Advances in Bract Coloration: Diversity, Pigment Synthesis, and Regulatory Mechanisms in Ornamental Plants
Abstract
1. Introduction
2. Diversity of Color Phenotypes and Key Pigments in Ornamental Plants Bracts
2.1. The Color Phenotypic Diversity of Ornamental Plant Bracts
2.2. The Influence of Pigment Distribution and Cellular Structure on Bract Coloration
2.3. Key Pigments and Their Mechanisms in Bract Coloration
2.4. Instrumental Methods for Pigment Detection and Quantification
3. Metabolic Pathway of Pigments in Ornamental Bracts
3.1. Chlorophyll Metabolism
3.2. Anthocyanins Biosynthesis
3.3. Betalains Biosynthesis
3.4. Carotenoids Biosynthesis
4. Transcriptional Regulation
5. Plant Growth Regulators
6. Conclusions
7. Prospects and Future Research Directions
- (1)
- Comparative pigment accumulation mechanisms: Systematic comparison of pigmentation processes between ornamental bracts, vegetative bracts, leaves, and petals to identify tissue-specific regulatory patterns.
- (2)
- Environmental regulation of coloration: Molecular-level characterization of bract color variation in response to abiotic factors (light intensity, temperature, water availability) and biotic stresses.
- (3)
- Copigmentation effects: Comprehensive analysis of copigment-pigment interactions and their impacts on color stability and diversity in ornamental bracts.
- (4)
- Multi-omics integration: Combined application of genomics, transcriptomics, metabolomics, and proteomics with forward genetics approaches to elucidate key coloration factors and their regulatory networks.
- (5)
- Advanced pigment separation technologies: Development of novel techniques for precise isolation and identification of key chromogenic compounds in bracts.
- (6)
- High-throughput phenotyping systems: Develop efficient systems for detecting or predicting pigment content in ornamental bracts to enhance the phenotypic screening efficiency of bract pigment content for large-scale breeding programs.
- (7)
- Molecular breeding tools: Development of functional markers through high-throughput sequencing and association mapping in diverse genetic populations to enable marker-assisted selection.
- (8)
- Genetic transformation systems: Establishment of efficient, stable transformation protocols for targeted modification of coloration pathways in ornamental bract species.
Author Contributions
Funding
Conflicts of Interest
References
- Song, B.; Chen, J.; Lev Yadun, S.; Niu, Y.; Gao, Y.; Ma, R.; Armbruster, W.S.; Sun, H. Multifunctionality of angiosperm floral bracts: A review. Biol. Rev. Camb. Philos. Soc. 2024, 99, 1100–1120. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, J.; Li, Y.; Xu, L.; Xu, W.; Vetukuri, R.R.; Xu, X.; Sveriges, L. Proteome and metabolome analyses of albino bracts in Davidia involucrata. Plants 2025, 14, 549. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhan, D.X.; Luo, H.H.; Zhang, Y.L.; Zhang, W.F. Photorespiration and photoinhibition in the bracts of cotton under water stress. Photosynthetica 2016, 54, 12–18. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, H. The bracts of Saussurea velutina (asteraceae) protect inflorescences from fluctuating weather at high elevations of the hengduan mountains, southwestern china. Arct. Antarct. Alp. Res. 2009, 41, 515–521. [Google Scholar] [CrossRef]
- Omori, Y.; Takayama, H.; Ohba, H. Selective light transmittance of translucent bracts in the himalayan giant glasshouse plant Rheum nobile Hook. F. & thomson (polygonaceae). Bot. J. Linn. Soc. 2000, 132, 19–27. [Google Scholar]
