, 49, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Chen, X.; Feng, Q.; Peng, K.; Wu, Q.; Passerini, A.G.; Simon, S.I.; Sun, C. Downregulation of GATA6 in mTOR-inhibited human aortic endothelial cells: Effects on TNF-α-induced VCAM-1 expression and monocytic cell adhesion. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H408–H420. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Kioka, N.; Ueda, K.; Matsuo, M. Phosphorylation by protein kinase C stabilizes ABCG1 and increases cholesterol efflux. J. Biochem. 2019, 166, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Osto, E.; Kouroedov, A.; Mocharla, P.; Akhmedov, A.; Besler, C.; Rohrer, L.; von Eckardstein, A.; Iliceto, S.; Volpe, M.; Lüscher, T.F.; et al. Inhibition of protein kinase Cbeta prevents foam cell formation by reducing scavenger receptor A expression in human macrophages. Circulation 2008, 118, 2174–2182. [Google Scholar] [CrossRef] [PubMed]
- Dzobo, K.E.; Cupido, A.J.; Mol, B.M.; Stiekema, L.C.A.; Versloot, M.; Winkelmeijer, M.; Peter, J.; Pennekamp, A.M.; Havik, S.R.; Vaz, F.M.; et al. Diacylglycerols and lysophosphatidic acid, enriched on lipoprotein(a), contribute to monocyte inflammation. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 720–740. [Google Scholar] [CrossRef] [PubMed]
- Kasper, P.; Martin, A.; Lang, S.; Kütting, F.; Goeser, T.; Demir, M.; Steffen, H.M. NAFLD and cardiovascular diseases: A clinical review. Clin. Res. Cardiol. 2021, 110, 921–937. [Google Scholar] [CrossRef] [PubMed]
- Chiriac, S.; Stanciu, C.; Girleanu, I.; Cojocariu, C.; Sfarti, C.; Singeap, A.M.; Cuciureanu, T.; Huiban, L.; Muzica, C.M.; Zenovia, S.; et al. Nonalcoholic fatty liver disease and cardiovascular diseases: The heart of the matter. Can. J. Gastroenterol. Hepatol. 2021, 2021, 6696857. [Google Scholar] [CrossRef] [PubMed]
- Lechner, K.; McKenzie, A.L.; Kränkel, N.; Von Schacky, C.; Worm, N.; Nixdorff, U.; Lechner, B.; Scherr, J.; Weingärtner, O.; Krauss, R.M. High-risk atherosclerosis and metabolic phenotype: The roles of ectopic adiposity, atherogenic dyslipidemia, and inflammation. Metab. Syndr. Relat. Disord. 2020, 18, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Velenosi, T.J.; Ben-Yakov, G.; Podszun, M.C.; Hercun, J.; Etzion, O.; Yang, S.; Nadal, C.; Haynes-Williams, V.; Huang, W.A.; González-Hódar, L.; et al. Postprandial plasma lipidomics reveal specific alteration of hepatic-derived diacylglycerols in nonalcoholic fatty liver disease. Gastroenterology 2022, 162, 1990–2003. [Google Scholar] [CrossRef] [PubMed]
- Pignoli, P.; Tremoli, E.; Poli, A.; Oreste, P.; Paoletti, R. Intimal plus medial thickness of the arterial wall: A direct measurement with ultrasound imaging. Circulation 1986, 74, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Katakami, N.; Mita, T.; Gosho, M.; Takahara, M.; Irie, Y.; Yasuda, T.; Matsuoka, T.A.; Osonoi, T.; Watada, H.; Shimomura, I. Clinical Utility of Carotid Ultrasonography in the Prediction of Cardiovascular Events in Patients with Diabetes: A Combined Analysis of Data Obtained in Five Longitudinal Studies. J. Atheroscler. Thromb. 2018, 25, 1053–1066. [Google Scholar] [CrossRef] [PubMed]
