Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,062)

Search Parameters:
Keywords = plants parameters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4312 KB  
Review
From Biomass to Adsorbent: A Comprehensive Review on Bio-Derived Carbons for Dye Removal
by Buvaneswari Kuppusamy, Fathima Rigana Mohamed Ismail, Preethi Balakrishnan, Seong-Cheol Kim, Shakila Parveen Asrafali and Thirukumaran Periyasamy
Polymers 2026, 18(2), 180; https://doi.org/10.3390/polym18020180 (registering DOI) - 9 Jan 2026
Abstract
The escalating release of synthetic dyes from textile and allied industries has become a pressing global environmental issue due to their toxicity, persistence, and resistance to biodegradation. Among the various treatment strategies, adsorption has emerged as one of the most efficient, economical, and [...] Read more.
The escalating release of synthetic dyes from textile and allied industries has become a pressing global environmental issue due to their toxicity, persistence, and resistance to biodegradation. Among the various treatment strategies, adsorption has emerged as one of the most efficient, economical, and sustainable techniques for dye removal from aqueous environments. This review highlights recent advances in bio-derived adsorbents—particularly raw biomass powders, biochars, and activated carbons—developed from renewable waste sources such as agricultural residues, fruit peels, shells, and plant fibers. It systematically discusses adsorption mechanisms, the influence of process parameters, kinetic and thermodynamic models, and regeneration performance. Furthermore, the review emphasizes the superior adsorption efficiency and cost-effectiveness of biomass-derived carbons compared to conventional adsorbents. The integration of surface modification, magnetization, and nanocomposite formation has further enhanced dye uptake and reusability. Overall, this study underscores the potential of biomass-derived materials as sustainable alternatives for wastewater treatment and environmental remediation. Full article
(This article belongs to the Topic Advances in Carbon-Based Materials)
Show Figures

Figure 1

19 pages, 1894 KB  
Article
Regulatory Effects of Exogenous Trehalose on the Growth and Photosynthetic Characteristics of Celery (Apium graveolens L.) Under Salt Stress
by Yanqiang Gao, Liangmei Zhang, Wenjing Rui, Miao Zhang, Zixiao Liang, Kaiguo Pu, Youlin Chang, Yongwei Ma, Jingwen Huo, Jiongjie Zhang, Jing Li and Jianming Xie
Plants 2026, 15(2), 212; https://doi.org/10.3390/plants15020212 - 9 Jan 2026
Abstract
Salinity has been recognized as one of the major environmental stresses that restrict the growth and quality of celery (Apium graveolens L.). Therefore, this study investigates the impact of different NaCl concentrations on celery growth and photosynthetic characteristics, as well as the [...] Read more.
Salinity has been recognized as one of the major environmental stresses that restrict the growth and quality of celery (Apium graveolens L.). Therefore, this study investigates the impact of different NaCl concentrations on celery growth and photosynthetic characteristics, as well as the potential regulatory role of exogenous trehalose application in mitigating the stress-induced effects. The results indicated that an increase in NaCl concentration from 50 to 200 mM markedly inhibited the growth of celery plants compared to that under control conditions. The application of different concentrations of trehalose mitigated the inhibitory effects of salt stress (100 mM NaCl) on celery growth and photosynthesis. Among the different trehalose treatments, T3 (10 mM trehalose) exhibited the most significant effects, increasing the aboveground biomass, belowground biomass, plant height, chlorophyll a, chlorophyll b, total chlorophyll, and net photosynthetic rate compared to that of salt stress alone, respectively. Furthermore, trehalose treatments enhanced the various fluorescence parameters, including the maximum efficiency of PSII photochemistry (Fv/Fm), coefficient of photochemical quenching (qP), fluorescence intensity, and photosynthetic performance index (PIabs) under salt stress. Meanwhile, trehalose reduced intercellular carbon dioxide concentration, excess excitation energy (1-qP)/NPQ, heat dissipation per unit area (DIo/CSm), and energy dissipated per reaction center (DIo/RC). Additionally, the results of principal component analysis (PCA) and membership function comprehensive evaluation indicate that an appropriate concentration of trehalose positively alleviates the salnitiy-induced effects in celery. Overall, the T3 demonstrated the most promising effects on mitigating the effects of salt stress by decreasing the excess excitation energy of PSII in celery leaves through the heat dissipation pathway. This reduction lowers the excitation pressure on the reaction centers, enhances the activity of PSII reaction centers per unit cross-section, and improves photosynthesis activity, thereby improving the growth of celery plants under salt stress. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
28 pages, 3956 KB  
Article
A Novel Granular Formulation of Filamentous Fungi (Aspergillus tubingensis and Trichoderma virens): Development, Characterization, and Evaluation for Enhanced Phosphorus Availability in Agricultural Soils
by José Tomás Tavarez-Arriaga, Beatriz Flores-Samaniego, María del Rayo Sánchez-Carbente and Jorge Luis Folch-Mallol
Agronomy 2026, 16(2), 169; https://doi.org/10.3390/agronomy16020169 - 9 Jan 2026
Abstract
Phosphorus (P) is an essential nutrient in plant development, but its availability in the soil is often limited due to chemical fixation and poor solubility. This study presents the development, characterization and evaluation of a novel granular bioinoculant formulated with Aspergillus tubingensis (P-solubilizing) [...] Read more.
Phosphorus (P) is an essential nutrient in plant development, but its availability in the soil is often limited due to chemical fixation and poor solubility. This study presents the development, characterization and evaluation of a novel granular bioinoculant formulated with Aspergillus tubingensis (P-solubilizing) and Trichoderma virens (P-mineralizing) using clinoptilolite (CZ) as a carrier to improve P bioavailability. The formulation process included the evaluation of the proposed components, the standardization of conidia production in different media cultures and conditions, the elaboration and characterization of the bioinoculant and its evaluation in plants. In this study, in vitro analysis demonstrated the synergistic effect of the components, showing that in all treatments with dual inoculation and CZ, the amount of soluble phosphorus (SP) was higher than in their counterparts (from 27.8 to 36.8 mg·L−1). A concentration greater than 1 × 109 CFU·mL−1 was obtained by standardizing the production of conidia in different media (PDA, V8-Agar and Molasses Agar), which were then used to produce granular batches containing at least 2 × 107 CFU·g−1. Furthermore, the size (88% of the granules measured <4.5 mm), purity (<2 CFU·g−1 in 10−4 dilution), and moisture content of the prototype granules (3.3–3.8%) were confirmed to be within established international quality parameters. Plant evaluations in chili and tomato demonstrated the formulation efficacy, showing an increase in both soluble and foliar P content (with at least 30% more than controls), alongside improvements in all parameters evaluated that are related to plant growth promotion (with at least 15% more growth than controls). The development of this formulation prototype represents a focused effort toward process standardization and optimization required to validate developed formulations, thus promoting the advancement of applied biotechnology. Full article
(This article belongs to the Special Issue Plant–Fungus Interactions in Agronomic Systems)
Show Figures

