Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = plant adaptogens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1830 KiB  
Review
Eleutherococcus senticosus (Acanthopanax senticosus): An Important Adaptogenic Plant
by Grzegorz Kos, Katarzyna Czarnek, Ilona Sadok, Agnieszka Krzyszczak-Turczyn, Paweł Kubica, Karolina Fila, Gizem Emre, Małgorzata Tatarczak-Michalewska, Małgorzata Latalska, Eliza Blicharska, Daniel Załuski, Nazım Şekeroğlu and Agnieszka Szopa
Molecules 2025, 30(12), 2512; https://doi.org/10.3390/molecules30122512 - 8 Jun 2025
Viewed by 2402
Abstract
This comprehensive review focuses on Eleutherococcus senticosus (ES), examining the phytochemical composition, traditional medicinal roles, ecological traits, and pharmacological effects. Native to Northeast Asia, ES is used in traditional Chinese, Korean, and Japanese medicine. The rhizomes and bark are utilized medicinally and valued [...] Read more.
This comprehensive review focuses on Eleutherococcus senticosus (ES), examining the phytochemical composition, traditional medicinal roles, ecological traits, and pharmacological effects. Native to Northeast Asia, ES is used in traditional Chinese, Korean, and Japanese medicine. The rhizomes and bark are utilized medicinally and valued for their adaptogenic properties that enhance stress resistance, boost mental and physical endurance, and exhibit immunostimulatory effects that strengthen the immune system. Its pharmacological potential stems from a variety of bioactive compounds, including eleutherosides, lignans, saponins, flavonoids, and polysaccharides, which contribute to health benefits such as neuroprotective, antidiabetic, anticancer, and antioxidative activities. Neuroprotective properties may aid in the management of neurodegenerative conditions, such as Alzheimer’s and Parkinson’s disease, while antidiabetic effects support glucose regulation and insulin sensitivity. With increasing demands and conservation concerns, sustainable cultivation practices are essential, as ES is endangered in some areas. Plant biotechnology techniques offer solutions to enhance secondary metabolite yields while ensuring genetic stability and minimizing environmental impacts. ES is a promising natural resource for various industries because of its extensive benefits. Still, its conservation and sustainable production are critical and require ongoing research and innovative cultivation strategies. Full article
Show Figures

Graphical abstract

22 pages, 2323 KiB  
Review
Herbal Support for the Nervous System: The Impact of Adaptogens in Humans and Dogs
by Jagoda Kępińska-Pacelik and Wioletta Biel
Appl. Sci. 2025, 15(10), 5402; https://doi.org/10.3390/app15105402 - 12 May 2025
Cited by 1 | Viewed by 1774
Abstract
Plants have played a key role in natural therapies for centuries, and their impact on the nervous system and the treatment of neurological disorders is of growing interest to scientists. Modern research confirms that plant substances can modulate neurotransmitters, reduce oxidative stress and [...] Read more.
Plants have played a key role in natural therapies for centuries, and their impact on the nervous system and the treatment of neurological disorders is of growing interest to scientists. Modern research confirms that plant substances can modulate neurotransmitters, reduce oxidative stress and support cognitive functions. Like humans, dogs also respond to plant compounds, which opens up new perspectives in veterinary medicine. The most well-known adaptogen is ginseng, and others include Siberian ginseng, Chinese magnolia vine, maral root, and golden root. These plants support the regulation of cortisol levels, neurotransmission and neuroplasticity. Although research on adaptogens in humans is advanced, there is still a lack of data on their effects on dogs. Further research is necessary to confirm their effectiveness and safety in animal therapy. Full article
Show Figures