- Armbruster, W.S.; Lee, J.; Baldwin, B.G. Macroevolutionary patterns of defense and pollination in Dalechampia vines: Adaptation, exaptation, and evolutionary novelty. Proc. Natl. Acad. Sci. USA 2009, 106, 18085–18090. [Google Scholar] [CrossRef]
- Kim, E.S.; Zaya, D.N.; Fant, J.B.; Ashley, M.V. Reproductive trade-offs maintain bract color polymorphism in scarlet indian paintbrush (Castilleja coccinea). PLoS ONE 2019, 14, e209176. [Google Scholar] [CrossRef]
- Sun, J.; Gong, Y.; Renner, S.S.; Huang, S.; Henry, M.W. Multifunctional bracts in the dove tree Davidia involucrata (nyssaceae: Cornales): Rain protection and pollinator attraction. Am. Nat. 2008, 171, 119–124. [Google Scholar] [CrossRef]
- Whitney, K.D.; Smith, A.K.; White, T.E.; Williams, C.F. Birds perceive more intraspecific color variation in bird-pollinated than bee-pollinated flowers. Front. Plant Sci. 2020, 11, 590347. [Google Scholar] [CrossRef]
- Bergamo, P.J.; Wolowski, M.; Telles, F.J.; De Brito, V.L.G.; Varassin, I.G.; Sazima, M. Bracts and long-tube flowers of hummingbird-pollinated plants are conspicuous to hummingbirds but not to bees. Biol. J. Linn. Soc. 2019, 126, 533–544. [Google Scholar] [CrossRef]
- Wu, S.; Gao, J. The conspicuously large bracts influence reproductive success in Thunia alba (Orchidaceae). J. Plant Ecol. 2024, 17, rtad036. [Google Scholar] [CrossRef]
- Titulaer, M.; Melgoza-Castillo, A.; Macías-Duarte, A.; Panjabi, A.O. Seed size, bill morphology, and handling time influence preferences for native vs. Nonnative grass seeds in three declining sparrows. Wilson J. Ornithol. 2018, 130, 445–456. [Google Scholar] [CrossRef]
- Song, B.; Gao, Y.; Stöcklin, J.; Song, M.; Sun, L.; Sun, H. Ultraviolet screening increases with elevation in translucent bracts of Rheum nobile (polygonaceae), an alpine ‘Glasshouse’ plant from the high himalayas. Bot. J. Linn. Soc. 2020, 193, 276–286. [Google Scholar] [CrossRef]
- Armbruster, W.S. Exaptations link evolution of plant-herbivore and plant-pollinator interactions: A phylogenetic inquiry. Ecology 1997, 78, 1661. [Google Scholar]
- Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant J. 2008, 54, 733–749. [Google Scholar] [CrossRef]
- Ng, J.; Freitas, L.B.; Smith, S.D. Stepwise evolution of floral pigmentation predicted by biochemical pathway structure. Evolution 2018, 72, 2792–2802. [Google Scholar] [CrossRef]
- Liu, X.; Peng, Y.; Zeng, Q.; Ma, Y.; Liu, J.; Huang, Y.; Yu, X.; Luo, J.; Li, Y.; Li, M.; et al. Transcriptomic profiling and gene network analysis revealed regulatory mechanisms of bract development in Bougainvillea glabra. BMC Plant Biol. 2024, 24, 543. [Google Scholar] [CrossRef]
- Lan, L.; Zhao, H.; Xu, S.; Kan, S.; Zhang, X.; Liu, W.; Liao, X.; Tembrock, L.R.; Ren, Y.; Reeve, W.; et al. A high-quality Bougainvillea genome provides new insights into evolutionary history and pigment biosynthetic pathways in the caryophyllales. Hortic. Res. 2023, 10, uhad124. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, Q.; Lin, J.; Ma, X.; Dong, F.; Yan, H.; Zhong, W.; Lu, Y.; Yao, Y.; Shen, X.; et al. Transcriptome analyses shed light on floral organ morphogenesis and bract color formation in Bougainvillea. BMC Plant Biol. 2022, 22, 97. [Google Scholar] [CrossRef]
- Huang, H.; Ji, H.; Ju, S.; Lin, W.; Li, J.; Lv, X.; Lin, L.; Guo, L.; Qiu, D.; Yan, J.; et al. Pantranscriptome combined with phenotypic quantification reveals germplasm kinship and regulation network of bract color variation in Bougainvillea. Front. Plant Sci. 2022, 13, 1018846. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, Y.; Tan, J.; Huang, L.; Zhu, G.; Ye, Y. Role of anthocyanin metabolic diversity in bract coloration of Curcuma alismatifolia varieties. Plant Physiol. Bioch. 2024, 216, 109156. [Google Scholar] [CrossRef] [PubMed]
