Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (856)

Search Parameters:
Keywords = plant stem cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 895 KiB  
Article
A Phytochemical and Biological Characterization of Cynara cardunculus L. subsp. scolymus Cultivar “Carciofo di Procida”, a Traditional Italian Agri-Food Product (PAT) of the Campania Region
by Giuseppina Tommonaro, Giulia De Simone, Carmine Iodice, Marco Allarà and Adele Cutignano
Molecules 2025, 30(15), 3285; https://doi.org/10.3390/molecules30153285 - 5 Aug 2025
Abstract
The artichoke (Cynara cardunculus L. subsp. scolymus) is an endemic perennial plant of the Mediterranean area commonly consumed as food. It is known since ancient times for its beneficial properties for human health, among which its antioxidant activity due to polyphenolics [...] Read more.
The artichoke (Cynara cardunculus L. subsp. scolymus) is an endemic perennial plant of the Mediterranean area commonly consumed as food. It is known since ancient times for its beneficial properties for human health, among which its antioxidant activity due to polyphenolics stands out. In the frame of our ongoing studies aiming to highlight the biodiversity and the chemodiversity of natural resources, we investigated the phenolic and saponin content of the cultivar “Carciofo di Procida” collected at Procida, an island of the Gulf of Naples (Italy). Along with the edible part of the immature flower, we included in our analyses the stem and the external bracts, generally discarded for food consuming or industrial preparations. The LCMS quali-quantitative profiling of polyphenols (including anthocyanins) and cynarasaponins of this cultivar is reported for the first time. In addition to antioxidant properties, we observed a significant cytotoxic activity due to extracts from external bracts against human neuroblastoma SH-SY5Y cell lines with 43% of cell viability, after 24 h from the treatment (50 μg/mL), and less potent but appreciable effects also against human colorectal adenocarcinoma CaCo-2 cells. This suggests that the different metabolite composition may be responsible for the bioactivity of extracts obtained from specific parts of artichoke and foresees a possible exploitation of the discarded material as a source of beneficial compounds. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—3rd Edition)
Show Figures

Figure 1

18 pages, 1052 KiB  
Article
Impact of Kickxia elatine In Vitro-Derived Stem Cells on the Biophysical Properties of Facial Skin: A Placebo-Controlled Trial
by Anastasia Aliesa Hermosaningtyas, Anna Kroma-Szal, Justyna Gornowicz-Porowska, Maria Urbanska, Anna Budzianowska and Małgorzata Kikowska
Appl. Sci. 2025, 15(15), 8625; https://doi.org/10.3390/app15158625 (registering DOI) - 4 Aug 2025
Abstract
The growing demand for natural and sustainable skincare products has driven interest in plant-based active ingredients, especially from in vitro cultures. This placebo-controlled study investigated the impact of a facial cream containing 2% Kickxia elatine (L.) Dumort cell suspension culture extract on various [...] Read more.
The growing demand for natural and sustainable skincare products has driven interest in plant-based active ingredients, especially from in vitro cultures. This placebo-controlled study investigated the impact of a facial cream containing 2% Kickxia elatine (L.) Dumort cell suspension culture extract on various skin biophysical parameters. The cream was applied to the cheek once daily for six weeks on 40 healthy female volunteers between the ages of 40 to 49. The evaluated skin parameters including skin hydration, transepidermal water loss (TEWL), erythema intensity (EI), melanin intensity (MI), skin surface pH, and skin structure, wrinkle depth, vascular lesions, and vascular discolouration. The results indicated that significant improvements were observed in skin hydration (from 40.36 to 63.00 AU, p < 0.001) and there was a decrease in TEWL score (14.82 to 11.76 g/h/m2, p < 0.001), while the skin surface pH was maintained (14.82 to 11.76 g/h/m2, p < 0.001). Moreover, the K. elatine cell extract significantly improved skin structure values (9.23 to 8.50, p = 0.028), reduced vascular lesions (2.72 to 1.54 mm2, p = 0.011), and lowered skin discolouration (20.98% to 14.84%, p < 0.001), indicating its moisturising, protective, brightening, and soothing properties. These findings support the potential use of K. elatine cell extract in dermocosmetic formulations targeting dry, sensitive, or ageing skin. Full article
Show Figures