Figure 1

23 pages, 2128 KiB  
Article
Maral Root Extract and Its Main Constituent 20-Hydroxyecdysone Enhance Stress Resilience in Caenorhabditis elegans
by Velislava Todorova, Monika N. Todorova, Martina S. Savova, Kalin Ivanov, Milen I. Georgiev and Stanislava Ivanova
Int. J. Mol. Sci. 2025, 26(8), 3739; https://doi.org/10.3390/ijms26083739 - 15 Apr 2025
Cited by 1 | Viewed by 1012
Abstract
As human life expectancy continues to rise, managing age-related diseases and preserving health in later years remain significant challenges. Consequently, there is a growing demand for strategies that enhance both the quality and the duration of life. Interventions that promote longevity, particularly those [...] Read more.
As human life expectancy continues to rise, managing age-related diseases and preserving health in later years remain significant challenges. Consequently, there is a growing demand for strategies that enhance both the quality and the duration of life. Interventions that promote longevity, particularly those derived from natural sources, are popular for their potential to address age-related health concerns. Adaptogens—herbs, roots, and mushrooms—are valued in food science and nutrition for their ability to enhance resilience and overall well-being. Among these, Rhaponticum carthamoides (Willd.) Iljin, known as maral root (Russian leuzea), holds a prominent place in Siberian traditional medicine. The root extract, abundant in bioactive compounds such as flavonoids and phytoecdysteroids, is reputed for reducing fatigue, boosting strength, and offering immunomodulatory benefits. However, the effects of the plant extract on lifespan and age-related decline remains poorly studied. This study investigates the effect of maral root extract and phytoecdysteroids—ecdysterone, ponasterone, and turkesterone—on aging using Caenorhabditis elegans as a model organism. A sensitive liquid chromatography method with photodiode array detection was developed and validated to quantify the phytoecdysteroids in the extract. Behavioural and stress-response assays revealed that maral root not only extends lifespan but also significantly enhanced healthspan, stress resilience, and fitness in the nematodes. Additionally, treatment with ecdysterone, the most abundant compound in the root extract, improved healthspan by enhancing stress response. These findings underscore the potential of maral root as a natural adaptogen to mitigate age-related decline, providing valuable insights into natural longevity interventions. Full article
(This article belongs to the Special Issue Caenorhabditis elegans: A Model Organism for Human Health and Disease)
Show Figures

Figure 1

29 pages, 1269 KiB  
Review
Astragalus Membranaceus—Can It Delay Cellular Aging?
by Kinga K. Borowicz and Monika E. Jach
Nutrients 2025, 17(8), 1299; https://doi.org/10.3390/nu17081299 - 8 Apr 2025
Viewed by 3231
Abstract
Astragalus membranaceus, a plant that has been utilized in traditional Chinese medicine for centuries, is widely regarded as one of the most valuable herbs in this medicinal tradition. It is commonly referred to as the “yellow leader”, a designation that stems from [...] Read more.
Astragalus membranaceus, a plant that has been utilized in traditional Chinese medicine for centuries, is widely regarded as one of the most valuable herbs in this medicinal tradition. It is commonly referred to as the “yellow leader”, a designation that stems from the yellow hue of its most significant organ, the root, and its adaptogenic properties. The plant Astragalus is renowned for its abundance of active components, including polysaccharides, flavonoids, saponins, and an array of trace elements. It has been demonstrated that the administration of Astragalus can prevent cellular aging, owing to its diverse range of actions that provide protection to the body from both external and internal factors. The antioxidant, immunomodulatory, anti-inflammatory, and regenerative properties of this plant contribute to the maintenance of good skin condition, preventing atrophy of subcutaneous tissue and degeneration of facial bones. Systemic actions encompass the maintenance of function and protection of the cardiovascular, nervous, respiratory, digestive, excretory, immune, and endocrine systems. This article reviews the composition of Astragalus membranaceus and the beneficial effects of its root extract and its active substances on the whole body, with a particular focus on the anti-aging effects on the skin. Full article
Show Figures

