Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (597)

Search Parameters:
Keywords = plant biochemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2360 KiB  
Article
Enhanced Ammonium Removal from Wastewater Using FAU-Type and BEA-Type Zeolites and Potential Application on Seedling Growth: Towards Closing the Waste-to-Resource Cycle
by Matiara S. C. Amaral, Marcella A. da Silva, Giovanna da S. Cidade, Diêgo N. Faria, Daniel F. Cipriano, Jair C. C. Freitas, Fabiana Soares dos Santos, Mendelssolm K. Pietre and André M. dos Santos
Processes 2025, 13(8), 2426; https://doi.org/10.3390/pr13082426 - 31 Jul 2025
Viewed by 327
Abstract
This work focuses on the effectiveness of removing ammonium from real municipal wastewater using synthetic faujasite (FAU-type) and β (BEA-type) zeolites and a commercial β (BEA-type) sample. The results demonstrated that synthetic samples presented enhanced performance on ammonium removal in comparison with commercial [...] Read more.
This work focuses on the effectiveness of removing ammonium from real municipal wastewater using synthetic faujasite (FAU-type) and β (BEA-type) zeolites and a commercial β (BEA-type) sample. The results demonstrated that synthetic samples presented enhanced performance on ammonium removal in comparison with commercial zeolite due to higher Al content and larger specific surface area, promoting better accessibility to active adsorption sites of the adsorbents. Synthetic FAU-type and BEA-type zeolites achieved a maximum adsorption capacity of 28.87 and 12.62 mg·g−1, respectively, outperforming commercial BEA-type zeolite (6.50 mg·g−1). Adsorption assays, associated with kinetic studies and adsorption isotherms, were better fitted using the pseudo-second order model and the Langmuir model, respectively, suggesting that chemisorption, involving ion exchange, and monolayer formation at the zeolite surface, was the main mechanism involved in the NH4+ adsorption process. After ammonium adsorption, the NH4+-loaded zeolite samples were used to stimulate the growth of tomato seedlings; the results revealed a change in the biomass production for seedlings grown in vitro, especially when the BEA_C_NH4 sample was employed, leading to a 15% increase in the fresh mass in comparison with the control sample. In contrast, the excess of ammonium adsorbed over the BEA_S_NH4 and FAU_NH4 samples probably caused a toxic effect on seedling growth. The elemental analysis results supported the hypothesis that the presence of NH4+-loaded zeolite into the culture medium was important for the release of nitrogen. The obtained results show then that the investigated zeolites are promising both as efficient adsorbents to mitigate the environmental impact of ammonium-contaminated water bodies and as nitrogen-rich fertilizers. Full article
(This article belongs to the Special Issue Novel Applications of Zeolites in Adsorption Processes)
Show Figures

Figure 1

12 pages, 1206 KiB  
Article
Resistance Mechanisms to Glyphosate in Lamarckia aurea (L.) Moench Found in Southern Spain
by José Alfredo Domínguez-Valenzuela, Javid Gherekhloo, Candelario Palma-Bautista, Saeid Hassanpour-bourkheili, Guido Plaza, Antonia M. Rojano-Delgado and Rafael De Prado
Agronomy 2025, 15(8), 1804; https://doi.org/10.3390/agronomy15081804 - 26 Jul 2025
Viewed by 305
Abstract
Glyphosate has been used for roadside weed control in southern Spain for over 40 years, and most populations of goldentop (Lamarckia aurea L.) Moench have putatively developed resistance to this active ingredient. The physiological and biochemical basis for glyphosate resistance in this [...] Read more.
Glyphosate has been used for roadside weed control in southern Spain for over 40 years, and most populations of goldentop (Lamarckia aurea L.) Moench have putatively developed resistance to this active ingredient. The physiological and biochemical basis for glyphosate resistance in this weed has been investigated. Dose–response studies indicated that the resistant biotype (R) was almost 13 times more resistant to glyphosate compared to a known susceptible biotype (S). Studies of foliar glyphosate retention and 14C-glyphosate uptake/translocation showed no significant differences between both L. aurea biotypes. Basal 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity (µmol µg−1TSP min−1) showed similar values between R (0.82 ± 0.04) and S (0.75 ± 0.05) biotypes. On the other hand, the resistance factor (I50R/I50S) did not show a difference between the two biotypes. Therefore, it was concluded that target-site (TSR) resistance mechanisms are not involved in glyphosate resistance in this weed species. The metabolism of glyphosate to form the non-toxic metabolites aminomethylphosphonic acid (AMPA), glyoxylate, and sarcosine was greater and faster in the R compared to the S biotype; thus, glyphosate resistance is due to non-target-site resistance (NTSR) mechanisms. This paper is the first report of glyphosate resistance in L. aurea in the world. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