- Omori, K.; Katakami, N.; Arakawa, S.; Yamamoto, Y.; Ninomiya, H.; Takahara, M.; Matsuoka, T.A.; Tsugawa, H.; Furuno, M.; Bamba, T.; et al. Identification of plasma inositol and indoxyl sulfate as novel biomarker candidates for atherosclerosis in patients with type 2 diabetes. -Findings from Metabolome Analysis Using GC/MS. J. Atheroscler. Thromb. 2020, 27, 1053–1067. [Google Scholar] [CrossRef] [PubMed]
- Taya, N.; Katakami, N.; Omori, K.; Arakawa, S.; Hosoe, S.; Watanabe, H.; Takahara, M.; Miyashita, K.; Nishizawa, H.; Matsuoka, T.A.; et al. Evaluation of change in metabolome caused by comprehensive diabetes treatment: A prospective observational study of diabetes inpatients with gas chromatography/mass spectrometry-based non-target metabolomic analysis. J. Diabetes Investig. 2021, 12, 2232–2241. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A.; et al. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Terminology and Diagnostic Criteria Committee, Japan Society of Ultrasonics in Medicine. Standard method for ultrasound evaluation of carotid artery lesions. Jpn. J. Med. Ultrason. 2009, 36, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Izumi, Y.; Kusumoto, K.; Fukusaki, E.; Bamba, T. Wide target analysis of acylglycerols in miso (Japanese fermented soybean paste) by supercritical fluid chromatography coupled with triple quadrupole mass spectrometry and the analysis of the correlation between taste and both acylglycerols and free fatty acids. Rapid Commun. Mass. Spectrom. 2017, 31, 928–936. [Google Scholar] [CrossRef] [PubMed]
- Fushimi, T.; Izumi, Y.; Takahashi, M.; Hata, K.; Murano, Y.; Bamba, T. Dynamic metabolome analysis reveals the metabolic fate of medium-chain fatty acids in AML12 cells. J. Agric. Food Chem. 2020, 68, 11997–12010. [Google Scholar] [CrossRef] [PubMed]
Group 1 (n = 223) | Group 2 (n = 31) | |
---|---|---|
Sex: male | 128 (57.4) | 13 (41.9) |
Age (years) | 60.6 ± 11.4 | 63.9 ± 10.5 |
Diabetes duration (year) | 13.0 ± 9.7 * | 16.8 ± 11.1 |
Ever smoker | 118 (52.9) * | 15 (48.4) |
BMI (kg/m2) | 27.7 ± 5.9 | 26.7 ± 5.1 |
Hypertension | 147 (65.9) | 22 (71.0) |
Dyslipidemia | 150 (67.3) | 26 (83.9) |
CAD | 35 (15.7) | 7 (22.6) |
Statin user | 98 (43.9) | 22 (71.0) |
FPG (mmol/L) | 8.54 ± 2.90 † | 8.07 ± 2.56 |
HbA1c (mmol/mol) | 75.5 ± 19.7 * | 76.4 ± 22.6 |
HbA1c (%) | 9.1 ± 1.8 * | 9.1 ± 2.1 |
AST (U/L) | 29.8 ± 23.1 | 27.9 ± 17.1 |
ALT (U/L) | 32.0 ± 26.4 | 30.6 ± 27.4 |
γ-GTP (U/L) | 54.5 ± 74.1 * | 39.1 ± 30.4 |
eGFR (ml min−1 1.73 m−2) | 72.7 ± 24.0 | 70.8 ± 21.5 |
Uric acid (mmol/L) | 0.36 ± 0.09 | 0.34 ± 0.07 |
Total cholesterol (mmol/L) | 5.11 ± 1.30 | 5.20 ± 1.58 |