Figure 1

28 pages, 4337 KB  
Article
Lavender as a Catalyst for Rural Development: Identifying Commercially Suitable Cultivation Sites Through Multi-Criteria Decision Analysis
by Serdar Selim, Mesut Çoşlu, Rifat Olgun, Nihat Karakuş, Emine Kahraman, Namık Kemal Sönmez and Ceren Selim
Land 2026, 15(1), 130; https://doi.org/10.3390/land15010130 - 9 Jan 2026
Abstract
Lavender is a perennial Mediterranean plant that has been cultivated throughout history for medicinal, aromatic, and cosmetic purposes. Due to its high economic and commercial value, it has become an important agricultural product worldwide. The low production cost, adaptability to environmental conditions, and [...] Read more.
Lavender is a perennial Mediterranean plant that has been cultivated throughout history for medicinal, aromatic, and cosmetic purposes. Due to its high economic and commercial value, it has become an important agricultural product worldwide. The low production cost, adaptability to environmental conditions, and demand for its versatile use in the global market make it a significant potential source of income for developing Mediterranean countries. This study aims to identify commercially suitable cultivation sites for Lavandula angustifolia Mill. using remote sensing (RS) and geographic information systems (GIS) technologies to support rural development. Within this scope, suitable cultivation habitat parameters for the species in open fields and natural conditions were determined; these parameters were weighted according to their importance using multi-criteria decision analysis (MCDA), and thematic maps were created for each parameter. The created maps were combined using weighted overlay analysis, and a final map was generated according to the suitability class. The results indicate that within the study area, 75,679.45 ha is mostly suitable, 388,832.71 ha is moderately suitable, 24,068.43 ha is marginally suitable, and 229,327.20 ha is not suitable. As a result, it has been observed that Lavandula angustifolia Mill., which is currently cultivated on approximately 4045 ha of land and contributes 429 tons of product to the regional economy, covers only a relatively small portion of the suitable cultivation sites identified in the study and is not utilized to its full potential. It is understood that the expansion of lavender cultivation in determined suitable sites has significant potential to substantially develop the region and its rural population in terms of both yield and production volume, and to involve women and youth entrepreneurs in agricultural employment. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