Figure 1

85 pages, 24685 KiB  
Review
Adaptogens in Long-Lasting Brain Fatigue: An Insight from Systems Biology and Network Pharmacology
by Alexander Panossian, Terrence Lemerond and Thomas Efferth
Pharmaceuticals 2025, 18(2), 261; https://doi.org/10.3390/ph18020261 - 15 Feb 2025
Cited by 1 | Viewed by 8416
Abstract
Long-lasting brain fatigue is a consequence of stroke or traumatic brain injury associated with emotional, psychological, and physical overload, distress in hypertension, atherosclerosis, viral infection, and aging-related chronic low-grade inflammatory disorders. The pathogenesis of brain fatigue is linked to disrupted neurotransmission, the glutamate-glutamine [...] Read more.
Long-lasting brain fatigue is a consequence of stroke or traumatic brain injury associated with emotional, psychological, and physical overload, distress in hypertension, atherosclerosis, viral infection, and aging-related chronic low-grade inflammatory disorders. The pathogenesis of brain fatigue is linked to disrupted neurotransmission, the glutamate-glutamine cycle imbalance, glucose metabolism, and ATP energy supply, which are associated with multiple molecular targets and signaling pathways in neuroendocrine-immune and blood circulation systems. Regeneration of damaged brain tissue is a long-lasting multistage process, including spontaneously regulating hypothalamus-pituitary (HPA) axis-controlled anabolic–catabolic homeostasis to recover harmonized sympathoadrenal system (SAS)-mediated function, brain energy supply, and deregulated gene expression in rehabilitation. The driving mechanism of spontaneous recovery and regeneration of brain tissue is a cross-talk of mediators of neuronal, microglia, immunocompetent, and endothelial cells collectively involved in neurogenesis and angiogenesis, which plant adaptogens can target. Adaptogens are small molecules of plant origin that increase the adaptability of cells and organisms to stress by interaction with the HPA axis and SAS of the stress system (neuroendocrine-immune and cardiovascular complex), targeting multiple mediators of adaptive GPCR signaling pathways. Two major groups of adaptogens comprise (i) phenolic phenethyl and phenylpropanoid derivatives and (ii) tetracyclic and pentacyclic glycosides, whose chemical structure can be distinguished as related correspondingly to (i) monoamine neurotransmitters of SAS (epinephrine, norepinephrine, and dopamine) and (ii) steroid hormones (cortisol, testosterone, and estradiol). In this narrative review, we discuss (i) the multitarget mechanism of integrated pharmacological activity of botanical adaptogens in stress overload, ischemic stroke, and long-lasting brain fatigue; (ii) the time-dependent dual response of physiological regulatory systems to adaptogens to support homeostasis in chronic stress and overload; and (iii) the dual dose-dependent reversal (hormetic) effect of botanical adaptogens. This narrative review shows that the adaptogenic concept cannot be reduced and rectified to the various effects of adaptogens on selected molecular targets or specific modes of action without estimating their interactions within the networks of mediators of the neuroendocrine-immune complex that, in turn, regulates other pharmacological systems (cardiovascular, gastrointestinal, reproductive systems) due to numerous intra- and extracellular communications and feedback regulations. These interactions result in polyvalent action and the pleiotropic pharmacological activity of adaptogens, which is essential for characterizing adaptogens as distinct types of botanicals. They trigger the defense adaptive stress response that leads to the extension of the limits of resilience to overload, inducing brain fatigue and mental disorders. For the first time, this review justifies the neurogenesis potential of adaptogens, particularly the botanical hybrid preparation (BHP) of Arctic Root and Ashwagandha, providing a rationale for potential use in individuals experiencing long-lasting brain fatigue. The review provided insight into future research on the network pharmacology of adaptogens in preventing and rehabilitating long-lasting brain fatigue following stroke, trauma, and viral infections. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

41 pages, 9889 KiB  
Review
Salidroside: An Overview of Its Promising Potential and Diverse Applications
by Keke Liang, Shuhe Ma, Kai Luo, Renjie Wang, Chenrong Xiao, Xianxie Zhang, Yue Gao and Maoxing Li
Pharmaceuticals 2024, 17(12), 1703; https://doi.org/10.3390/ph17121703 - 17 Dec 2024
Cited by 7 | Viewed by 4130
Abstract
Salidroside, a phenolic compound isolated from various Rhodiola plants, is the principal active constituent of Traditional Chinese Medicine known for its adaptogenic properties. Due to the challenging environment of Rhodiola species, such as high altitude, high radiation, drought, and hypoxia, the source of [...] Read more.
Salidroside, a phenolic compound isolated from various Rhodiola plants, is the principal active constituent of Traditional Chinese Medicine known for its adaptogenic properties. Due to the challenging environment of Rhodiola species, such as high altitude, high radiation, drought, and hypoxia, the source of salidroside is scarce. However, numerous studies have shown that salidroside has a range of biological activities, including cardiovascular and central nervous system activity, and anti-hypoxia, anti-inflammatory, and anti-aging activities. Although previous studies have partially summarized the pharmacological effects of salidroside, the overall pharmacological effects have not been analyzed. Hence, this review will systematically summarize the isolation, purification, synthesis, derivatization, pharmacological activity, pharmacokinetics, clinical application, and safety of salidroside. It is expected to provide new insights for the further research and pharmaceutical development of salidroside. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