LDL cholesterol (mmol/L) | 2.97 ± 0.99 | 3.11 ± 1.26 |
HDL cholesterol (mmol/L) | 1.25 ± 0.37 | 1.37 ± 0.31 |
Triglycerides (mmol/L) | 1.56 (1.07–2.53) | 1.41 (0.89–2.66) |
u-Alb/Cr (mg/mmol) | 1.38 (0.55–7.40) ‡ | 1.41 (0.38–4.52) |
CIMT (mm) | 1.9 ± 0.8 | 2.0 ± 1.0 |
Group 1 (n = 220) | Group 2 (n = 31) | |||
---|---|---|---|---|
β | p-Value | β | p-Value | |
DG 16:0_16:0 | 0.155 | 0.029 | 0.519 | 0.006 |
DG 16:0_18:0 | 0.188 | 0.008 | NA | - |
DG 16:0_18:1 | 0.178 | 0.014 | 0.595 | 0.001 |
DG 16:0_18:2 | 0.180 | 0.011 | 0.577 | 0.002 |
DG 16:0_18:3 | 0.160 | 0.017 | 0.531 | 0.004 |
DG 16:0_20:4 | 0.145 | 0.041 | NA | - |
DG 16:1_18:2 | 0.130 | 0.048 | 0.451 | 0.013 |
DG 17:1_18:2 | 0.175 | 0.008 | NA | - |
DG 18:0_18:1 | 0.153 | 0.034 | 0.379 | 0.056 |
DG 18:1_18:1 | 0.146 | 0.040 | 0.493 | 0.008 |
DG 18:1_18:2 | 0.151 | 0.028 | 0.429 | 0.032 |
DG 18:1_18:3 | 0.146 | 0.029 | 0.392 | 0.048 |
DG 18:1_20:3 | 0.140 | 0.047 | NA | - |
DG 18:1_20:4 | 0.143 | 0.036 | 0.284 | 0.226 |
DG 18:2_18:2 | 0.136 | 0.041 | 0.286 | 0.170 |
DG 18:2_18:3 | 0.148 | 0.021 | 0.321 | 0.101 |
total DG | 0.167 | 0.017 | 0.512 | 0.007 |
PC 18:2_20:1 | 0.144 | 0.027 | −0.016 | 0.927 |
PE 16:0_18:0 | 0.157 | 0.014 | NA | - |
PE 17:0_18:2 | 0.128 | 0.045 | NA | - |
PE 18:1_18:1 | 0.134 | 0.038 | 0.278 | 0.126 |
PG 16:0_18:1 | 0.128 | 0.048 | 0.509 | 0.006 |
TG 16:0_16:0_18:0 | −0.122 | 0.049 | 0.486 | 0.007 |
Group 3 (n = 103) | |
---|---|
Sex: male | 48 (46.6) |
Age (years) | 60.8 ± 11.5 |
Diabetes duration (year) | 13.3 ± 9.7 |
Ever smoker | 46 (45.1) * |
BMI (kg/m2) | 27.7 ± 6.1 |
Hypertension | 66 (64.1) |
Dyslipidemia | 70 (68.0) |
Statin user | 42 (40.8) |
FPG (mmol/L) | 8.41 ± 3.37 |
HbA1c (mmol/mol) | 75.4 ± 18.7 |
HbA1c (%) | 9.0 ± 1.7 |
AST (U/L) | 32.0 ± 21.5 |
ALT (U/L) | 33.9 ± 25.9 |
γ-GTP (U/L) | 57.7 ± 87.0 |
eGFR (ml min−1 1.73 m−2) | 77.0 ± 23.1 |
Uric acid (mmol/L) | 0.35 ± 0.08 |
Total cholesterol (mmol/L) | 5.19 ± 1.24 |
LDL cholesterol (mmol/L) | 3.09 ± 0.98 |
HDL cholesterol (mmol/L) | 1.26 ± 0.33 |
Triglycerides (mmol/L) | 1.54 (1.03–2.52) |
u-Alb/Cr (mg/mmol) | 1.26 (0.56–3.64) † |
Suita score | 49.1 ± 10.2 ‡ |
Number of carotid ultrasonographies (twice/three times) | 20 (19.4)/83 (80.6) |
Baseline CIMT (mm) | 1.8 ± 0.8 |
Annual change in CIMT (mm/year) | 0.015 ± 0.131 |
Model 1 (n = 102) | Model 2 (n = 102) | |||
---|---|---|---|---|
β | p-Value | β | p-Value | |
DG 12:0_18:1 | 0.131 | 0.227 | 0.013 | 0.919 |
DG 12:0_18:2 | 0.156 | 0.150 | 0.046 | 0.722 |
DG 14:0_16:0 | 0.119 | 0.280 | −0.030 | 0.829 |
DG 14:0_18:1 | 0.228 | 0.038 | 0.134 | 0.397 |
DG 14:0_18:2 | 0.252 | 0.019 | 0.177 | 0.254 |
DG 16:0_16:0 | 0.184 | 0.119 | 0.005 | 0.975 |
DG 16:0_16:1 | 0.246 | 0.027 | 0.154 | 0.326 |
DG 16:0_18:0 | 0.284 | 0.017 | 0.193 | 0.306 |
DG 16:0_18:1 | 0.318 | 0.008 | 0.284 | 0.153 |
DG 16:0_18:2 | 0.381 | 0.001 | 0.425 | 0.019 |
DG 16:0_18:3 | 0.286 | 0.009 | 0.231 | 0.161 |