28 pages, 6064 KB  
Article
Heavy Metal-Induced Variability in Leaf Nutrient Uptake and Photosynthetic Traits of Avocado (Persea americana) in Mediterranean Soils: A Multivariate and Probabilistic Modeling of Soil-to-Plant Transfer Risks
by Hatim Sanad, Rachid Moussadek, Abdelmjid Zouahri, Majda Oueld Lhaj, Houria Dakak, Khadija Manhou and Latifa Mouhir
Plants 2026, 15(2), 205; https://doi.org/10.3390/plants15020205 - 9 Jan 2026
Abstract
Soil contamination by heavy metals (HMs) threatens crop productivity, food safety, and ecosystem health, especially in intensively cultivated Mediterranean regions. This study investigated the influence of soil HM contamination on nutrient uptake, photosynthetic traits, and metal bioaccumulation in avocado (Persea americana Mill.) [...] Read more.
Soil contamination by heavy metals (HMs) threatens crop productivity, food safety, and ecosystem health, especially in intensively cultivated Mediterranean regions. This study investigated the influence of soil HM contamination on nutrient uptake, photosynthetic traits, and metal bioaccumulation in avocado (Persea americana Mill.) orchards. Twenty orchard sites were sampled, collecting paired soil and mature leaf samples. Soil physicochemical properties and HM concentrations were determined, while leaves were analyzed for macro- and micronutrients, photosynthetic pigments, and metal contents. Bioaccumulation Factors (BAFs) were computed, and multivariate analyses (Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), Linear Discriminant Analysis (LDA), and Partial Least Squares Regression (PLSR)) were applied to assess soil–plant relationships, complemented by Monte Carlo simulations to quantify probabilistic contamination risks. Results revealed substantial inter-site variability, with leaf Cd and Pb concentrations reaching 0.92 and 3.54 mg/kg, and BAF values exceeding 1 in several orchards. PLSR models effectively predicted leaf Cd (R2 = 0.789) and Pb (R2 = 0.772) from soil parameters. Monte Carlo simulations indicated 15–25% exceedance of FAO/WHO safety limits for Cd and Pb. These findings demonstrate that soil metal accumulation substantially alters avocado nutrient balance and photosynthetic efficiency, highlighting the urgent need for site-specific soil monitoring and sustainable remediation strategies in contaminated orchards. Full article
(This article belongs to the Special Issue Heavy Metal Contamination in Plants and Soil)
Show Figures

Figure 1

21 pages, 4873 KB  
Article
Surface-Functionalized Silver Nanoparticles Boost Oxidative Stress and Prime Potatoes Against Phytopathogens
by Alexey A. Kudrinsky, Dmitry M. Mikhaylov, Olga A. Shapoval, Georgii V. Lisichkin and Yurii A. Krutyakov
Plants 2026, 15(2), 203; https://doi.org/10.3390/plants15020203 - 9 Jan 2026
Abstract
The study investigates the use of silver nanoparticles (AgNPs) in agriculture, focusing on their potential to enhance the immune response of potato (Solanum tuberosum L.) plants against phytopathogenic attacks. The research highlights how AgNPs, stabilized by biologically active polymers polyhexamethylene biguanide and [...] Read more.
The study investigates the use of silver nanoparticles (AgNPs) in agriculture, focusing on their potential to enhance the immune response of potato (Solanum tuberosum L.) plants against phytopathogenic attacks. The research highlights how AgNPs, stabilized by biologically active polymers polyhexamethylene biguanide and tallow amphopolycarboxyglycinate, can induce oxidative stress. Triple foliar application of 0.1–9.0 g/ha silver nanoparticles at the budding and later stages demonstrated significant efficacy in suppressing diseases caused by Phytophthora infestans and Alternaria solani (over 60%). This effect was linked to the increased activity of peroxidase—over 30–50%—and the decreased catalase activity, indicative of a well-coordinated oxidative stress response to the invasion of P. infestans and A. solani. The results suggest that AgNPs in low concentrations can prime the plant’s innate immune system, enhancing its resistance without detrimental effects on growth parameters, thus contributing to the improved crop yield. These findings underscore the potential of AgNPs not as traditional biocides, but as intelligent elicitors of plant-induced resistance, positioning them as next-generation tools for sustainable crop protection and yield optimization, which can be applied at extremely low doses (less than 10 g/ha of active substance). Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Graphical abstract