Figure 1

37 pages, 2918 KiB  
Review
Guardians of Water and Gas Exchange: Adaptive Dynamics of Stomatal Development and Patterning
by Eleni Giannoutsou, Ioannis-Dimosthenis S. Adamakis and Despina Samakovli
Plants 2025, 14(15), 2405; https://doi.org/10.3390/plants14152405 - 3 Aug 2025
Viewed by 175
Abstract
Stomata, highly specialized structures that evolved on the aerial surfaces of plants, play a crucial role in regulating hydration, mitigating the effects of abiotic stress. Stomatal lineage development involves a series of coordinated events, such as initiation, stem cell proliferation, and cell fate [...] Read more.
Stomata, highly specialized structures that evolved on the aerial surfaces of plants, play a crucial role in regulating hydration, mitigating the effects of abiotic stress. Stomatal lineage development involves a series of coordinated events, such as initiation, stem cell proliferation, and cell fate determination, ultimately leading to the differentiation of guard cells. While core transcriptional regulators and signaling pathways controlling stomatal cell division and fate determination have been characterized over the past twenty years, the molecular mechanisms linking stomatal development to dynamic environmental cues remain poorly understood. Therefore, stomatal development is considered an active and compelling frontier in plant biology research. On the one hand, this review aims to provide an understanding of the molecular networks governing stomatal ontogenesis, which relies on the activation and function of the transcription factors SPEECHLESS (SPCH), MUTE, and FAMA; the EPF–TMM and ERECTA receptor systems; and downstream MAPK signaling. On the other hand, it synthesizes current discoveries of how hormonal signaling pathways regulate stomatal development in response to environmental changes. As the climate crisis intensifies, the understanding of the complex interplay between stress stimuli and key factors regulating stomatal development may reveal key mechanisms that enhance plant resilience under adverse environmental conditions. Full article
Show Figures

Figure 1

32 pages, 2108 KiB  
Review
Phytochemical Composition and Multifunctional Applications of Ricinus communis L.: Insights into Therapeutic, Pharmacological, and Industrial Potential
by Tokologo Prudence Ramothloa, Nqobile Monate Mkolo, Mmei Cheryl Motshudi, Mukhethwa Michael Mphephu, Mmamudi Anna Makhafola and Clarissa Marcelle Naidoo
Molecules 2025, 30(15), 3214; https://doi.org/10.3390/molecules30153214 - 31 Jul 2025
Viewed by 296
Abstract
Ricinus communis (Euphorbiaceae), commonly known as the castor oil plant, is prized for its versatile applications in medicine, industry, and agriculture. It features large, deeply lobed leaves with vibrant colours, robust stems with anthocyanin pigments, and extensive root systems for nutrient absorption. Its [...] Read more.
Ricinus communis (Euphorbiaceae), commonly known as the castor oil plant, is prized for its versatile applications in medicine, industry, and agriculture. It features large, deeply lobed leaves with vibrant colours, robust stems with anthocyanin pigments, and extensive root systems for nutrient absorption. Its terminal panicle-like inflorescences bear monoecious flowers, and its seeds are enclosed in prickly capsules. Throughout its various parts, R. communis harbours a diverse array of bioactive compounds. Leaves contain tannins, which exhibit astringent and antimicrobial properties, and alkaloids like ricinine, known for anti-inflammatory properties, as well as flavonoids like rutin, offering antioxidant and antibacterial properties. Roots contain ellagitannins, lupeol, and indole-3-acetic acid, known for anti-inflammatory and liver-protective effects. Seeds are renowned for ricin, ricinine, and phenolic compounds crucial for industrial applications such as biodegradable polymers. Pharmacologically, it demonstrates antioxidant effects from flavonoids and tannins, confirmed through minimum inhibitory concentration (MIC) assays for antibacterial activity. It shows potential in managing diabetes via insulin signalling pathways and exhibits anti-inflammatory properties by activating nuclear factor erythroid 2-related factor 2 (Nrf2). Additionally, it has anti-fertility effects and potential anticancer activity against cancer stem cells. This review aims to summarize Ricinus communis’s botanical properties, therapeutic uses, chemical composition, pharmacological effects, and industrial applications. Integrating the current knowledge offers insights into future research directions, emphasizing the plant’s diverse roles in agriculture, medicine, and industry. Full article
Show Figures