17 pages, 3525 KiB  
Review
Harnessing the Antibacterial, Anti-Diabetic and Anti-Carcinogenic Properties of Ocimum sanctum Linn (Tulsi)
by Rakesh Arya, Hossain Md. Faruquee, Hemlata Shakya, Sheikh Atikur Rahman, Most Morium Begum, Sudhangshu Kumar Biswas, Md. Aminul Islam Apu, Md. Azizul Islam, Md. Mominul Islam Sheikh and Jong-Joo Kim
Plants 2024, 13(24), 3516; https://doi.org/10.3390/plants13243516 - 16 Dec 2024
Cited by 2 | Viewed by 5630
Abstract
Ocimum sanctum Linn (O. sanctum L.), commonly known as Holy Basil or Tulsi, is a fragrant herbaceous plant belonging to the Lamiaceae family. This plant is widely cultivated and found in north-central parts of India, several Arab countries, West Africa and tropical [...] Read more.
Ocimum sanctum Linn (O. sanctum L.), commonly known as Holy Basil or Tulsi, is a fragrant herbaceous plant belonging to the Lamiaceae family. This plant is widely cultivated and found in north-central parts of India, several Arab countries, West Africa and tropical regions of the Eastern World. Tulsi is known to be an adaptogen, aiding the body in adapting to stress by harmonizing various bodily systems. Revered in Ayurveda as the “Elixir of Life”, Tulsi is believed to enhance lifespan and foster longevity. Eugenol, the active ingredient present in Tulsi, is a l-hydroxy-2-methoxy-4-allylbenzene compound with diverse therapeutic applications. As concerns over the adverse effects of conventional antibacterial agents continue to grow, alternative therapies have gained prominence. Essential oils (EOs) containing antioxidants have a long history of utilization in traditional medicine and have gained increasing popularity over time. Numerous in vitro, in vivo and clinical studies have provided compelling evidence supporting the safety and efficacy of antioxidant EOs derived from medicinal plants for promoting health. This comprehensive review aims to highlight the scientific knowledge regarding the therapeutic properties of O. sanctum, focusing on its antibacterial, anti-diabetic, anti-carcinogenic, radioprotective, immunomodulatory, anti-inflammatory, cardioprotective, neurogenesis, anti-depressant and other beneficial characteristics. Also, the extracts of O. sanctum L. have the ability to reduce chronic inflammation linked to neurological disorders such as Parkinson’s and Alzheimer’s disease. The information presented in this review shed light on the multifaceted potential of Tulsi and its derivatives in maintaining and promoting health. This knowledge may pave the way for the development of novel therapeutic interventions and natural remedies that harness the immense therapeutic potential of Tulsi in combating various health conditions, while also providing valuable insights for further research and exploration in this field. Full article
Show Figures