24 pages, 2679 KB  
Article
Optimization of Stryphnodendron adstringens (Barbatimão) Extraction: Chemical Evaluation, Cytotoxicity, Antioxidant and Anti-Inflammatory Activities
by Cynthia Nara Pereira de Oliveira, Thainá Gomes Peixoto, Luiz Gustavo Modesto Lobo Teixeira, Samuel Beiral Alves Pessoa, Nicole Maia Pedrosa, Viviane Flores Xavier, Paula Melo de Abreu Vieira, Cristina Duarte Vianna Soares, André Augusto Gomes Faraco, Karina Barbosa de Queiroz, Fernanda Guimarães Drummond e Silva and Rachel Oliveira Castilho
Molecules 2026, 31(2), 224; https://doi.org/10.3390/molecules31020224 - 9 Jan 2026
Abstract
Extracts from the stem bark of Stryphnodendron adstringens (barbatimão) exhibit relevant medicinal properties, such as anti-inflammatory, antioxidant, antimicrobial, and wound-healing activities, which reinforce their potential for developing herbal medicines. The $550 billion plant bioactive market (by 2030) demands safer, green-chemistry-aligned extraction methods for [...] Read more.
Extracts from the stem bark of Stryphnodendron adstringens (barbatimão) exhibit relevant medicinal properties, such as anti-inflammatory, antioxidant, antimicrobial, and wound-healing activities, which reinforce their potential for developing herbal medicines. The $550 billion plant bioactive market (by 2030) demands safer, green-chemistry-aligned extraction methods for responsible industrial scaling. In this study, dry extracts obtained from the stem bark of S. adstringens were obtained by ultrasound-assisted maceration in one- and two-step extraction systems. Parameters such as yield, solvent evaporation time, cost, acute toxicity, epigallocatechin gallate (EGCG) concentration, cell viability, antioxidant potential, and anti-inflammatory activity were evaluated. High-EGCG two-step organic extracts were industrially difficult, needing more raw material and toxic solvents. In contrast, the single-step extracts showed a better balance between yield, cost, safety, and biological efficacy. All extracts showed cell viability above 70% at safe concentrations and significantly reduced the production of inflammatory cytokines. Thus, the results confirm that optimizing single-step extraction, with lower environmental impact solvents, enables producing safe and effective polyphenol-rich extracts, consolidating water as the main candidate for industrial-scale phytotherapeutic formulations of barbatimão, in line with its traditional use in infusions. Full article
(This article belongs to the Special Issue Bioactive Molecules from Natural Sources and Their Functions)
Show Figures

Graphical abstract

20 pages, 3603 KB  
Article
Dynamic Modeling and Performance Assessment of Khorshed Wastewater Treatment Plant Using GPS-X: A Case Study, Alexandria, Egypt
by Ahmed H. El Hawary, Nadia Badr ElSayed, Chérifa Abdelbaki, Mohamed Youssef Omar, Mohamed A. Awad, Bernhard Tischbein, Navneet Kumar and Maram El-Nadry
Water 2026, 18(2), 174; https://doi.org/10.3390/w18020174 - 8 Jan 2026
Abstract
Water scarcity continues to challenge arid regions such as Egypt, where growing population demands, climate change impacts, and increasing agricultural pressures intensify the need for sustainable water management. Treated wastewater has emerged as a viable alternative resource, provided that the effluent meets stringent [...] Read more.
Water scarcity continues to challenge arid regions such as Egypt, where growing population demands, climate change impacts, and increasing agricultural pressures intensify the need for sustainable water management. Treated wastewater has emerged as a viable alternative resource, provided that the effluent meets stringent quality standards for safe reuse. The purpose of this study was to develop a comprehensive model of the Khorshed Wastewater Treatment Plant (KWWTP) to depict the processes used for biological nutrient removal. Operational data was gathered and examined over a period of 18 months to describe the quality of wastewater discharged by the Advanced Sequencing Batch Reactor (ASBR) of the plant, using specific physicochemical parameters like TSS, COD, BOD5, and N-NO3. A process flow diagram integrating the Activated Sludge Model No. 1 (ASM1) for biological nutrient removal was created using the GPS-X. The study determined the parameters influencing the nutrient removal efficiency by analyzing the responsiveness of kinetic and stoichiometric parameters. Variables related to denitrification, autotrophic growth, and yield for heterotrophic biomass were the main focus of the calibration modifications. The results showed that the Root Mean Square Error (RMSE) for the dynamic-state was COD (0.02), BOD5 (0.07), N-NO3 (0.75), and TSS (0.82), and for the steady state was COD (0.04), BOD5 (0.11), N-NO3 (0.67), and TSS (0.10). Since the model’s accuracy was deemed acceptable, it provides a validated foundation for future scenario analysis and operational decision support that produces a trustworthy model for predicting effluent data for the concentrations of TSS, COD, BOD5, and N-NO3 in steady state conditions. Dynamic validation further confirmed model reliability, despite modest discrepancies in TSS and nitrate predictions; addressing this issue necessitates further research. Full article
Show Figures