22 pages, 10249 KiB  
Review
Plants from Bulgarian Botanical Gardens: Some Selected Species with Potential for Health Food and Medical Applications
by Aleksandra Ivanova, Stefka Bogdanova, Veselin Petrov and Tsanko Gechev
Plants 2025, 14(14), 2176; https://doi.org/10.3390/plants14142176 - 14 Jul 2025
Viewed by 789
Abstract
Bulgarian botanical gardens harbor more than 3600 plant species from across the world. Some of them are well-known plants widely used by humans, others are underutilized crops or little-known exotic species. The latter group constitutes a rich reservoir of plant resources whose potential [...] Read more.
Bulgarian botanical gardens harbor more than 3600 plant species from across the world. Some of them are well-known plants widely used by humans, others are underutilized crops or little-known exotic species. The latter group constitutes a rich reservoir of plant resources whose potential to bring benefits to society is still untapped. The aim of this review is to describe the diversity of species and their potentially valuable secondary metabolites in three of the largest Bulgarian botanical gardens, with a focus on underutilized crops and medicinal plants that are typical of Bulgaria. With this, we aim to pave the way for future research on the most promising of these plants. The report includes currently available ethnobotanical data on the properties and composition of their bioactive components, known culinary or therapeutic uses, and nutritional profiles. We also outline the vast potential of these plants in providing healthy diets, as well as for performing future groundbreaking biomedical research. Finally, we present the approach that will be used to screen extracts from these plants for biological activity. Full article
Show Figures

Figure 1

21 pages, 3563 KiB  
Article
Research on the Hormonomics of Three Lilium Species and Their Flavonoid Diversification and Specificity
by Xuanyu He, Jie Fang, Biwei Hong, Xueying Zhang, Linying Li, Yuqing He, Chaomin Chen, Shuang Liang, Zelong Xu, Chunlan Peng, Jirong Huang, Gaojie Hong and Qundan Lv
Antioxidants 2025, 14(7), 862; https://doi.org/10.3390/antiox14070862 - 14 Jul 2025
Viewed by 338
Abstract
Hormonomics represents an innovative approach to plant physiology and biochemistry. We utilized hormonomics to analyze the hormone profiles of three lily bulbs. The hormones specifically enriched in BiFeng7 lily show a strong response to secondary metabolism pathways, while the Diwanghuang lily profile was [...] Read more.
Hormonomics represents an innovative approach to plant physiology and biochemistry. We utilized hormonomics to analyze the hormone profiles of three lily bulbs. The hormones specifically enriched in BiFeng7 lily show a strong response to secondary metabolism pathways, while the Diwanghuang lily profile was predominantly focused on growth. Physiological experiments demonstrated that Diwanghuang exhibited higher levels of primary nutrients, whereas BiFeng7 displayed a greater concentration of secondary metabolites and enhanced antioxidant capacity. Through untargeted metabolomic analysis, it was revealed that BiFeng7 highly enriched four flavonoid glycosides, two flavones, one flavan, one pyranoflavonoid, two isoflavonoid O-glycosides and one rotenoid. These findings provide valuable information for developing breeding strategies and cultivation practices aimed at achieving ornamental quality, nutritional value, or stress resilience outcomes. This research demonstrates the practical application of hormone profiling in plant evaluation and offers insights into the mechanisms underlying flavonoid synthesis in lilies, serving as a reference for breeding stress-resistant lily varieties. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