Figure 1

15 pages, 3998 KiB  
Review
Plants with Potential Importance in Supporting the Treatment of Depression: Current Trends, and Research
by Renata Nurzyńska-Wierdak
Pharmaceuticals 2024, 17(11), 1489; https://doi.org/10.3390/ph17111489 - 6 Nov 2024
Cited by 3 | Viewed by 3595
Abstract
Depression is one of the most common diseases in the world, and it is also the most common mental disorder. Depressive disorders are a real threat not only to individuals, but also to the general population. This disease is a leading cause of [...] Read more.
Depression is one of the most common diseases in the world, and it is also the most common mental disorder. Depressive disorders are a real threat not only to individuals, but also to the general population. This disease is a leading cause of disability and inability to work. Due to the numerous side effects of conventional drugs, attention is increasingly being paid to other solutions, including herbal medicines. Many plant species are known for their traditional uses in the treatment of anxiety, insomnia, and depression. The clinically proven effects of adaptogenic raw materials on depression symptoms are probably related to the positive impact of some secondary metabolites (terpenoids, alkaloids, glucosinolates, phenols). Currently, it is emphasized that in many cases the antioxidant and anti-inflammatory properties of plant substances play a protective role at the neurocellular level. Among the medicinal plants analyzed in clinical trials for the treatment of depression, the following seem to be particularly interesting: saffron (Crocus L.), turmeric (Curcuma L.), ginkgo (Ginkgo L.), St. John’s wort (Hypericum L.), and passionflower (Passiflora L.), which have broad and strong biological activity, well-documented history of action and use, and effectiveness in preventing and/or treating anxiety and depression. These plants are still in the sphere of biochemical and phytopharmaceutical research, the results of which are very promising. Full article
Show Figures

Graphical abstract

14 pages, 2665 KiB  
Article
Isolation of Lessertiosides A and B and Other Metabolites from Lessertia frutescens and Their Neuroprotection Activity
by Kadidiatou O. Ndjoubi, Sylvester I. Omoruyi, Robert C. Luckay and Ahmed A. Hussein
Plants 2024, 13(21), 3076; https://doi.org/10.3390/plants13213076 - 1 Nov 2024
Cited by 1 | Viewed by 1132
Abstract
Lessertia frutescens (synonym Sutherlandia frutescens) is an important South African medicinal plant used traditionally to treat different human pathologies and is considered an adaptogenic plant. This study sought to isolate compounds from the plant and determine their protective potentials using SH-SY5Y cells [...] Read more.
Lessertia frutescens (synonym Sutherlandia frutescens) is an important South African medicinal plant used traditionally to treat different human pathologies and is considered an adaptogenic plant. This study sought to isolate compounds from the plant and determine their protective potentials using SH-SY5Y cells and MPP+ (1-methyl-4-phenylpyridinium) to mimic Parkinson’s disease. The phytochemical analysis of a 70% aqueous methanolic extract of L. frutescens leaves resulted in the isolation and identification of 11 pure compounds (111), among which compounds 1 and 2 were identified as new metabolites. The new compounds were characterised using IR, UV, NMR, and HRESIMS and were given the trivial names lessertiosides A (1) and B (2). Additionally, the flavonoids 8-methoxyvestitol (7) and mucronulatol (8) were isolated for the first time from the plant. The biological actions show that the isolated compounds had negligible toxicity on SH-SY5Y cells and improved cell viability in the cells exposed to MPP+. Furthermore, as a mechanism of action, the compounds could sustain cellular ATP generation and prevent MPP+-induced apoptotic cell death. Our findings provide evidence for the neuroprotective properties of compounds isolated from L. frutescens in MPP+-induced neuronal damage for the first time and create an avenue for these compounds to be further investigated to elucidate their molecular targets. Full article
(This article belongs to the Special Issue Toxicity and Anticancer Activities of Natural Products from Plants)
Show Figures

Figure 1

23 pages, 2073 KiB  
Review
A Comprehensive Review on Deep Eutectic Solvents: Their Current Status and Potential for Extracting Active Compounds from Adaptogenic Plants
by Malgorzata Stanisz, Beata J. Stanisz and Judyta Cielecka-Piontek
Molecules 2024, 29(19), 4767; https://doi.org/10.3390/molecules29194767 - 9 Oct 2024
Cited by 9 | Viewed by 4760
Abstract
Deep eutectic solvents (DESs) have attracted attention from researchers as novel compounds for extracting active substances because of their negligible toxicity, polarity, and ability to be tailored depending on the experiment. In this review, we discuss deep eutectic solvents as a promising medium [...] Read more.
Deep eutectic solvents (DESs) have attracted attention from researchers as novel compounds for extracting active substances because of their negligible toxicity, polarity, and ability to be tailored depending on the experiment. In this review, we discuss deep eutectic solvents as a promising medium for the extraction of adaptogenic compounds. In comparison to traditional methods, extraction with the use of DESs is a great alternative to the excessive usage of harmful organic solvents. It can be conducted in mild conditions, and DESs can be designed with different precursors, enhancing their versatility. Adaptogenic herbs have a long medicinal history, especially in Eastern Asia. They exhibit unique properties through the active compounds in their structures, including saponins, flavonoids, polysaccharides, and alkaloids. Therefore, they demonstrate a wide range of pharmaceutical effects, such as anti-inflammatory, antibacterial, and anticancer abilities. Since ancient times, many different adaptogenic herbs have been discovered and are well known, including Panax ginseng, Scutellaria baicalensis, and Schisandra chinensis. Active compounds can be extracted using standard methods, such as hydrolyzation, maceration, and conventional reflux extraction. However, due to the limitations of classical processing technologies, there has been a need to develop new and eco-friendly methods. We focus on the types of solvents, extraction efficiency, properties, and applications of the obtained active compounds. This review highlights the potential of DESs as eco-friendly alternatives for extracting bioactive compounds. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