Figure 1

15 pages, 752 KiB  
Article
Enhanced Anti-Inflammatory Effects of Rosemary (Salvia rosmarinus) Extracts Modified with Pseudomonas shirazensis Nanoparticles
by Enrique Gutierrez-Albanchez, Elena Fuente-González, Svitlana Plokhovska, Francisco Javier Gutierrez-Mañero and Beatriz Ramos-Solano
Antioxidants 2025, 14(8), 931; https://doi.org/10.3390/antiox14080931 - 29 Jul 2025
Viewed by 273
Abstract
Rosemary (Salvia rosmarinus) is renowned for its antioxidant, anti-inflammatory, and antihyperglycemic properties, largely attributed to its rich phytochemical profile. This study evaluates the potential of metabolites from Pseudomonas shirazensis NFV3, formulated in silver nanoparticles (AgNPs), to enhance the bioactivity of rosemary [...] Read more.
Rosemary (Salvia rosmarinus) is renowned for its antioxidant, anti-inflammatory, and antihyperglycemic properties, largely attributed to its rich phytochemical profile. This study evaluates the potential of metabolites from Pseudomonas shirazensis NFV3, formulated in silver nanoparticles (AgNPs), to enhance the bioactivity of rosemary extracts in postharvest applications. Rosemary stems were treated with AgNPs coated with bacterial metabolites (NP), bacterial cells, or metabolites (LM), and the extracts’ phytochemical composition and bioactivities were assessed. HPLC and HPLC–MS analyses revealed that the NP treatment induced significant metabolic remodeling, particularly upregulating rosmarinic acid and selected triterpenes (ursolic and betulinic acids), while reducing carnosic acid levels. NP-treated extracts exhibited significantly enhanced inhibition of cyclooxygenase (COX-1 and COX-2), indicating improved anti-inflammatory potential. The α-glucosidase inhibition and antioxidant activity (DPPH assay) of the extracts were not substantially altered, suggesting the selective enhancement of pharmacological functions. These findings demonstrate that nanoparticle-based elicitation selectively remodels secondary metabolism in rosemary, improving extract quality and bioactivity. This strategy offers a novel, sustainable tool for optimizing plant-based therapeutics in the phytopharmaceutical industry. Full article
(This article belongs to the Special Issue Applications of Antioxidant Nanoparticles, 2nd Edition)
Show Figures

Figure 1

13 pages, 1394 KiB  
Article
Cucurbitacin E Suppresses Adipogenesis and Lipid Accumulation in 3T3-L1 Adipocytes Without Cytotoxicity
by Tien-Chou Soong, Kuan-Ting Lee, Yi-Chiang Hsu and Tai-Hsin Tsai
Biomedicines 2025, 13(8), 1826; https://doi.org/10.3390/biomedicines13081826 - 25 Jul 2025
Viewed by 300
Abstract
Background: Cucurbitacin E (CuE), a natural tetracyclic triterpenoid compound extracted from the melon stems of Cucurbitaceae plants, has been reported to exhibit anti-inflammatory and anti-cancer properties, along with the ability to enhance cellular immunity. However, its role and molecular mechanism in regulating [...] Read more.
Background: Cucurbitacin E (CuE), a natural tetracyclic triterpenoid compound extracted from the melon stems of Cucurbitaceae plants, has been reported to exhibit anti-inflammatory and anti-cancer properties, along with the ability to enhance cellular immunity. However, its role and molecular mechanism in regulating lipid metabolism and adipogenesis remain unclear. This study aims to investigate the potential anti-adipogenic and anti-obesity effects of CuE in 3T3-L1 adipocytes. Materials and Methods: 3T3-L1 preadipocytes were cultured and induced to differentiate using a standard adipogenic cocktail containing dexamethasone, 3-isobutyl-1-methylxanthine (IBMX), and insulin (DMI). CuE was administered during the differentiation process at various concentrations. Lipid accumulation was assessed using Oil Red O staining, and cell viability was evaluated via the MTT assay. To determine whether CuE induced apoptosis or necrosis, flow cytometry was performed using annexin V/PI staining. Additional molecular analyses, such as Western blotting and RT-PCR, were used to examine the expression of key adipogenic markers. Results: Treatment with CuE significantly reduced lipid droplet formation in DMI-induced 3T3-L1 adipocytes in a dose-dependent manner, as shown by decreased Oil Red O staining. Importantly, CuE did not induce apoptosis or necrosis in 3T3-L1 cells at effective concentrations, indicating its safety toward normal adipocytes. Moreover, CuE treatment downregulated the expression of adipogenic markers such as PPARγ and C/EBPα at both mRNA and protein levels. Discussion: Our findings suggest that CuE exerts a non-cytotoxic inhibitory effect on adipocyte differentiation and lipid accumulation. This anti-adipogenic effect is likely mediated through the suppression of key transcription factors involved in adipogenesis. The absence of cytotoxicity supports the potential application of CuE as a safe bioactive compound for obesity management. Further investigation is warranted to elucidate the upstream signaling pathways and in vivo efficacy of CuE. Conclusions: Cucurbitacin E effectively inhibits adipogenesis in 3T3-L1 adipocytes without inducing cytotoxic effects, making it a promising candidate for the development of functional foods or therapeutic agents aimed at preventing or treating obesity. This study provides new insights into the molecular basis of CuE’s anti-obesity action and highlights its potential as a natural lipogenesis inhibitor. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