- Vilperte, V.; Boehm, R.; Debener, T.; Flachowsky, H. Development of a multiplex amplicon-sequencing assay to detect low-frequency mutations in poinsettia (Euphorbia pulcherrima) breeding programmes. Plant Breed. 2021, 140, 497–507. [Google Scholar] [CrossRef]
- Vilperte, V.; Lucaciu, C.R.; Halbwirth, H.; Boehm, R.; Rattei, T.; Debener, T. Hybrid de novo transcriptome assembly of poinsettia (Euphorbia pulcherrima willd. Ex Klotsch) bracts. BMC Genom. 2019, 20, 900. [Google Scholar]
- Nitarska, D.; Boehm, R.; Debener, T.; Lucaciu, R.C.; Halbwirth, H. First genome edited poinsettias: Targeted mutagenesis of flavonoid 3′-hydroxylase using CRISPR/CAS9 results in a colour shift. Plant Cell Tissue Organ Cult. 2021, 147, 49–60. [Google Scholar] [CrossRef]
- Gopaulchan, D.; Lennon, A.M.; Umaharan, P. Expression analysis of the anthocyanin genes in pink spathes of Anthurium with different color intensities. J. Am. Soc. Hortic. Sci. 2015, 140, 480–489. [Google Scholar] [CrossRef]
- Li, C.; Qiu, J.; Yang, G.; Huang, S.; Yin, J. Isolation and characterization of a R2R3-MYB transcription factor gene related to anthocyanin biosynthesis in the spathes of Anthurium andraeanum (Hort.). Plant Cell Rep. 2016, 35, 2151–2165. [Google Scholar] [CrossRef]
- Li, J.; Tan, Q.; Yi, M.; Yu, Z.; Xia, Q.; Zheng, L.; Chen, J.; Zhou, X.; Zhang, X.Q.; Guo, H.R. Identification of key genes responsible for green and white colored spathes in Anthurium andraeanum (Hort.). Front. Plant Sci. 2023, 14, 1208226. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, X.; Xu, B.; Li, Y.; Ma, Y.; Wang, G. Phenotype and transcriptome analysis reveals chloroplast development and pigment biosynthesis together influenced the leaf color formation in mutants of Anthurium andraeanum ‘Sonate’. Front. Plant Sci. 2015, 6, 139. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Fu, Y.; Gao, Y.; Lu, H.; Xu, L. Transcriptome profiling in the spathe of Anthurium andraeanum ‘Albama’ and its anthocyanin-loss mutant ‘xueyu’. Sci. Data 2018, 5, 180247. [Google Scholar] [CrossRef]
- Lei, T.; Song, Y.; Jin, X.; Su, T.; Pu, Y. Effects of pigment constituents and their distribution on spathe coloration of Zantedeschia hybrida. Hortscience 2017, 52, 1840–1848. [Google Scholar] [CrossRef]
- Fang, Y.; Lei, T.; Wu, Y.; Jin, X. Mechanism underlying color variation in calla lily spathes based on transcriptomic analysis. J. Am. Soc. Hortic. Sci. 2021, 146, 387–398. [Google Scholar] [CrossRef]
- Kugler, F.; Stintzing, F.C.; Carle, R. Characterisation of betalain patterns of differently coloured inflorescences from Gomphrena globosa L. and Bougainvillea sp. By HPLC-DAD-ESI-MSN. Anal. Bioanal. Chem. 2007, 387, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Zhou, Y.; Tan, J.; Huang, L.; Xu, Y. Globba hongman, a cut-flower cultivar with red bract color and long vase life. Hortscience 2024, 59, 1550–1552. [Google Scholar] [CrossRef]
- Zhou, Y.; Tan, J.; Huang, L.; Xu, Y.; Ye, Y. Decoding the color palette in the ornamental bracts of Globba spp.: Insights from phenotypic, metabolomic, and transcriptomic analyses. Planta 2025, 262, 11. [Google Scholar] [CrossRef]
- Cui, D.; Xiong, G.; Ye, L.; Gornall, R.; Wang, Z.; Heslop-Harrison, P.; Liu, Q. Genome-wide analysis of flavonoid biosynthetic genes in musaceae (Ensete, Musella, and Musa species) reveals amplification of flavonoid 3′,5′-hydroxylase. AoB Plants 2024, 16, plae49. [Google Scholar] [CrossRef]