Figure 1

21 pages, 3421 KB  
Article
Bioactive-Rich Piper sarmentosum Aqueous Extract Mitigates Osteoarthritic Pathology by Enhancing Anabolic Activity and Attenuating NO-Driven Catabolism in Human Chondrocytes
by Yi Ting Lee, Mohd Heikal Mohd Yunus, Rizal Abdul Rani, Chiew Yong Ng, Muhammad Dain Yazid, Azizah Ugusman and Jia Xian Law
Biomedicines 2026, 14(1), 128; https://doi.org/10.3390/biomedicines14010128 - 8 Jan 2026
Abstract
Background: Osteoarthritis (OA) is a prevalent degenerative joint disease often causing functional disability. Current therapies provide only temporary relief and can cause adverse effects that frequently result in pain and disability. Current pharmacological options offer only temporary symptom relief and may cause adverse [...] Read more.
Background: Osteoarthritis (OA) is a prevalent degenerative joint disease often causing functional disability. Current therapies provide only temporary relief and can cause adverse effects that frequently result in pain and disability. Current pharmacological options offer only temporary symptom relief and may cause adverse effects. Piper sarmentosum (PS), a plant traditionally used for its medicinal properties, has demonstrated antioxidant and anti-inflammatory activities that may counteract OA-related degeneration. This study provides preliminary insight into the therapeutic potential of PS aqueous extract in human OA chondrocytes. Methods: Compounds in the PS aqueous extract were profiled using liquid chromatography–tandem mass spectrometry (LC-MS/MS). Primary human OA chondrocytes (HOCs) were treated with 0.5, 2, and 4 µg/mL of PS aqueous extract for 72 h. Key OA-related parameters were assessed, including anabolic markers (sulfated glycosaminoglycan (sGAG), collagen type II (COL II), aggrecan core protein (ACP), SRY-box transcription factor 9 (SOX9)), catabolic markers (matrix metalloproteinase (MMP) 1, MMP13, cyclooxygenase 2 (COX2)), oxidative stress (nitric oxide (NO) production, inducible NO synthase (iNOS) expression), and inflammatory responses (interleukin (IL) 6). Gene expression was quantified using qPCR, and protein levels were evaluated using the colorimetric method, immunocytochemistry, and Western blot. Results: A total of 101 compounds were identified in the extract, including vitexin, pterostilbene, and glutathione—bioactives known for antioxidant, anti-inflammatory, and chondroprotective functions. PS-treated chondrocytes maintain healthy polygonal morphology. PS aqueous extract significantly enhanced anabolic gene expression (COL2A1, ACP, SOX9) and sGAG production, while concurrently suppressing COX2 expression and NO synthesis. Additionally, PS aqueous extract reduced COX2 and iNOS protein levels, indicating inhibition of the NO signaling pathway. Catabolic activity was attenuated, and inflammatory responses were partially reduced. Conclusions: PS aqueous extract exhibits promising chondroprotective, antioxidant, and anti-inflammatory effects in human OA chondrocytes, largely through the suppression of NO-mediated catabolic signaling. The presence of multiple bioactive compounds supports its mechanistic potential. These findings highlight PS aqueous extract as a potential therapeutic candidate for OA management. Further ex vivo and in vivo studies are warranted to validate its efficacy and clarify its mechanism in joint-tissue environments. Full article
Show Figures