38 pages, 12524 KiB  
Article
Therapeutic Efficacy of Plant-Derived Exosomes for Advanced Scar Treatment: Quantitative Analysis Using Standardized Assessment Scales
by Lidia Majewska, Agnieszka Kondraciuk, Iwona Paciepnik, Agnieszka Budzyńska and Karolina Dorosz
Pharmaceuticals 2025, 18(8), 1103; https://doi.org/10.3390/ph18081103 - 25 Jul 2025
Viewed by 554
Abstract
Background: Wound healing and scar management remain significant challenges in dermatology and aesthetic medicine. Recent advances in regenerative medicine have introduced plant-derived exosome-like nanoparticles (PDENs) as potential therapeutic agents due to their bioactive properties. This study examines the clinical application of rose [...] Read more.
Background: Wound healing and scar management remain significant challenges in dermatology and aesthetic medicine. Recent advances in regenerative medicine have introduced plant-derived exosome-like nanoparticles (PDENs) as potential therapeutic agents due to their bioactive properties. This study examines the clinical application of rose stem cell exosomes (RSCEs) in combination with established treatments for managing different types of scars. Methods: A case series of four patients with different scar etiologies (dog bite, hot oil burn, forehead trauma, and facial laser treatment complications) was treated with RSCEs in combination with microneedling (Dermapen 4.0, 0.2–0.4 mm depth) and/or thulium laser therapy (Lutronic Ultra MD, 8–14 J), or as a standalone topical treatment. All cases underwent sequential treatments over periods ranging from two to four months, with comprehensive photographic documentation of the progression. The efficacy was assessed through clinical photography and objective evaluation using the modified Vancouver Scar Scale (mVSS) and the Patient and Observer Scar Assessment Scale (POSAS), along with assessment of scar appearance, texture, and coloration. Results: All cases demonstrated progressive improvement throughout the treatment course. The dog bite scar showed significant objective improvement, with a 71% reduction in modified Vancouver Scar Scale score (from 7/13 to 2/13) and a 61% improvement in Patient and Observer Scar Assessment Scale scores after four combined treatments. The forehead trauma case exhibited similar outcomes, with a 71% improvement in mVSS score and 55–57% improvement in POSAS scores. The hot oil burn case displayed the most dramatic improvement, with a 78% reduction in mVSS score and over 70% improvement in POSAS scores, resulting in near-complete resolution without visible scarring. The facial laser complication case showed a 75% reduction in mVSS score and ~70% improvement in POSAS scores using only topical exosome application without device-based treatments. Clinical improvements across all cases included reduction in elevation, improved texture, decreased erythema, and better integration with surrounding skin. No adverse effects were reported in any of the cases. Conclusions: This preliminary case series suggests that plant-derived exosome-like nanoparticles, specifically rose stem cell exosomes (RSCEs), may enhance scar treatment outcomes when combined with microneedling and laser therapy, or even as a standalone topical treatment. The documented objective improvements, measured by standardized scar assessment scales, along with clinical enhancements in scar appearance, texture, and coloration across different scar etiologies—dog bite, burn, traumatic injury, and iatrogenic laser damage—suggest that this approach may offer a valuable addition to the current armamentarium of scar management strategies. Notably, the successful treatment of laser-induced complications using only topical exosome application demonstrates the versatility and potential of this therapeutic modality. Full article
Show Figures