15 pages, 518 KiB  
Review
Advances in Bract Coloration: Diversity, Pigment Synthesis, and Regulatory Mechanisms in Ornamental Plants
by Xiaoyang Li, Yang Liu, Zhiquan Cai and Yiwei Zhou
Plants 2025, 14(14), 2155; https://doi.org/10.3390/plants14142155 - 13 Jul 2025
Viewed by 467
Abstract
Bract coloration in ornamental plants is a complex trait governed by diverse pigments (chlorophylls, anthocyanins, betalains, and carotenoids), their biosynthetic pathways, and regulatory networks. While previous research has primarily focused on floral pigmentation, studies on bract coloration—particularly in species where bracts serve as [...] Read more.
Bract coloration in ornamental plants is a complex trait governed by diverse pigments (chlorophylls, anthocyanins, betalains, and carotenoids), their biosynthetic pathways, and regulatory networks. While previous research has primarily focused on floral pigmentation, studies on bract coloration—particularly in species where bracts serve as the primary ornamental feature—have received less attention until recent advances. This review synthesizes current understanding of bract color diversity, pigment biochemistry, and molecular regulation in key species including Bougainvillea, Euphorbia pulcherrima, Anthurium andraeanum, Curcuma alismatifolia, and Zantedeschia hybrida. Anthocyanins predominantly contribute to red-to-purple hues, while betalains generate red, purple, or yellow coloration through differential accumulation of betacyanins and betaxanthins. Developmental color transitions are mediated by chlorophyll degradation and carotenoid dynamics. The spatiotemporal regulation of pigment accumulation involves coordinated interactions between key structural genes (CHS, DFR, ANS for anthocyanins; DODA, CYP76AD1 for betalains), transcription factors (MYB, bHLH, WRKY), and plant growth regulators (BAP, GA, MeJA). Despite these advances, significant knowledge gaps remain in genetic inheritance patterns, epigenetic regulation, cross-pigment pathway crosstalk, and environmental modulation. Future research directions should integrate multi-omics approaches, wild germplasm resources, and gene-editing technologies to develop novel breeding strategies for bract color improvement. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Graphical abstract

21 pages, 2655 KiB  
Article
Integrative Modeling of Urinary Metabolomics and Metal Exposure Reveals Systemic Impacts of Electronic Waste in Exposed Populations
by Fiona Hui, Zhiqiang Pang, Charles Viau, Gerd U. Balcke, Julius N. Fobil, Niladri Basu and Jianguo Xia
Metabolites 2025, 15(7), 456; https://doi.org/10.3390/metabo15070456 - 5 Jul 2025
Viewed by 690
Abstract
Background: Informal electronic waste (e-waste) recycling practices release a complex mixture of pollutants, particularly heavy metals, into the environment. Chronic exposure to these contaminants has been linked to a range of health risks, but the molecular underpinnings remain poorly understood. In this [...] Read more.
Background: Informal electronic waste (e-waste) recycling practices release a complex mixture of pollutants, particularly heavy metals, into the environment. Chronic exposure to these contaminants has been linked to a range of health risks, but the molecular underpinnings remain poorly understood. In this study, we investigated the alterations in metabolic profiles due to e-waste exposure and linked these metabolites to systemic biological effects. Methods: We applied untargeted high-resolution metabolomics using dual-column LC-MS/MS and a multi-step analysis workflow combining MS1 feature detection, MS2 annotation, and chemical ontology classification, to characterize urinary metabolic alterations in 91 e-waste workers and 51 community controls associated with the Agbogbloshie site (Accra, Ghana). The impacts of heavy metal exposure in e-waste workers were assessed by establishing linear regression and four-parameter logistic (4PL) models between heavy metal levels and metabolite concentrations. Results: Significant metal-associated metabolomic changes were identified. Both linear and nonlinear models revealed distinct sets of exposure-responsive compounds, highlighting diverse biological responses. Ontology-informed annotation revealed systemic effects on lipid metabolism, oxidative stress pathways, and xenobiotic biotransformation. This study demonstrates how integrating chemical ontology and nonlinear modeling facilitates exposome interpretation in complex environments and provides a scalable template for environmental biomarker discovery. Conclusions: Integrating dose–response modeling and chemical ontology analysis enables robust interpretation of exposomics datasets when direct compound identification is limited. Our findings indicate that e-waste exposure induces systemic metabolic alterations that can underlie health risks and diseases. Full article
(This article belongs to the Special Issue Method Development in Metabolomics and Exposomics)
Show Figures