Graphical abstract

20 pages, 2107 KB  
Article
Mild Salt Stress Impacts Physio-Chemical Attributes and Promotes Rebaudioside a Accumulation in Stevia rebaudiana Bertoni Cultivated in Floating Systems
by Clarissa Clemente, Silvia Tavarini, Marco Landi, Andrea Martini, Luca Incrocci, Lucia Guidi and Luciana G. Angelini
Agriculture 2026, 16(2), 159; https://doi.org/10.3390/agriculture16020159 - 8 Jan 2026
Abstract
Salt stress is one of the most harmful abiotic stresses that strongly affects plant growth and crop yield, limiting agricultural production across the Mediterranean area. Consequently, there is a growing need to identify resilient crops capable of adapting to saline conditions and enhancing [...] Read more.
Salt stress is one of the most harmful abiotic stresses that strongly affects plant growth and crop yield, limiting agricultural production across the Mediterranean area. Consequently, there is a growing need to identify resilient crops capable of adapting to saline conditions and enhancing desirable qualitative traits through a wide spectrum of physiological, biochemical, and molecular mechanisms. Therefore, this study aimed to investigate the effects of four different NaCl concentrations (0, 12.5, 25, and 50 mM) on the growth rates, biometric and productive characteristics, leaf gas exchange, and biochemical traits of Stevia rebaudiana Bertoni plants grown hydroponically (in a floating raft system) in a glasshouse. The results showed that NaCl-treated plants exhibited reduced growth parameters and productivity and a lower content of photosynthetic pigment content compared to the control. On the other hand, an increase in antioxidant capacity was observed due to the significant accumulation of total phenols and flavonoids, especially when stevia plants were treated with 50 mM NaCl. Similarly, the leaf concentration of ascorbic acid and glutathione remarkably increased. This provides new insight into the antioxidant defense strategy of S. rebaudiana under salt stress, demonstrating that stevia plants rely mainly on non-enzymatic mechanisms to counter oxidative stress. Although the highest salinity level (50 mM NaCl) resulted in the lowest content of steviol glycosides (stevioside + rebaudioside A), plants treated with 25 mM NaCl showed both the highest rebaudioside A content and Reb A/Stev ratio, which are desirable properties for the production of high-quality natural sweeteners. Overall, these findings underline that stevia can be considered a moderately salt-tolerant species, and mild stress conditions are able to promote the biosynthesis of interesting secondary metabolites, such as polyphenols and rebaudioside A. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

15 pages, 1689 KB  
Article
Integration of Machine-Learning Weather Forecasts into Photovoltaic Power Plant Modeling: Analysis of Forecast Accuracy and Energy Output Impact
by Hamza Feza Carlak and Kira Karabanova
Energies 2026, 19(2), 318; https://doi.org/10.3390/en19020318 - 8 Jan 2026
Abstract
Accurate forecasting of meteorological parameters is essential for the reliable operation and performance optimization of photovoltaic (PV) power plants. Among these parameters, ambient temperature and global horizontal irradiance (GHI) have the most direct impact on PV output. This study investigates the integration of [...] Read more.
Accurate forecasting of meteorological parameters is essential for the reliable operation and performance optimization of photovoltaic (PV) power plants. Among these parameters, ambient temperature and global horizontal irradiance (GHI) have the most direct impact on PV output. This study investigates the integration of machine-learning-based (ML) weather forecasts into PV energy modeling and quantifies how forecast accuracy propagates into PV generation estimation errors. Three commonly used ML algorithms—Artificial Neural Networks (ANN), Support Vector Regression (SVR), and Random Forest (RF)—were developed and compared. Antalya (Turkey), representing a Mediterranean climate zone, was selected as the case study location. High-resolution meteorological data from 2018–2023 were used to train and evaluate the forecasting models for prediction horizons from 1 to 10 days. Model performance was assessed using root mean square error (RMSE) and the coefficient of determination (R2). The results indicate that RF provides the highest accuracy for temperature prediction, while ANN demonstrates superior performance for GHI forecasting. The generated forecasts were incorporated into a PV power output simulation using the PVLib library. The analysis reveals that inaccuracies in GHI forecasts have the largest impact on PV energy estimation, whereas temperature forecast errors contribute significantly less. Overall, the study demonstrates the practical benefits of integrating ML-based meteorological forecasting with PV performance modeling and provides guidance on selecting suitable forecasting techniques for renewable energy system planning and optimization. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
Show Figures