- Zhao, T.; Yu, Q.; Liu, H.; Wei, Z. Comparative metabolomic and transcriptomic analyses uncover variation in pigment accumulation profiles in Alpinia hainanensis bracts. Horticulturae 2025, 11, 266. [Google Scholar] [CrossRef]
- Martyn, A.J.; Larkum, A.W.D.; Mcconchie, R.; Offord, C.A. Photoinhibition and changes in pigments associated with bract browning in waratahs (Telopea spp., Proteaceae). J. Hortic. Sci. Biotechnol. 2008, 83, 367–373. [Google Scholar] [CrossRef]
- Bañuelos-Hernández, K.P.; García-Nava, J.R.; Leyva-Ovalle, O.R.; Peña-Valdivia, C.B.; Trejo, C.; Ybarra-Moncada, M.C. Chitosan coating effect on vase life of flowering stems of Heliconia bihai (L.) L. Cv. Halloween. Postharvest Biol. Tec. 2017, 132, 179–187. [Google Scholar] [CrossRef]
- Jagtap, A.Y.; Jadhav, P.R.; Safeena, S.A.; Solanke, A.U.; Pagariya, M.C.; Prasad, K.V.; Kawar, P.G. Integrating molecular and phenotypic approaches to assess genetic diversity in Heliconia genotypes. Genet. Resour. Crop Evol. 2024, 72, 5409–5427. [Google Scholar] [CrossRef]
- Liu, J.X.; Wang, G.F.; Cai, S.Y.; Hu, S.Q.; Wang, W.Y. Mechanism of bract reddening Guzmania. Pak. J. Bot. 2023, 55, 313–320. [Google Scholar]
- Rozali, S.E.; Rashid, K.A.; Farzinebrahimi, R. Effects of shading treatments on pigmentation and inflorescence quality of Calathea crotalifera bracts. Int. J. Agric. Biol. 2016, 18, 549–556. [Google Scholar] [CrossRef]
- Qi, Y.; Lou, Q.; Li, H.; Yue, J.; Liu, Y.; Wang, Y. Anatomical and biochemical studies of bicolored flower development in Muscari latifolium. Protoplasma 2013, 250, 1273–1281. [Google Scholar] [CrossRef]
- Yoshida, K.; Miki, N.; Momonoi, K.; Kawachi, M.; Katou, K.; Okazaki, Y.; Uozumi, N.; Maeshima, M.; Kondo, T. Synchrony between flower opening and petal-color change from red to blue in morning glory, Ipomoea tricolor cv. Heavenly blue. Proc. Jpn. Acad. Ser. B 2009, 85, 187–197. [Google Scholar] [CrossRef]
- Narbona, E.; del Valle, J.C.; Whittall, J.B. Painting the green canvas:how pigments produce flower colours. Biochemistry 2021, 43, 6–12. [Google Scholar] [CrossRef]
- Moustaka, J.; Panteris, E.; Adamakis, I.S.; Tanou, G.; Giannakoula, A.; Eleftheriou, E.P.; Moustakas, M. High anthocyanin accumulation in poinsettia leaves is accompanied by thylakoid membrane unstacking, acting as a photoprotective mechanism, to prevent ros formation. Environ. Exp. Bot. 2018, 154, 44–55. [Google Scholar] [CrossRef]
- Baumann, K.; Perez-Rodriguez, M.; Bradley, D.; Venail, J.; Bailey, P.; Jin, H.; Koes, R.; Roberts, K.; Martin, C. Control of cell and petal morphogenesis by R2R3 MYB transcription factors. Development 2007, 134, 1691–1701. [Google Scholar] [CrossRef]
- Liang, L.; Huang, Y.Q.; Chen, X.H. Anatomical structure and pigment content of Davidia involucrata leaves and Bracts with different colors. Acta Bot. Boreali-Occident. Sin. 2020, 40, 1539–1548. (In Chinese) [Google Scholar]
- Noda, K.; Glover, B.J.; Linstead, P.; Martin, C. Flower colour intensity depends on specialized cell shape controlled by a MYB-related transcription factor. Nature 1994, 369, 661–664. [Google Scholar] [CrossRef]