Figure 1

20 pages, 2015 KiB  
Article
Origanum majorana Extracts: A Preliminary Comparative Study on Phytochemical Profiles and Bioactive Properties of Valuable Fraction and By-Product
by Simone Bianchi, Rosaria Acquaviva, Claudia Di Giacomo, Laura Siracusa, Leeyah Issop-Merlen, Roberto Motterlini, Roberta Foresti, Donata Condorelli and Giuseppe Antonio Malfa
Plants 2025, 14(15), 2264; https://doi.org/10.3390/plants14152264 - 23 Jul 2025
Viewed by 310
Abstract
Origanum majorana L. (O. majorana) (Lamiaceae) is an aromatic Mediterranean plant widely used in food, cosmetics, and traditional medicine due to its aroma and rich content of bioactive compounds. While its leaves and flowers are commonly utilized, lignified stems are often [...] Read more.
Origanum majorana L. (O. majorana) (Lamiaceae) is an aromatic Mediterranean plant widely used in food, cosmetics, and traditional medicine due to its aroma and rich content of bioactive compounds. While its leaves and flowers are commonly utilized, lignified stems are often discarded. This study compared hydroalcoholic extracts from the leaves and flowers (valuable fraction, VF) and stems (by-product, BP). Phytochemical analysis revealed qualitatively similar profiles, identifying 20 phenolic compounds, with Rosmarinic acid and Salvianolic acid B as the most and second most abundant, respectively. Antioxidant activity was evaluated in vitro using DPPH (IC50 [µg/mL]: VF 30.11 ± 3.46; BP 31.72 ± 1.46), H2O2 (IC50 [µg/mL]: VF 103.09 ± 4.97; BP 119.55 ± 10.58), and O2•− (IC50 [µg/mL]: VF 0.71 ± 0.062; BP 0.79 ± 0.070). Both extracts (20 µg/mL) fully restored oxidative balance in hemin-stressed AC16 cardiomyocytes, without altering the expression of catalase, heme-oxygenase 1, superoxide dismutase 2, or ferritin. Anti-inflammatory activity in LPS-stimulated RAW 264.7 macrophages showed that VF (IC50 400 µg/mL) reduced NO release to control levels, while BP achieved a ~60% reduction. Cytotoxicity was assessed on cancer cell lines: CaCo-2 (IC50 [µg/mL]: VF 154.1 ± 6.22; BP 305.2 ± 15.94), MCF-7 (IC50 [µg/mL]: VF 624.6 ± 10.27; BP 917.9 ± 9.87), and A549 (IC50 [µg/mL]: VF 720.8 ± 13.66; BP 920.2 ± 16.79), with no cytotoxicity on normal fibroblasts HFF-1 (IC50 > 1000 µg/mL for both extracts). Finally, both extracts slightly inhibited only CYP1A2 (IC50 [µg/mL]: VF 497.45 ± 9.64; BP 719.72 ± 11.37) and CYP2D6 (IC50 [µg/mL]: VF 637.15 ± 14.78, BP 588.70 ± 11.01). These results support the potential reuse of O. majorana stems as a sustainable source of bioactive compounds for nutraceutical and health-related applications. Full article
Show Figures

Figure 1

15 pages, 2631 KiB  
Article
Effects on Powdery Mildew and the Mutualistic Fungal Endophyte Epichloë gansuensis When Host Achnatherum inebrians Plants Are Sprayed with Different Fungicides
by Yue Zhu, Keke Cao, Kelin Wu, Michael J. Christensen, Jianxin Cao, Yanzhong Li, Xingxu Zhang and Zhibiao Nan
Agriculture 2025, 15(14), 1565; https://doi.org/10.3390/agriculture15141565 - 21 Jul 2025
Viewed by 309
Abstract
A study was conducted to examine the effects of the spray application of nine antifungal products, including microbial-derived fungicides, plant-derived fungicides, and chemical fungicides, on the grass Achnatherum inebrians that was either host to Epichloë gansuensis (E+) or E. gansuensis-free (E−) and [...] Read more.
A study was conducted to examine the effects of the spray application of nine antifungal products, including microbial-derived fungicides, plant-derived fungicides, and chemical fungicides, on the grass Achnatherum inebrians that was either host to Epichloë gansuensis (E+) or E. gansuensis-free (E−) and that was exposed to Blumeria graminis, the fungal pathogen causing powdery mildew. The Epichloë endophyte is a seed-borne mutualistic biotrophic fungus whose growth is fully synchronized with the host grass. Bl. graminis is a biotrophic pathogen that continually infects leaves and stems via conidia, the formation of appressoria, leading to the presence of haustoria in epidermal cells. Prior to fungicide application, the presence of endophytes significantly increased the resistance of A. inebrians to powdery mildew and was able to increase the chlorophyll content. However, the positive effects of the Epichloë endophyte on the plant were suppressed with the use of some fungicides and the increase in the number of sprays, but the reciprocal relationship between the Epichloë endophyte and the plant was not significantly disrupted. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