Figure 1

22 pages, 4206 KB  
Article
Sorbitol-Stabilized Silicon Formulation Improve Root Traits and Antioxidant Response in Drought-Stressed Soybean
by Felipe Sousa Franco, Jonas Pereira de Souza Júnior, Renato de Mello Prado, Milton Garcia Costa, Cid Naudi Silva Campos, Leonardo Motta Berzaghi Junior, Nícolas Leite Capucin, Gustavo Paparotto Lopes, Gabriel Sgarbiero Montanha, Marcia Leticia Monteiro Gomes, Ana Carina da Silva Cândido Seron, Hudson Wallace Pereira de Carvalho, José Lavres and Renan Caldas Umburanas
Plants 2026, 15(2), 197; https://doi.org/10.3390/plants15020197 - 8 Jan 2026
Abstract
Silicon (Si) plays a critical role in regulating plant physiological processes, particularly through its influence on non-enzymatic antioxidant systems and amino acid metabolism. This study aims to assess soybean performance in response to both soil and foliar Si applications under well-watered and drought [...] Read more.
Silicon (Si) plays a critical role in regulating plant physiological processes, particularly through its influence on non-enzymatic antioxidant systems and amino acid metabolism. This study aims to assess soybean performance in response to both soil and foliar Si applications under well-watered and drought conditions, with the goal of enhancing Si accumulation in plant tissues and potentially strengthening the crop’s physiological responses to water deficit stress. This is especially pertinent given that the mechanisms underlying Si fertilization and its contribution to drought tolerance in soybean remain poorly understood. Greenhouse experiments were conducted using a 3 × 2 factorial design. The factors were: (i) three foliar Si treatments: control (no Si), potassium silicate (SiK; 128 g L−1 Si, 126.5 g L−1 K2O, pH 12.0), and sorbitol-stabilized potassium silicate (SiKe; 107 g L−1 Si, 28.4 g L−1 K2O, 100 mL L−1 sorbitol, pH 11.8); and (ii) two soil water levels: well-watered (80% field capacity) and water-restricted (40% field capacity), the latter simulating tropical dry spells. Silicon was applied to the soil via irrigation and to the leaves via foliar spraying prior to the onset water restriction. All Si solutions were adjusted to pH 7.0 with 1 M HCl immediately before application. Potassium (K) levels were standardized across treatments through supplementary applications of KCl to both soil and foliage. Biometric and physiological parameters were subsequently measured. Sorbitol-stabilized Si enhanced Si accumulation in soybean tissues and improved plant resilience under both well-watered and drought conditions by promoting key physiological traits, including increased levels of daidzein and ascorbic acid levels, along with reduced amino acid concentrations. It also improved biometric parameters such as leaf area, root development, and number of pods per plant. These findings further support the role of Si as a beneficial element in enhancing stress tolerance and contributing to sustainable agricultural practices. Full article
(This article belongs to the Special Issue Silicon and Its Physiological Role in Plant Growth and Development)
Show Figures

Figure 1

18 pages, 2761 KB  
Article
Effectiveness, Feasibility and Seasonality of Subsewershed Disease Surveillance in Socially and Economically Diverse Areas of Cincinnati, Ohio, in 2023 and 2024; Insights from Laboratory and Rapid Testing Analysis
by Dustin Servello, Hila Korach-Rechtman, Scott M. Bessler, David Partridge, Carrie Turner, Michelle White, Zuzana Bohrerova, Jill Stiverson, Purnima Chalasani, Justin Kellar, Erica Leasure, Sviatlana Haubner, Swairah Rehman, Kim Wright and Maryse Amin
Water 2026, 18(2), 158; https://doi.org/10.3390/w18020158 - 7 Jan 2026
Abstract
Wastewater surveillance gained popularity as a tool supporting public health decision-making during the COVID-19 pandemic. In this study, we monitored four distinct socially vulnerable communities in Cincinnati, Ohio, by monitoring four subsewersheds using 15 upstream locations over two time periods: spring/summer (2023) and [...] Read more.
Wastewater surveillance gained popularity as a tool supporting public health decision-making during the COVID-19 pandemic. In this study, we monitored four distinct socially vulnerable communities in Cincinnati, Ohio, by monitoring four subsewersheds using 15 upstream locations over two time periods: spring/summer (2023) and fall/winter (2023–2024). The goal of our study was to evaluate the feasibility and effectiveness of monitoring wastewater in socially and economically diverse subsewersheds. A number of 24 h composite samples were collected twice a week and analyzed for SARS-CoV-2 viral loads in the four subsewersheds and two wastewater treatment plants (WWTPs). Wastewater quality parameters (electric conductivity, pH, temperature, ORP) were also measured continuously. During the fall/winter period, increased clinical cases were correlated with high SARS-CoV-2 viral concentrations indicated by both subsewershed and WWTP monitoring. In our study, subsewershed monitoring did not provide early warning of SARS-CoV-2 levels in wastewater and cases compared to WWTP wastewater monitoring during the fall/winter period when outbreaks with higher pathogen levels often occur. This was possibly due to the proximity of the selected subsewersheds to the WWTPs. Although two socially vulnerable subsewersheds had higher SARS-CoV-2 viral concentrations in wastewater, the most vulnerable subsewershed had the lowest wastewater concentrations and the lowest number of reported cases during our study. Therefore, social vulnerability is not always the best predictor of the community COVID-19 burden since other factors may play a role in community infection, including transiency and population age distribution. This study presents some challenges and important findings from subsewershed SARS-CoV-2 wastewater monitoring during two seasons in Ohio. Full article
(This article belongs to the Special Issue Wastewater-Based Epidemiology (WBE) Research, 2nd Edition)
Show Figures