- Gandía-Herrero, F.; García-Carmona, F. Biosynthesis of betalains: Yellow and violet plant pigments. Trends Plant Sci. 2013, 18, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Li, Y.; Zhang, T.; Wang, P.; Liu, W.; Zhang, Z.; Yu, W.; Wang, J.; Wang, J.; Zhou, Y. Integrated metabolome, full-length sequencing, and transcriptome analyses unveil the molecular mechanisms of color formation of the canary yellow and red bracts of Bougainvillea × Buttiana ‘Chitra’. Plant J. 2023, 116, 1441–1461. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Tu, S.; Ke, L.; Lu, L.; Yu, H. Transcriptome analysis revealed the anabolic regulation of chlorophyll and carotenoids in Curcuma alismatifolia bracts. Biochem. Genet. 2024, 1–14. [Google Scholar] [CrossRef]
- Chen, J.; Funnell, K.A.; Lewis, D.H.; Eason, J.R.; Woolley, D.J. Cytokinin and gibberellin delay regreening of spathe tissue of Zantedeschia ‘Best gold’. Postharvest Biol. Technol. 2013, 84, 61–65. [Google Scholar] [CrossRef]
- Chen, J.; Funnell, K.A.; Lewis, D.H.; Eason, J.R.; Woolley, D.J. Relationship between changes in colour and pigment content during spathe regreening of Zantedeschia ‘Best gold’. Postharvest Biol. Technol. 2012, 67, 124–129. [Google Scholar] [CrossRef]
- Chen, J.; Funnell, K.A.; Lewis, D.H.; Eason, J.R.; Woolley, D.J. Regreening in spathes of Zantedeschia after anthesis: Its physiology and control by fructification and hormones. Physiol. Plant. 2015, 154, 128–141. [Google Scholar] [CrossRef]
- Heuer, S.; Richter, S.; Metzger, J.W.; Wray, V.; Nimtz, M.; Strack, D. Betacyanins from bracts of Bougainvillea glabra. Phytochemistry 1994, 37, 761. [Google Scholar] [CrossRef]
- Jerz, G.; Wybraniec, S.; Gebers, N.; Winterhalter, P. Target-guided separation of Bougainvillea glabra betacyanins by direct coupling of preparative ion-pair high-speed countercurrent chromatography and electrospray ionization mass-spectrometry. J. Chromatogr. A 2010, 1217, 4544–4554. [Google Scholar] [CrossRef]
- Slatnar, A.; Mikulic-Petkovsek, M.; Veberic, R.; Stampar, F.; Schmitzer, V. Anthocyanin and chlorophyll content during poinsettia bract development. Sci. Hortic. 2013, 150, 142–145. [Google Scholar] [CrossRef]
- Nitarska, D.; Stefanini, C.; Haselmair-Gosch, C.; Miosic, S.; Walliser, B.; Mikulic-Petkovsek, M.; Regos, I.; Slatnar, A.; Debener, T.; Terefe-Ayana, D.; et al. The rare orange-red colored Euphorbia pulcherrima cultivar ‘harvest orange’ shows a nonsense mutation in a flavonoid 3′-hydroxylase allele expressed in the bracts. BMC Plant Biol. 2018, 18, 216. [Google Scholar] [CrossRef]
- Zhou, Y.; Yin, M.; Abbas, F.; Sun, Y.; Gao, T.; Yan, F.; Li, X.; Yu, Y.; Yue, Y.; Yu, R.; et al. Classification and association analysis of gerbera (Gerbera hybrida) flower color traits. Front. Plant Sci. 2022, 12, 779288. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, Y.; Zhu, G.; Tan, J.; Lin, J.; Huang, L.; Ye, Y.; Liu, J. Pigment diversity in leaves of Caladium × hortulanum Birdsey and transcriptomic and metabolic comparisons between red and white leaves. Int. J. Mol. Sci. 2024, 25, 605. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Niu, D.; Liu, X. Effects of abiotic stress on chlorophyll metabolism. Plant Sci. 2024, 342, 112030. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Shen, X.; Li, Y.; Xu, Y.; Chen, Y.; Chen, Y.; Hu, X.; Li, X.; Sun, X.; Gong, J. Regulation of chlorophyll and carotenoid metabolism in citrus fruit. Hortic. Plant J. 2025, 11, 951–962. [Google Scholar] [CrossRef]
- Wang, P.; Richter, A.S.; Kleeberg, J.R.W.; Geimer, S.; Grimm, B. Post-translational coordination of chlorophyll biosynthesis and breakdown by bcms maintains chlorophyll homeostasis during leaf development. Nat. Commun. 2020, 11, 1254. [Google Scholar] [CrossRef]