18 pages, 2427 KiB  
Article
Controlled Cultivation Confers Rhodiola rosea Synergistic Activity on Muscle Cell Homeostasis, Metabolism and Antioxidant Defense in Primary Human Myoblasts
by Fortuna Iannuzzo, Elisabetta Schiano, Arianna Pastore, Fabrizia Guerra, Gian Carlo Tenore, Ettore Novellino and Mariano Stornaiuolo
Antioxidants 2024, 13(8), 1000; https://doi.org/10.3390/antiox13081000 - 18 Aug 2024
Cited by 2 | Viewed by 2634
Abstract
Rhodiola rosea L. is recognized for its adaptogenic properties and ability to promote muscle health, function and recovery from exercise. The plethora of biological effects of this plant is ascribed to the synergism existing among the molecules composing its phytocomplex. In this manuscript, [...] Read more.
Rhodiola rosea L. is recognized for its adaptogenic properties and ability to promote muscle health, function and recovery from exercise. The plethora of biological effects of this plant is ascribed to the synergism existing among the molecules composing its phytocomplex. In this manuscript, we analyze the activity of a bioactive fraction extracted from Rhodiola rosea L. controlled cultivation. Biological assays were performed on human skeletal myoblasts and revealed that the extract is able to modulate in vitro expression of transcription factors, namely Pax7 and myoD, involved in muscle differentiation and recovery. The extract also promotes ROS scavenging, ATP production and mitochondrial respiration. Untargeted metabolomics further reveals that the mechanism underpinning the plant involves the synergistic interconnection between antioxidant enzymes and the folic/acid polyamine pathway. Finally, by examining the phytochemical profiles of the extract, we identify the specific combination of secondary plant metabolites contributing to muscle repair, recovery from stress and regeneration. Full article
(This article belongs to the Special Issue Antioxidant Response in Skeletal Muscle)
Show Figures