Figure 1

20 pages, 1715 KB  
Article
Influence of the Sunlike Light Spectral Composition on Radish in Controlled Environment Agriculture: Morphophysiological Characteristics and Diffuse Reflection Indices of Leaves
by Elena V. Kanash, Tatiana E. Kuleshova, Elizaveta M. Ezerina, Dmitry V. Rusakov, Natalia V. Kocherina, Alexey V. Dobrokhotov, Oleg A. Gorshkov, Gayane G. Panova and Nadezhda G. Sinyavina
Horticulturae 2026, 12(1), 74; https://doi.org/10.3390/horticulturae12010074 - 7 Jan 2026
Abstract
Creating an optimal light environment for different crops is crucial for achieving high yields under controlled environment agriculture conditions. Currently, there are no optimal technologies, including lighting technologies, for growing root crops (in particular radish) in CEA (Controlled Environment Agriculture). This study examined [...] Read more.
Creating an optimal light environment for different crops is crucial for achieving high yields under controlled environment agriculture conditions. Currently, there are no optimal technologies, including lighting technologies, for growing root crops (in particular radish) in CEA (Controlled Environment Agriculture). This study examined the effects of HPS (High-pressure sodium vapor lamps) and three original sunlike full-spectrum LED lamps on the morphophysiological characteristics and the diffuse reflectance indices of the leaves of two contrast radish cultivars. It was found that a higher blue light content (24%) in the spectrum of the LED 3 lamp contributed to the formation of radish plants with a more compact leaf rosette and maximum yield of roots (up to 19%) compared to the other two types of LED lamps. When treated with LED 3, photosynthesis efficiency was probably higher compared to LED 1 and LED 2, which led to a significant decrease in reflected radiation, especially in the blue and red ranges (by 5–143% and 32–86%, respectively). It was found that the genotype had a significant effect on all morphophysiological parameters of radish, while lighting treatment only affected the integral parameters (Pr—proportion of root crop, and Ai—attraction index) and leaf thickness. However, lighting treatment exhibited a greater impact on leaf reflection indices compared to the genotype, especially those related to chlorophyll content. The results of the study indicate that LED 3 lamps, simulating natural light at midday, are suitable for the production of radish root crops under CEA conditions. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

17 pages, 1684 KB  
Article
The Effect of Light Intensity on the Photosynthetic Parameters of Tomato Rootstocks
by Kristina Laužikė, Tanzila Rafique, Vitalis Laužikas and Astrit Balliu
Agronomy 2026, 16(2), 154; https://doi.org/10.3390/agronomy16020154 - 7 Jan 2026
Abstract
The quality and yield of grafted tomato seedlings are significantly influenced by the selection of high-quality and robust rootstocks. The effectiveness of these rootstocks is dependent on various environmental factors and genetic traits. One of the most critical factors in cultivation is light, [...] Read more.
The quality and yield of grafted tomato seedlings are significantly influenced by the selection of high-quality and robust rootstocks. The effectiveness of these rootstocks is dependent on various environmental factors and genetic traits. One of the most critical factors in cultivation is light, as its intensity plays a vital role in seedling growth, overall development, metabolic processes, the efficiency of the photosynthetic system, and other essential plant functions. The aim of this study was to investigate the changes in the photosynthetic system activity and the growth of tomato rootstocks depending on the light intensity. The study was conducted at the Institute of Horticulture, Lithuanian Center for Agricultural and Forestry Sciences, focusing on four tomato rootstock varieties grown in a controlled environment. The plants were grown at a temperature of +23/19 °C and a relative humidity of 55–60%, under different levels of illumination (high-pressure sodium lamps), PPFD: 150, 250 and 350 ± 10 µmol m−2 s−1. The results indicated that optimal growth and biomass accumulation occurred at around 250 µmol m−2 s−1, with the most significant growth observed in the rootstocks ‘Auroch’ and ‘Goldrake’. Higher light intensities, specifically at 350 µmol m−2 s−1, did not consistently enhance growth and could even lead to a reduction in leaf area and overall growth in some cultivars such as ‘Auroch’ and ‘TOR23901’. Although photosynthetic parameters improved with increased light intensity up to 350 µmol m−2 s−1, these enhancements did not translate into additional growth benefits. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

Back to TopTop