Graphical abstract

19 pages, 1514 KiB  
Review
Glutamate and Its Role in the Metabolism of Plants and Animals
by Maria Stolarz and Agnieszka Hanaka
Processes 2025, 13(7), 2084; https://doi.org/10.3390/pr13072084 - 1 Jul 2025
Viewed by 468
Abstract
Glutamate is one of the major naturally occurring non-essential amino acids. The aim of this review is to provide a comprehensive analysis of the role of glutamate as a key metabolite in the metabolism of plant and animal organisms. Its role in nutrition [...] Read more.
Glutamate is one of the major naturally occurring non-essential amino acids. The aim of this review is to provide a comprehensive analysis of the role of glutamate as a key metabolite in the metabolism of plant and animal organisms. Its role in nutrition and neurotransmission has intrigued researchers for many years. In both plants and animals, glutamate primarily exists in a monoanionic form characterised by unique physical and chemical properties. In plants, it is involved in the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle, while in animals, it plays a role in the glutamine/glutamate cycle, which is closely related to the urea cycle. Glutamate is also closely linked to the Krebs cycle in both groups of organisms through α-ketoglutarate. Glutamate is essential in both biosynthetic and catabolic pathways and participates in numerous physiological processes in plants and animals. Animals acquire glutamate from food, while plants acquire it from the soil; however, both also synthesise it de novo. Once present in the body, it is transported across cell membranes by specific transporters driven by ionic gradients (a mechanism known as secondary active transport). It is involved in cellular and systemic signalling pathways by interacting with ionotropic and metabotropic receptors. Additionally, glutamate is an important ‘building block’ of many proteins, including storage proteins. It also occurs in the form of monosodium glutamate (MSG), a flavour enhancer that is widely used but often criticised. Due to its important role in metabolism and signalling, the significance of glutamate in nutrition and its impact on human health are vital areas of research in food biochemistry. These investigations contribute to the development of nutritious food products and the design of effective pharmaceuticals. In this paper, we also address unresolved questions in glutamate research and consider its practical applications. Full article
(This article belongs to the Special Issue Food Biochemistry and Health: Recent Developments and Perspectives)
Show Figures

Figure 1

19 pages, 3395 KiB  
Article
Identification and Characterization of Novel Inhibitors of Human Poly(ADP-Ribose) Polymerase-1
by Ibrahim Morgan, Robert Rennert, Robert Berger, Ahmed Hassanin, Mehdi D. Davari, Daniela Eisenschmidt-Bönn and Ludger A. Wessjohann
Molecules 2025, 30(13), 2728; https://doi.org/10.3390/molecules30132728 - 25 Jun 2025
Viewed by 700
Abstract
Poly(ADP-ribose) polymerases (PARP) are a family of enzymes that were proven to play an essential role in the initiation and activation of DNA repair processes in the case of DNA single-strand breaks. The inhibition of PARP enzymes might be a promising option for [...] Read more.
Poly(ADP-ribose) polymerases (PARP) are a family of enzymes that were proven to play an essential role in the initiation and activation of DNA repair processes in the case of DNA single-strand breaks. The inhibition of PARP enzymes might be a promising option for the treatment of several challenging types of cancers, including triple-negative breast cancer (TNBC) and non-small cell lung carcinoma (NSCLC). This study utilizes several techniques to screen the compound collection of the Leibniz Institute of Plant Biochemistry (IPB) to identify novel hPARP-1 inhibitors. First, an in silico pharmacophore-based docking study was conducted to virtually screen compounds with potential inhibitory effects. To evaluate these compounds in vitro, a cell-free enzyme assay was developed, optimized, and employed to identify hPARP-1 inhibitors, resulting in the discovery of two novel scaffolds represented by compounds 54 and 57, with the latter being the most active one from the compound library. Furthermore, fluorescence microscopy and synergism assays were performed to investigate the cellular and nuclear pathways of hPARP-1 inhibitor 57 and its potential synergistic effect with the DNA-damaging agent temozolomide. The findings suggest that the compound requires further lead optimization to enhance its ability to target the nuclear PARP enzyme effectively. Nonetheless, this new scaffold demonstrated a five-fold higher PARP inhibitory activity at the enzyme level compared to the core structure of olaparib (OLP), phthalazin-1(2H)-one. Full article
Show Figures