DG 16:0_20:4 | 0.296 | 0.011 | 0.230 | 0.164 |
DG 16:0_20:5 | 0.215 | 0.037 | 0.144 | 0.223 |
DG 16:1_18:1 | 0.365 | 0.001 | 0.492 | 0.004 |
DG 16:1_18:2 | 0.377 | <0.001 | 0.523 | 0.002 |
DG 17:1_18:2 | 0.402 | <0.001 | 0.509 | 0.001 |
DG 18:0_18:1 | 0.409 | <0.001 | 0.580 | 0.002 |
DG 18:1_18:1 | 0.370 | 0.001 | 0.455 | 0.012 |
DG 18:1_18:2 | 0.401 | <0.001 | 0.486 | 0.002 |
DG 18:1_18:3 | 0.373 | <0.001 | 0.440 | 0.004 |
DG 18:1_20:3 | 0.376 | 0.001 | 0.416 | 0.004 |
DG 18:1_20:4 | 0.351 | 0.001 | 0.348 | 0.016 |
DG 18:1_20:5 | 0.249 | 0.012 | 0.192 | 0.083 |
DG 18:2_18:2 | 0.373 | <0.001 | 0.382 | 0.006 |
DG 18:2_18:3 | 0.363 | <0.001 | 0.389 | 0.005 |
DG 18:2_20:4 | 0.340 | 0.001 | 0.306 | 0.017 |
total DG | 0.398 | <0.001 | 0.586 | 0.002 |
Added Lipid-Related Parameters | R2adj | ∆R2adj (95% CI) | |
---|---|---|---|
Model 1 | None | 0.101 | Reference |
Model 2 | Log-transformed triglycerides | 0.131 | 0.030 (−0.009, 0.122) |
Model 3 | Total DG | 0.206 | 0.105 (0.010, 0.232) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taya, N.; Katakami, N.; Omori, K.; Hosoe, S.; Watanabe, H.; Takahara, M.; Miyashita, K.; Konya, Y.; Obara, S.; Hidaka, A.; et al. Plasma Diacylglycerols Are Associated with Carotid Intima-Media Thickness Among Patients with Type 2 Diabetes: Findings from a Supercritical Fluid Chromatography/Mass Spectrometry-Based Semi-Targeted Lipidomic Analysis. Int. J. Mol. Sci. 2025, 26, 6977. https://doi.org/10.3390/ijms26146977
Taya N, Katakami N, Omori K, Hosoe S, Watanabe H, Takahara M, Miyashita K, Konya Y, Obara S, Hidaka A, et al. Plasma Diacylglycerols Are Associated with Carotid Intima-Media Thickness Among Patients with Type 2 Diabetes: Findings from a Supercritical Fluid Chromatography/Mass Spectrometry-Based Semi-Targeted Lipidomic Analysis. International Journal of Molecular Sciences. 2025; 26(14):6977. https://doi.org/10.3390/ijms26146977
Chicago/Turabian StyleTaya, Naohiro, Naoto Katakami, Kazuo Omori, Shigero Hosoe, Hirotaka Watanabe, Mitsuyoshi Takahara, Kazuyuki Miyashita, Yutaka Konya, Sachiko Obara, Ayako Hidaka, and et al. 2025. "Plasma Diacylglycerols Are Associated with Carotid Intima-Media Thickness Among Patients with Type 2 Diabetes: Findings from a Supercritical Fluid Chromatography/Mass Spectrometry-Based Semi-Targeted Lipidomic Analysis" International Journal of Molecular Sciences 26, no. 14: 6977. https://doi.org/10.3390/ijms26146977
APA StyleTaya, N., Katakami, N., Omori, K., Hosoe, S., Watanabe, H., Takahara, M., Miyashita, K., Konya, Y., Obara, S., Hidaka, A., Nakao, M., Takahashi, M., Izumi, Y., Bamba, T., & Shimomura, I. (2025). Plasma Diacylglycerols Are Associated with Carotid Intima-Media Thickness Among Patients with Type 2 Diabetes: Findings from a Supercritical Fluid Chromatography/Mass Spectrometry-Based Semi-Targeted Lipidomic Analysis. International Journal of Molecular Sciences, 26(14), 6977. https://doi.org/10.3390/ijms26146977