17 pages, 2237 KiB  
Article
Bioaccumulation of the Heavy Metal Cadmium and Its Tolerance Mechanisms in Experimental Plant Suaeda salsa
by Qingchao Ge, Tianqian Zhang, Liming Jin, Dazuo Yang, Yang Cui, Huan Zhao and Jie He
Int. J. Mol. Sci. 2025, 26(14), 6988; https://doi.org/10.3390/ijms26146988 - 21 Jul 2025
Viewed by 265
Abstract
Suaeda salsa is relatively tolerant to cadmium (Cd) contamination. In order to investigate the bioaccumulation and stress responses of S. salsa under chronic exposure, we explored the growth, accumulation, and changes in antioxidant enzymes and glutathione (GSH) under different Cd concentrations over a [...] Read more.
Suaeda salsa is relatively tolerant to cadmium (Cd) contamination. In order to investigate the bioaccumulation and stress responses of S. salsa under chronic exposure, we explored the growth, accumulation, and changes in antioxidant enzymes and glutathione (GSH) under different Cd concentrations over a 30-day soil culture experiment. Seedling height and weight in the 13.16 mg/kg Cd group were 13.26 cm and 0.21 g, significantly higher than the control group. Growth was significantly inhibited under high Cd concentration exposure, with a seedling and root length of 9.65 cm and 3.77 cm. The Cd concentration in all tissues was positively related to Cd treatment concentration, with the Cd contents in the roots being higher than in the other tissues. At a subcellular level, Cd was mainly concentrated in the cell walls, organelles, and soluble components within the range of 0.05–8.29, 0.02–2.40 and 0.08–1.35 μg/g, respectively. The accumulation of Cd in the roots tracked its proportion in the cell walls. The malondialdehyde (MDA) content of the plant tissues increased with increasing Cd concentration, indicating that Cd stress caused oxidative damage. The GSH content increased with increasing Cd concentration, with maximum values of 0.515 μmol/g in the stem in the 66.07 mg/kg Cd group. The catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) activity showed different change trends under Cd exposure. The results in this study could provide useful information on the tolerance mechanism of Cd in S. salsa, which provides information for exploiting S. salsa as a candidate for phytoremediation of Cd contamination. Full article
Show Figures

Figure 1

21 pages, 3692 KiB  
Article
Anti-Obesity Effects of Rosa rugosa Thunb. Flower Bud Extracts on Lipid Metabolism Regulation in 3T3-L1 Adipocytes and Sprague Dawley Rats
by Jung Min Kim, Kyoung Kon Kim, Hye Rim Lee, Jae Cheon Im and Tae Woo Kim
Int. J. Mol. Sci. 2025, 26(14), 6963; https://doi.org/10.3390/ijms26146963 - 20 Jul 2025
Viewed by 271
Abstract
In modern society, obesity and its associated complications have emerged as serious public health concerns, primarily stemming from sedentary lifestyles and carbohydrate-rich diets. Due to the severe side effects often associated with pharmacological anti-obesity agents, emerging global efforts focus on preventive strategies, e.g., [...] Read more.
In modern society, obesity and its associated complications have emerged as serious public health concerns, primarily stemming from sedentary lifestyles and carbohydrate-rich diets. Due to the severe side effects often associated with pharmacological anti-obesity agents, emerging global efforts focus on preventive strategies, e.g., dietary modifications and weight gain-suppressing functional foods. In this context, plant-derived metabolites are extensively investigated for their beneficial anti-obesity effects. In this study, we evaluated how Rosa rugosa Thunb. flower bud extract affects fat metabolism in 3T3-L1 preadipocyte cells. The extract significantly inhibited adipocyte differentiation and intracellular triglyceride accumulation in 3T3-L1 cells, enhanced lipolysis, suppressed lipogenesis, and promoted energy metabolism in differentiated adipocytes. In vivo, it reduced body and organ weights and fat mass in high-fat diet-induced obese rats, along with marked adipocyte size and hepatic lipid accumulation reductions. In the epididymal adipose tissue, the extract similarly enhanced lipolytic activity, suppressed lipogenic enzyme expression, and stimulated energy expenditure. Taken together, our results demonstrate the potential of R. rugosa Thunb. flower bud extract in reducing fat accumulation through lipid metabolism modulation both in cellular and animal models. Further studies are warranted to identify the active constituents and evaluate the safety and efficacy of the extract in clinical applications. Full article
(This article belongs to the Special Issue High Fat Diet Metabolism and Diseases)
Show Figures