- Liao, X.; Ye, Y.; Zhang, X.; Peng, D.; Hou, M.; Fu, G.; Tan, J.; Zhao, J.; Jiang, R.; Xu, Y.; et al. The genomic and bulked segregant analysis of Curcuma alismatifolia revealed its diverse bract pigmentation. aBIOTECH 2022, 3, 178–196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Feng, P.; Li, Y.; Yu, P.; Yu, G.; Sang, X.; Ling, Y.; Zeng, X.; Li, Y.; Huang, J.; et al. Virescent-albino leaf 1 regulates leaf colour development and cell division in rice. J. Exp. Bot. 2018, 69, 4791–4804. [Google Scholar] [CrossRef]
- He, J.; Giusti, M.M. Anthocyanins: Natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163. [Google Scholar] [CrossRef]
- Sun, L.; Huo, J.; Liu, J.; Yu, J.; Zhou, J.; Sun, C.; Wang, Y.; Leng, F. Anthocyanins distribution, transcriptional regulation, epigenetic and post-translational modification in fruits. Food Chem. 2023, 411, 135540. [Google Scholar] [CrossRef]
- Gu, Z.; Chen, H.; Yang, R.; Ran, M. Identification of DFR as a promoter of anthocyanin accumulation in poinsettia (Euphorbia pulcherrima, Willd. Ex klotzsch) bracts under short-day conditions. Sci. Hortic. 2018, 236, 158–165. [Google Scholar] [CrossRef]
- Vilperte, V.; Boehm, R.; Debener, T. A highly mutable GST is essential for bract colouration in Euphorbia pulcherrima willd. Ex klotsch. BMC Genom. 2021, 22, 208–216. [Google Scholar] [CrossRef]
- Osorio-Guarin, J.A.; Gopaulchan, D.; Quanckenbush, C.; Lennon, A.M.; Umaharan, P.; Cornejo, O.E. Comparative transcriptomic analysis reveals key components controlling spathe color in Anthurium andraeanum (Hort.). PLoS ONE 2021, 16, e261364. [Google Scholar] [CrossRef]
- Borjan, D.; Šeregelj, V.; Andrejč, D.C.; Pezo, L.; Šaponjac, V.T.; Knez, Ž.; Vulić, J.; Marevci, M.K. Green techniques for preparation of red beetroot extracts with enhanced biological potential. Antioxidants 2022, 11, 805. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, Y.; Long, T.; Wang, S.; Yang, J. Regulation mechanism of plant pigments biosynthesis: Anthocyanins, carotenoids, and betalains. Metabolites 2022, 12, 871. [Google Scholar] [CrossRef] [PubMed]
- Ohno, S.; Makishima, R.; Doi, M. Post-transcriptional gene silencing of CYP76AD controls betalain biosynthesis in bracts of bougainvillea. J. Exp. Bot. 2021, 72, 6949–6962. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Liu, S.; Zheng, Y. Genome-wide identification of the pigment formation-regulating CYP450 family gives new insights into color improvement in Bougainvillea. Sci. Hortic. 2025, 341, 113997. [Google Scholar] [CrossRef]
- Ohno, S.; Kokado, R.; Makishima, R.; Doi, M. BpCYP76AD15 is involved in betaxanthin biosynthesis in Bougainvillea callus. Planta 2023, 258, 47. [Google Scholar] [CrossRef]
- Nisar, N.; Li, L.; Lu, S.; Khin, N.C.; Pogson, B.J. Carotenoid metabolism in plants. Mol. Plant 2015, 8, 68–82. [Google Scholar] [CrossRef]
- Wang, F.; Yao, G.; Li, J.; Zhu, W.; Li, Z.; Sun, Z.; Xin, P. Mining and expression analysis of color related genes in Bougainvillea glabra bracts based on transcriptome sequencing. Sci. Rep. 2024, 14, 24491. [Google Scholar] [CrossRef]
- Yan, H.; Pei, X.; Zhang, H.; Li, X.; Zhang, X.; Zhao, M.; Chiang, V.L.; Sederoff, R.R.; Zhao, X. Myb-mediated regulation of anthocyanin biosynthesis. Int. J. Mol. Sci. 2021, 22, 3103. [Google Scholar] [CrossRef]
- Jaakola, L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci. 2013, 18, 477–483. [Google Scholar] [CrossRef]
- Chen, L.; Hu, B.; Qin, Y.; Hu, G.; Zhao, J. Advance of the negative regulation of anthocyanin biosynthesis by myb transcription factors. Plant Physiol. Bioch. 2019, 136, 178–187. [Google Scholar] [CrossRef]