Figure 1

9 pages, 841 KiB  
Communication
Heterologous Production of the Structurally Complex Diterpenoid Forskolin in Synechocystis sp. PCC. 6803
by Nadia Dodge, Lawrence Chuk Sutardja, Silas Mellor, Thiyagarajan Gnanasekaran, Lærke Marie Münter Lassen, Agnieszka Zygadlo Nielsen, Birger Lindberg Møller and Poul Erik Jensen
Bioengineering 2025, 12(7), 683; https://doi.org/10.3390/bioengineering12070683 - 23 Jun 2025
Viewed by 445
Abstract
Photosynthetic organisms such as cyanobacteria have the potential for the sustainable production of complex organic molecules due to their ability to use light as an energy source to fix CO2 and assimilate inorganic nutrients. Over the past decade, large efforts have been [...] Read more.
Photosynthetic organisms such as cyanobacteria have the potential for the sustainable production of complex organic molecules due to their ability to use light as an energy source to fix CO2 and assimilate inorganic nutrients. Over the past decade, large efforts have been put into the metabolic engineering of cyanobacteria to produce various compounds such as alcohols, isoprenoids, biopolymers, and recombinant proteins. Forskolin is a structurally complex labdane-type diterpenoid with eight chiral carbon atoms and is naturally produced in the root cork of the plant Plectranthus barbatus. Forskolin is a potent cAMP activator indicated as a pharmaceutical for a variety of diseases. In the plant, forskolin biosynthesis from geranylgeranyl diphosphate involves six enzymes: two terpene synthases, three cytochrome P450s, and a single acetyltransferase. In this work, we express all six biosynthetic genes from Plectranthus barbatus in Synechocystis sp. PCC. 6803 and demonstrate heterologous production of this complex diterpenoid in a phototroph cyanobacterium. Forskolin titers reached 25.0 ± 4.4 µg/L and the forskolin was entirely secreted into the media. The forskolin-producing Synechocystis strain and empty vector control were cultivated in a photobioreactor for 8 days. Both strains showed similar chlorophyll a contents, and the forskolin-producing strain reached a slightly higher OD730 than the control. Forskolin began accumulating in the supernatant after 4 days and increased over time. These results indicate that forskolin production did not negatively impact cell growth. Full article
Show Figures

Figure 1

21 pages, 2428 KiB  
Article
Optimizing Valerianella locusta L. Growth and Metabolism by Combining Red and Blue LED Light: Insights into Plant Physiology, Biochemistry, and Nutraceutical Value
by Sonia Monterisi, Carmen Rebollo Vicioso, Monica Yorlady Alzate Zuluaga, Sofia Melchior, Biancamaria Senizza, Gokhan Zengin, Roberto Fattorini, Umberto Lanza, Talita de Oliveira Caretta, Lara Manzocco, Luigi Lucini, Stefano Cesco and Youry Pii
Plants 2025, 14(12), 1887; https://doi.org/10.3390/plants14121887 - 19 Jun 2025
Viewed by 506
Abstract
Environmental and health concerns have increased the demand for ready-to-eat vegetables rich in bioactive compounds. This study explores the impact of red and blue (R:B) LED light on the metabolic responses of lamb’s lettuce (Valerianella locusta L.), focusing on sugars, organic acids, [...] Read more.
Environmental and health concerns have increased the demand for ready-to-eat vegetables rich in bioactive compounds. This study explores the impact of red and blue (R:B) LED light on the metabolic responses of lamb’s lettuce (Valerianella locusta L.), focusing on sugars, organic acids, total phenolics, antioxidant activity, and enzyme inhibition. Post-harvest analyses were also conducted to assess shelf-life and microbiological characteristics of the product. The R:B LED treatment significantly enhanced plant growth, with a 133% and 68% increase in shoot fresh and dry weights, respectively, and a 21% increase in leaf area compared to controls (white LED light). Biochemical profiling revealed substantial increases in fructose (255%), sucrose (169%), citric acid (350%), and malic acid (868%) under R:B LED light. Additionally, phenolic content increased by 30%, alongside a notable modulation of 258 secondary metabolites, including flavonoid glycosides, alkaloids, and terpenoids. These biochemical changes contributed to a marked improvement in antioxidant capacity (12–45% across multiple assays) and a 300% increase in α-glucosidase inhibition, suggesting potential antidiabetic properties. Furthermore, post-harvest analysis revealed comparable shelf-life and microbiological safety between R:B and white LED-grown samples. The research highlights the potential of LED light to enhance plant biochemical responses and improve crop quality without affecting post-harvest quality, paving the way for sustainable agricultural innovations. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