Figure 1

25 pages, 4169 KiB  
Article
In Vitro Effects of Rumex confertus Extracts on Cell Viability and Molecular Pathways in MCF-7 Breast Cancer Cells
by Levent Gülüm, Emrah Güler, Fatma Lale Aktaş, Ayşe Büşranur Çelik, Hilal Yılmaz and Yusuf Tutar
Antioxidants 2025, 14(7), 879; https://doi.org/10.3390/antiox14070879 - 18 Jul 2025
Viewed by 501
Abstract
Rumex confertus (RC), a plant known for its traditional medicinal uses, has shown potential anticancer properties, particularly due to its rich phenolic content. Despite its promising bioactivity, its effects on breast cancer cells remain underexplored. Here, we investigated the cytotoxic effects of RC [...] Read more.
Rumex confertus (RC), a plant known for its traditional medicinal uses, has shown potential anticancer properties, particularly due to its rich phenolic content. Despite its promising bioactivity, its effects on breast cancer cells remain underexplored. Here, we investigated the cytotoxic effects of RC extracts on MCF-7 breast cancer cells, employing various solvents for extraction. This study revealed that the hexane extract significantly reduced the cell viability, with an IC50 of 9.40 µg/mL after 96 h. The gene expression analysis indicated a substantial modulation of transcriptional networks, including the upregulation of pluripotency-related genes and the downregulation of differentiation markers. The findings suggest that the RC extract may induce a shift towards a less differentiated, stem-like state in cancer cells, potentially enhancing malignancy resistance. This study underscores the potential of RC as a candidate for breast cancer treatment, and a further investigation into its therapeutic applications is suggested. Full article
(This article belongs to the Special Issue Anti-Cancer Potential of Plant-Based Antioxidants)
Show Figures

Figure 1

20 pages, 2692 KiB  
Article
Orientin Reverses Premature Senescence in Equine Adipose Stromal Cells Affected by Equine Metabolic Syndrome Through Oxidative Stress Modulation
by Dominika Orzoł, Martyna Kępska and Magdalena Zyzak
Int. J. Mol. Sci. 2025, 26(14), 6867; https://doi.org/10.3390/ijms26146867 - 17 Jul 2025
Viewed by 184
Abstract
Equine metabolic syndrome (EMS) is a prevalent endocrine disorder associated with insulin dysregulation, oxidative stress, and impaired regenerative capacity of adipose-derived stem cells (ASCs). The aim of this study was to evaluate the effects of orientin—a plant-derived flavonoid with known antioxidant properties—on equine [...] Read more.
Equine metabolic syndrome (EMS) is a prevalent endocrine disorder associated with insulin dysregulation, oxidative stress, and impaired regenerative capacity of adipose-derived stem cells (ASCs). The aim of this study was to evaluate the effects of orientin—a plant-derived flavonoid with known antioxidant properties—on equine ASCs (EqASCs) derived from both clinically healthy and diagnosed EMS-affected mares. EqASCs were treated with orientin to evaluate its biological effects. The analysis included key cellular functions such as proliferative capacity, viability, apoptosis, oxidative stress, senescence, clonogenicity, and migration. Orientin significantly enhanced the proliferative activity of EqASCs, as evidenced by increased Ki67 expression and favorable alterations in cell cycle distribution. In addition, the treatment improved overall cell viability, reduced apoptotic activity, and restored both the clonogenic potential and migratory capacity of the cells, with particularly pronounced effects observed in EqASCs isolated from EMS-affected horses. Importantly, orientin also led to a marked reduction in cellular senescence and oxidative stress, further suggesting its potential as a protective and regenerative agent in metabolically impaired ASCs. These findings indicate that orientin can exert comprehensive cytoprotective effects on EqASCs, with pronounced benefits in cells derived from EMS-affected animals. By improving multiple functional parameters, orientin emerges as a promising candidate for therapeutic strategies aimed at restoring the regenerative potential of ASCs compromised by metabolic dysregulation in horses. Full article
(This article belongs to the Special Issue Oxygen Variations, 2nd Edition)
Show Figures

Figure 1

23 pages, 6291 KiB  
Article
Application of Standardized Rosa damascena Stem Cell-Derived Exosomes in Dermatological Wound Healing and Scar Management: A Retrospective Case-Series Study with Long-Term Outcome Assessment
by Lidia Majewska, Agnieszka Kondraciuk, Karolina Dorosz and Agnieszka Budzyńska
Pharmaceutics 2025, 17(7), 910; https://doi.org/10.3390/pharmaceutics17070910 - 14 Jul 2025
Cited by 2 | Viewed by 728
Abstract
Background: Scar formation and impaired wound healing represent significant challenges in dermatology and aesthetic medicine, with limited effective treatment options currently available. Objectives: To evaluate the efficacy and long-term outcomes of Damask rose stem-cell-derived exosome (RSCE) therapy in the management of [...] Read more.
Background: Scar formation and impaired wound healing represent significant challenges in dermatology and aesthetic medicine, with limited effective treatment options currently available. Objectives: To evaluate the efficacy and long-term outcomes of Damask rose stem-cell-derived exosome (RSCE) therapy in the management of diverse dermatological conditions, including traumatic wounds, surgical scars, and atrophic acne scars. Methods: We conducted a case series study from June 2023 to November 2024, documenting four cases with different types of skin damage treated with lyophilized RSCE products. Treatment protocols included a variety of delivery methods such as topical application, microneedling, and post-procedure care. Follow-up assessments were performed at intervals ranging from 7 days to 10 months. Results: All patients demonstrated significant improvements in scar appearance, skin elasticity, hydration, and overall tissue quality. In traumatic facial injury, RSCE therapy facilitated reduction in scar contracture and improved functional outcomes. For atrophic acne scars, comparative treatment of facial sides showed enhanced results with RSCE addition. Acute wounds exhibited accelerated healing with reduced inflammation, while chronic wounds demonstrated improved epithelialization and long-term scar quality. Conclusions: This case series provides preliminary evidence suggesting that RSCE therapy may offer significant benefits in wound healing and scar management. The observed improvements in tissue regeneration, inflammatory modulation, and long-term aesthetic outcomes warrant further investigation through controlled clinical trials. Full article
Show Figures