- Qi, T.; Huang, H.; Song, S.; Xie, D. Regulation of jasmonate-mediated stamen development and seed production by a bHLH-MYB complex in arabidopsis. The Plant Cell 2015, 27, 1620–1633. [Google Scholar] [CrossRef]
- Chen, C.; Xie, F.; Shah, K.; Hua, Q.; Chen, J.; Zhang, Z.; Zhao, J.; Hu, G.; Qin, Y. Genome-wide identification of wrky gene family in pitaya reveals the involvement of HmoWRKY42 in betalain biosynthesis. Int. J. Mol. Sci. 2022, 23, 10568. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Shah, K.; Chen, C.; Sabir, I.A.; Chen, J.; Chen, J.; Chen, J.; Qin, Y. Unraveling betalain suppression in pitaya: Insights from co-activator HuMYB9 binding at HuCYP76AD1-1, HuADH1, and HuDODA1 super-enhancers. Food Qual. Saf. 2024, 8, fyae016. [Google Scholar] [CrossRef]
- Albert, N.W.; Arathoon, S.; Collette, V.E.; Schwinn, K.E.; Jameson, P.E.; Lewis, D.H.; Zhang, H.; Davies, K.M. Activation of anthocyanin synthesis in cymbidium orchids: Variability between known regulators. Plant Cell Tissue Organ Cult. 2010, 100, 355–360. [Google Scholar] [CrossRef]
- Ma, G.; Zou, Q.; Shi, X.; Tian, D.; Sheng, Q. Ectopic expression of the aaful1 gene identified in Anthurium andraeanum affected floral organ development and seed fertility in tobacco. Gene 2019, 696, 197–205. [Google Scholar] [CrossRef]
- Zhao, D.; Tao, J. Recent advances on the development and regulation of flower color in ornamental plants. Front. Plant Sci. 2015, 6, 261. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Boonyaritthongchai, P.; Buanong, M.; Supapvanich, S.; Wongs-Aree, C. Chitosan- and κ-carrageenan-based composite coating on dragon fruit (Hylocereus undatus) pretreated with plant growth regulators maintains bract chlorophyll and fruit edibility. Sci. Hortic. 2021, 281, 109916. [Google Scholar] [CrossRef]
- Portis, E.; Mauro, R.P.; Acquadro, A.; Moglia, A.; Mauromicale, G.; Lanteri, S. Inheritance of bract pigmentation and fleshy thorns on the globe artichoke capitulum. Euphytica 2015, 206, 523–531. [Google Scholar] [CrossRef]
- Grotewold, E. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 2006, 57, 761–780. [Google Scholar] [CrossRef]
- De Keyser, E.; Dhooghe, E.; Christiaens, A.; Van Labeke, M.; Van Huylenbroeck, J. Led light quality intensifies leaf pigmentation in ornamental pot plants. Sci. Hortic. 2019, 253, 270–275. [Google Scholar] [CrossRef]
- Trouillas, P.; Sancho-García, J.C.; De Freitas, V.; Gierschner, J.; Otyepka, M.; Dangles, O. Stabilizing and modulating color by copigmentation: Insights from theory and experiment. Chem. Rev. 2016, 116, 4937–4982. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Aoki, D.; Fukushima, K.; Yoshida, K. Direct mapping of hydrangea blue-complex in sepal tissues of Hydrangea macrophylla. Sci. Rep. 2019, 9, 5450. [Google Scholar] [CrossRef] [PubMed]
- Lyu, H.; Sim, S.B.; Geib, S.M.; Imamura, J.S.L.; Corpuz, B.L.; Corpuz, R.L.; Kauwe, A.N.; Simmonds, T.J.; Arakawa, C.N.; Myers, R.Y.; et al. Chromosome-level genome assembly and annotation of Anthurium amnicola. Sci. Data 2025, 12, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Zou, Q.; Mao, L.; Tian, D.; Hu, W.; Cao, X.; Ding, H. The chromosome-scale assembly of the Curcuma alismatifolia genome provides insight into anthocyanin and terpenoid biosynthesis. Front. Plant Sci. 2022, 13, 899588. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, T.; Wang, D.; Gou, R.; Jiang, Y.; Zhang, G.; Zheng, Y.; Gao, D.; Chen, L.; Zhang, X.; et al. Chromosome level genome assembly of colored calla lily (Zantedeschia elliottiana). Sci. Data 2023, 10, 605. [Google Scholar] [CrossRef]
Species | Bract Color | Primary Pigment | References |