14 pages, 1917 KiB  
Article
Effect of Cultivated Species and Planting Pattern on Plant Growth, Soil Properties, and Soil Metabolites in a Rain-Fed Orchard in Gansu, China
by Yali Zou, Qi Li and Yuying Shen
Agronomy 2025, 15(6), 1385; https://doi.org/10.3390/agronomy15061385 - 5 Jun 2025
Viewed by 428
Abstract
Orchard cover crops enhance the local microclimate and soil fertility, serving as an eco-friendly, efficient management practice. However, the effects of different cultivated species and planting patterns on plant growth and soil properties remain unclear. In this study, we hypothesized that different cultivated [...] Read more.
Orchard cover crops enhance the local microclimate and soil fertility, serving as an eco-friendly, efficient management practice. However, the effects of different cultivated species and planting patterns on plant growth and soil properties remain unclear. In this study, we hypothesized that different cultivated species and planting patterns would differently affect root growth and soil biochemistry. Therefore, the root growth, soil nutrients, and soil metabolites in an orchard planted with Vulpia myuros, Vicia villosa, Orychophragmus violaceus, and Brassica campestris in either a tree-disk or inter-row patterns were conducted. The results indicated that the tree-disk pattern promoted root development. This increase in below-ground biomass contributed to changes in soil nutrient dynamics, with a significant biomass accumulation observed for Orychophragmus violaceus. While the inter-row pattern improved soil aeration and was conducive to aboveground plant growth. The tree-disk pattern with Vicia villosa and Brassica campestris increased the total phosphorus (TP) and total potassium (TK) in the 0–10 cm layer. The soil NH4+-N and NO3-N contents were higher under the tree-disk pattern than under the inter-row pattern with Brassica campestris, whereas the opposite effect was seen with Vulpia myuros. Overall, we recommend planting Orychophragmus violaceus in a tree-disk pattern and Vulpia myuros in an inter-row pattern to promote plant biomass accumulation and soil nutrient increases in orchards. Our study provides a basis for the selection of orchard-cultivated species and planting patterns to promote the sustainable development of the fruit industry. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

29 pages, 3500 KiB  
Review
Overview of the Invasive Weed Species Eriochloa villosa (Thunb.) Kunth and Its Management in Europe
by Sandra Florina Lele, Igori Balta, Gabi Dumitrescu, Teodor Cristea, Florica Emilia Morariu, Alexandru Nan, Dragoș Alexandru Cristea and Ioan Peț
Agriculture 2025, 15(11), 1180; https://doi.org/10.3390/agriculture15111180 - 29 May 2025
Viewed by 483
Abstract
The wooly cupgrass (Eriochloa villosa) is an invasive weed species originating from East Asia that rapidly expanded into agricultural and disturbed land. Its tolerance to herbicides and ecological adaptations enable it to become persistent and difficult to remove with limited control [...] Read more.
The wooly cupgrass (Eriochloa villosa) is an invasive weed species originating from East Asia that rapidly expanded into agricultural and disturbed land. Its tolerance to herbicides and ecological adaptations enable it to become persistent and difficult to remove with limited control methods. This review synthesizes existing research on its distribution, biology, biochemistry, ecology, management and agricultural impact. Lipid synthesis inhibitor herbicides are reported to provide good results when applied early. Others such as Nicosulfuron and Foramsulfuron, although still effective in many populations, have been linked to emerging resistance in others. Chemical control is still widely used and developing resistance is an increasing concern, so various other control methods are also discussed and encouraged. Row crops such as corn (Zea mays) and soybeans (Glycine max) are particularly vulnerable. Despite being problematic, this species presents potential as a medicinal plant as well as in phytoremediation. Regardless, numerous research gaps remain, particularly in chemical control, its economic impact, biochemical properties, community dynamics and distribution. We aim to provide a comprehensive basis for future research with a focus on interdisciplinary approaches in order to contain its spread as much as possible, as well as explore the benefits it may provide. Full article
(This article belongs to the Special Issue Herbicide Resistance in Weeds: Detection, Mechanisms, and Management)
Show Figures