Figure 1

25 pages, 1560 KiB  
Article
Phytochemical Screening and Biological Activities of Lippia multiflora Moldenke
by Dorcas Tlhapi, Ntsoaki Malebo, Idah Tichaidza Manduna, Monizi Mawunu and Ramakwala Christinah Chokwe
Molecules 2025, 30(13), 2882; https://doi.org/10.3390/molecules30132882 - 7 Jul 2025
Viewed by 420
Abstract
Lippia multiflora Moldenke is widely used in Angola, on the African continent, and beyond for the treatment of many health conditions such as hypertension, enteritis, colds, gastrointestinal disturbances, stomachaches, jaundice, coughs, fevers, nausea, bronchial inflammation, conjunctivitis, malaria, and venereal diseases. However, there is [...] Read more.
Lippia multiflora Moldenke is widely used in Angola, on the African continent, and beyond for the treatment of many health conditions such as hypertension, enteritis, colds, gastrointestinal disturbances, stomachaches, jaundice, coughs, fevers, nausea, bronchial inflammation, conjunctivitis, malaria, and venereal diseases. However, there is limited literature about the active compounds linked with the reported biological activities. This study aims to assess the chemical profiles, antioxidant properties, and the cytotoxicity effects of the roots, stem bark, and leaves of L. multiflora. Chemical characterization of the crude extracts was assessed through quantification of total phenolic and flavonoid contents followed by Q exactive plus orbitrap™ ultra-high-performance liquid chromatography-mass spectrometer (UHPLC-MS) screening. The correlation between the extracts and the correlation between the compounds were studied using the multivariate analysis. Principal component analysis (PCA) loading scores and principal component analysis (PCA) biplots and correlation plots were used to connect specific compounds with observed biological activities. The antioxidant activities of the crude extracts were carried out in vitro using DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging and reducing power assays, while the in vitro toxicology of the crude extracts was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. A total of twenty constituents were characterized and identified using the UHPLC–Q/Orbitrap/MS. The methanol leaf extract showed the highest antioxidant activity in the DPPH free radical scavenging activity (IC50 = 0.559 ± 0.269 μg/mL); however, the stem bark extract had the highest reducing power (IC0.5 = 0.029 ± 0.026 μg/mL). High phenolic and flavonoid content was found in the dichloromethane leaf extract (32.100 ± 1.780 mg GAE/g) and stem bark extract (624.153 ± 29.442 mg QE/g), respectively. The results show the stem bark, methanol leaf, and dichloromethane leaf extracts were well-tolerated by the Vero cell line at concentrations up to 50 µg/mL. However, at 100 µg/mL onward, some toxicity was observed in the root, methanol leaf, and dichloromethane leaf extracts. The UHPLC–Q/Orbitrap/MS profiles showed the presence of terpenoids (n = 5), flavonoids (n = 5), phenols (n = 4), alkaloids (n = 3), coumarins (n = 1), fatty acids (n = 1), and organic acids (n = 1). According to several studies, these secondary metabolites have been reported and proven to be the most abundant for antioxidant potential. The identified flavonoids (catechin, quercitrin, and (−)-epigallocatechin) and phenolic compound (6-gingerol) can significantly contribute to the antioxidant properties of different plant parts of L. multiflora. The research findings obtained in this study provide a complete phytochemical profile of various parts of L. multiflora that are responsible for the antioxidant activity using UHPLC–Q/Orbitrap/MS analysis. Furthermore, the results obtained in this study contribute to the scientific information or data on the therapeutic properties of Lippia multiflora and provide a basis for further assessment of its potential as a natural remedy. Full article
Show Figures

Graphical abstract

Back to TopTop