---|---|---|---|
Davidia involucrata | white | very low chlorophyll and carotenoid content | [2] |
Bougainvillea | red, purple, magenta, white, purple, orange, green, yellow | betalains (betaxanthins, betacyanins), chlorophyll, carotenoids, anthocyanins, flavonoids | [17,18,19,20] |
Euphorbia pulcherrima | red, pink, orange, coral, white, green, and brown | anthocyanins (cyanidin derivatives, pelargonidin derivatives) | [22,23,24] |
Anthurium andraeanum | pink, red, puple | anthocyanins (cyanidin 3-rutinoside, pelargonidin 3-rutinoside) | [25,26,28] |
Anthurium andraeanum | white | proanthocyanins or no anthocyanins | [27] |
Anthurium andraeanum | green | chlorophyll, carotenoids | [27] |
Curcuma alismatifolia | white, pink, red, purple | anthocyanins, chlorophyll | [21,51] |
Zantedeschia hybrida | black, red, orange, yellow, pink, white, purplish red | anthocyanins (cyanidin and pelargonidin), flavonol | [30,31] |
Gomphrena globosa | orange, red, purple | betaxanthins, betacyanins, Σ-betalains | [32] |
Globba spp. | white, pink, red, purple | anthocyanins | [34] |
Alpinia hainanensis ‘Shengzhen’ | Pink | anthocyanins (cyanidin, pelargonidin, peonidin, petunidin) | [36] |
Telopea speciosissima | white, green, red | chlorophyll, anthocyanins, carotenoids | [37] |
Heliconia | Orange-yellow | Anthocyanins | [38] |
Guzmania | red | flavonoids, anthocyanins (cyanidin chloride, pelargonium chloride) | [40] |
Calathea crotalifera | red | Chlorophyll, carotenoids, anthocyanins | [41] |
Calathea crotalifera | yellow | Chlorophyll, carotenoids | [41] |
Zantedeschia pentlandii ‘Best Gold’ | golden yellow | carotenoids: lutein, violaxanthin, β-carotene | [52,53] |
Species | Isolated Gene | Regulatory Mode | Methods | Effects on Pigment Accumulation | References |
---|---|---|---|---|---|
Euphorbia pulcherrima | F3′H | Positive | CRISPR/Cas9 gene editing | Reduced content of cyanidin and pelargonidin | [24] |
Euphorbia pulcherrima | DFR | Positive | Heterologous transformation in Arabidopsis | Increased anthocyanin accumulation | [68] |
Bougainvillea | BpCYP76AD1 and BpDODA1 | Positive | Co-transient transformation of two genes with MjcDOPA5GT in tobacco leaves | Enhanced betalain content in tobacco leaves | [73] |
Bougainvillea | BpCYP76AD15 | Positive | Homologous overexpression in callus | Betalain accumulation in callus tissues | [75] |
Anthurium andraeanum | AaMYB2 | Positive | Heterologous overexpression in tobacco | Increased anthocyanin levels in tobacco leaves | [26] |
Anthurium andraeanum | AaFUL1 | Negative | Heterologous overexpression in tobacco | Petal color fading | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, Y.; Cai, Z.; Zhou, Y. Advances in Bract Coloration: Diversity, Pigment Synthesis, and Regulatory Mechanisms in Ornamental Plants. Plants 2025, 14, 2155. https://doi.org/10.3390/plants14142155
Li X, Liu Y, Cai Z, Zhou Y. Advances in Bract Coloration: Diversity, Pigment Synthesis, and Regulatory Mechanisms in Ornamental Plants. Plants. 2025; 14(14):2155. https://doi.org/10.3390/plants14142155
Chicago/Turabian StyleLi, Xiaoyang, Yang Liu, Zhiquan Cai, and Yiwei Zhou. 2025. "Advances in Bract Coloration: Diversity, Pigment Synthesis, and Regulatory Mechanisms in Ornamental Plants" Plants 14, no. 14: 2155. https://doi.org/10.3390/plants14142155
APA StyleLi, X., Liu, Y., Cai, Z., & Zhou, Y. (2025). Advances in Bract Coloration: Diversity, Pigment Synthesis, and Regulatory Mechanisms in Ornamental Plants. Plants, 14(14), 2155. https://doi.org/10.3390/plants14142155