Figure 1

22 pages, 517 KiB  
Article
Erica spiculifolia Salisb. (Balkan Heath): A Focus on Metabolic Profiling and Antioxidant and Enzyme Inhibitory Properties
by Reneta Gevrenova, Anna Szakiel, Cezary Pączkowski, Gokhan Zengin, Inci Kurt-Celep, Alexandra Stefanova and Dimitrina Zheleva-Dimitrova
Plants 2025, 14(11), 1648; https://doi.org/10.3390/plants14111648 - 28 May 2025
Viewed by 549
Abstract
Erica spiculifolia Salisb. (formerly Bruckenthalia spiculifolia Benth.) (Balkan heath) is renowned for its traditional usage as a diuretic, anti-inflammatory and antioxidant agent. For the first time, acylquinic acids, flavonoids and numerous proanthocyanidin oligomers were annotated/dereplicated by liquid chromatography–high-resolution mass spectrometry in methanol–aqueous extracts [...] Read more.
Erica spiculifolia Salisb. (formerly Bruckenthalia spiculifolia Benth.) (Balkan heath) is renowned for its traditional usage as a diuretic, anti-inflammatory and antioxidant agent. For the first time, acylquinic acids, flavonoids and numerous proanthocyanidin oligomers were annotated/dereplicated by liquid chromatography–high-resolution mass spectrometry in methanol–aqueous extracts from E. spiculifolia aerial parts harvested at the early and full flowering stage. Chlorogenic acid and proanthocyanidin tetra- and trimer A, B-type together with quercitrin and (+) catechin were the predominant compounds in the semi-quantitative analysis. Neutral triterpenoids, triterpenoid acids and phytosterols were determined in apolar extracts by gas chromatography–mass spectrometry. Triterpenoid acids accounted for 80% of the total triterpenoid content, dominated by ursolic and oleanolic acid, reaching up to 32.2 and 6.1 mg/g dw, respectively. Ursa/olean-2,12-dien-28-oic acids and 3-keto-derivatives together with α-amyrin acetate as a chemotaxonomic marker, α-amyrenone, α- and β-amyrin were evaluated. Total phenolic and flavonoid contents were 83.85 ± 0.89 mg gallic acid equivalents/g and 78.91 ± 0.41 mg rutin equivalents/g, respectively. The extract actively scavenged DPPH and ABTS radicals (540.01 and 639.11 mg Trolox equivalents (TE)/g), possessed high potential to reduce copper and iron ions (660.32 and 869.22 mg TE/g, respectively), and demonstrated high metal chelating capacity (15.57 Ethylenediaminetetraacetic acid equivalents/g). It exhibited prominent anti-lipase (18.32 mg orlistat equivalents/g) and anti-tyrosinase (71.90 mg kojic acid equivalents/g) activity. The extract inhibited α-glucoside (1.35 mmol acarbose equivalents/g) and acetylcholinesterase (2.56 mg galanthamin equivalents/g), and had moderate effects on α-amylase, elastase, collagenase and hyaluronidase. Balkan heath could be recommended for raw material production with antioxidant and enzyme inhibitory properties. Full article
Show Figures

Figure 1

14 pages, 1328 KiB  
Article
Fruit and Fruit-Derived Products of Selected Sambucus Plants as a Source of Phytosterols and Triterpenoids
by Otgonbileg Onolbaatar, Soyol Dashbaldan, Cezary Pączkowski and Anna Szakiel
Plants 2025, 14(10), 1490; https://doi.org/10.3390/plants14101490 - 16 May 2025
Viewed by 525
Abstract
Plant-derived foods have gained recognition for their health-promoting values, which are largely attributed to bioactive compounds such as phytosterols and triterpenoids. This study aimed to analyze the content of these compounds in the fruit of black elder (elderberry) Sambucus nigra L. and in [...] Read more.
Plant-derived foods have gained recognition for their health-promoting values, which are largely attributed to bioactive compounds such as phytosterols and triterpenoids. This study aimed to analyze the content of these compounds in the fruit of black elder (elderberry) Sambucus nigra L. and in commercially available food products, including jam, juice, syrup and wine. An additional objective was to compare the phytosterol and triterpenoid profiles of fruits and fruit cuticular waxes from wild and cultivated elderberry (cultivar Haschberg), ornamental elderberry (S. nigra f. porphyrophylla cultivar Black lace “Eva”), and red elderberry (S. racemosa). Qualitative and quantitative determinations were performed using gas chromatography coupled with mass spectrometry (GC-MS). This study provides a detailed characterization of triterpenoids in black and red elderberries, revealing a complex composition of oleanane-, 18-oleanane-, ursane-, lupane- and taraxastane-type compounds. Elderberry fruits were found to be rich sources of phytosterols (ranging from 0.54 mg/g d.w. in cultivated elderberry cv. Haschberg to 0.96 mg/g in ornamental elderberry) and triterpenoids (from 1.41 mg/g d.w. in S. racemosa to 13.81 mg/g in ornamental elderberry). Among the processed products, jam contained the highest concentration of these compounds (a total of 340 µg/g) and wine contained the lowest (0.87 µg/mL). Furthermore, the results suggest that certain features of the triterpenoid profile in S. nigra and S. racemosa may hold chemotaxonomic significance for the Sambucus genus. Full article
Show Figures

Figure 1

14 pages, 1355 KiB  
Article
Exploring the Medicinal Potential of Taraxacum Kok-Saghyz (TKS) Using Widely Targeted Metabolomics
by Michele Tan, Jeffrey Shih-Chieh Chu and Daniel Robin Swiger
Metabolites 2025, 15(5), 306; https://doi.org/10.3390/metabo15050306 - 3 May 2025
Viewed by 630
Abstract
Background/Objectives: Plant-derived secondary metabolites have long contributed to the discovery of novel therapeutic agents, especially in the treatment of parasitic and infectious diseases in developing countries. Metabolomics provides a systems-level approach to understanding plant biochemistry, enabling the discovery of secondary metabolites with [...] Read more.
Background/Objectives: Plant-derived secondary metabolites have long contributed to the discovery of novel therapeutic agents, especially in the treatment of parasitic and infectious diseases in developing countries. Metabolomics provides a systems-level approach to understanding plant biochemistry, enabling the discovery of secondary metabolites with pharmacological relevance. Taraxacum kok-saghyz (TKS), widely known for its rubber-producing capabilities, remains underexplored as a medicinal plant. Given the well-established therapeutic properties of Taraxacum officinale and the emerging pharmacological profiles of related species, this study investigates the metabolic composition of TKS roots and leaves to uncover bioactive compounds with antioxidant, anti-inflammatory, or hepatoprotective potential. Methods: Widely targeted metabolomics was conducted on 10-month-old field-grown Kultevar™ TKS plants using ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). Samples were hand-harvested and preserved on dry ice to maintain biochemical integrity. Metabolite identification and classification were performed using the MWDB and KEGG databases. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to evaluate metabolic variation between tissues. Results: A total of 1813 metabolites were identified, including flavonoids, alkaloids, lipids, amino acids, and phenolic compounds. Differential analysis revealed 964 significantly altered metabolites—609 downregulated and 355 upregulated in roots relative to leaves. Multivariate analysis confirmed clear tissue-specific metabolic profiles. KEGG pathway enrichment highlighted the involvement of flavonoid biosynthesis, amino acid metabolism, and lipid metabolism pathways, suggesting bioactive potential. This study presents the first comprehensive metabolic profile of TKS, highlighting its potential value beyond rubber production. The detection of numerous therapeutic secondary metabolites supports its promise as a pharmaceutical and nutraceutical resource. Further functional validation of identified compounds is warranted. Full article
Show Figures

Graphical abstract

Back to TopTop