Figure 1

19 pages, 327 KiB  
Review
Ashwagandha’s Multifaceted Effects on Human Health: Impact on Vascular Endothelium, Inflammation, Lipid Metabolism, and Cardiovascular Outcomes—A Review
by Michał Wiciński, Anna Fajkiel-Madajczyk, Zuzanna Kurant, Sara Liss, Paweł Szyperski, Monika Szambelan, Bartłomiej Gromadzki, Iga Rupniak, Maciej Słupski and Iwona Sadowska-Krawczenko
Nutrients 2024, 16(15), 2481; https://doi.org/10.3390/nu16152481 - 31 Jul 2024
Cited by 11 | Viewed by 17092
Abstract
Withania somnifera, commonly known as Ashwagandha, has been popular for many years. Numerous studies have shown that the extract of this plant, due to its wealth of active substances, can induce anti-inflammatory, neuroprotective, immunomodulatory, hepatoprotective, cardioprotective, anti-diabetic, adaptogenic, anti-arthritic, anti-stress, and antimicrobial [...] Read more.
Withania somnifera, commonly known as Ashwagandha, has been popular for many years. Numerous studies have shown that the extract of this plant, due to its wealth of active substances, can induce anti-inflammatory, neuroprotective, immunomodulatory, hepatoprotective, cardioprotective, anti-diabetic, adaptogenic, anti-arthritic, anti-stress, and antimicrobial effects. This review examines the impact of Ashwagandha extract on the vascular endothelium, inflammation, lipid metabolism, and cardiovascular outcomes. Studies have shown that Ashwagandha extracts exhibit an anti-angiogenic effect by inhibiting vascular endothelial growth factor (VEGF)-induced capillary sprouting and formation by lowering the mean density of microvessels. Furthermore, the results of numerous studies highlight the anti-inflammatory role of Ashwagandha extract, as the action of this plant causes a decrease in the expression of pro-inflammatory cytokines. Interestingly, withanolides, present in Ashwagandha root, have shown the ability to inhibit the differentiation of preadipocytes into adipocytes. Research results have also proved that W. somnifera demonstrates cardioprotective effects due to its antioxidant properties and reduces ischemia/reperfusion-induced apoptosis. It seems that this plant can be successfully used as a potential treatment for several conditions, mainly those with increased inflammation. More research is needed to elucidate the exact mechanisms by which the substances contained in W. somnifera extracts can act in the human body. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health)
18 pages, 3086 KiB  
Review
Salidroside: A Promising Agent in Bone Metabolism Modulation
by Piotr Wojdasiewicz, Stanisław Brodacki, Ewa Cieślicka, Paweł Turczyn, Łukasz A. Poniatowski, Weronika Ławniczak, Mieszko Olczak, Elżbieta U. Stolarczyk, Edyta Wróbel, Agnieszka Mikulska, Anna Lach-Gruba, Beata Żuk, Katarzyna Romanowska-Próchnicka and Dariusz Szukiewicz
Nutrients 2024, 16(15), 2387; https://doi.org/10.3390/nu16152387 - 23 Jul 2024
Cited by 6 | Viewed by 4015
Abstract
Rhodiola rosea, a long-lived herbaceous plant from the Crassulaceae group, contains the active compound salidroside, recognized as an adaptogen with significant therapeutic potential for bone metabolism. Salidroside promotes osteoblast proliferation and differentiation by activating critical signaling pathways, including bone morphogenetic protein-2 and [...] Read more.
Rhodiola rosea, a long-lived herbaceous plant from the Crassulaceae group, contains the active compound salidroside, recognized as an adaptogen with significant therapeutic potential for bone metabolism. Salidroside promotes osteoblast proliferation and differentiation by activating critical signaling pathways, including bone morphogenetic protein-2 and adenosine monophosphate-activated protein kinase, essential for bone formation and growth. It enhances osteogenic activity by increasing alkaline phosphatase activity and mineralization markers, while upregulating key regulatory proteins including runt-related transcription factor 2 and osterix. Additionally, salidroside facilitates angiogenesis via the hypoxia-inducible factor 1-alpha and vascular endothelial growth factor pathway, crucial for coupling bone development with vascular support. Its antioxidant properties offer protection against bone loss by reducing oxidative stress and promoting osteogenic differentiation through the nuclear factor erythroid 2-related factor 2 pathway. Salidroside has the capability to counteract the negative effects of glucocorticoids on bone cells and prevents steroid-induced osteonecrosis. Additionally, it exhibits multifaceted anti-inflammatory actions, notably through the inhibition of tumor necrosis factor-alpha and interleukin-6 expression, while enhancing the expression of interleukin-10. This publication presents a comprehensive review of the literature on the impact of salidroside on various aspects of bone tissue metabolism, emphasizing its potential role in the prevention and treatment of osteoporosis and other diseases affecting bone physiology. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

17 pages, 2115 KiB  
Article
Enhanced In Vitro Plant Morphogenesis of Tobacco: Unveiling Indoleamine-Modulated Adaptogenic Properties of Tulsi (Ocimum sanctum L.)
by Vanessa Vongnhay, Mukund R. Shukla, Murali-Mohan Ayyanath, Karthika Sriskantharajah and Praveen K. Saxena
Plants 2024, 13(10), 1370; https://doi.org/10.3390/plants13101370 - 15 May 2024
Cited by 2 | Viewed by 1736
Abstract
The medicinal plant tulsi (Ocimum sanctum L.) is acknowledged for its invigorating and healing properties that enhance resilience to stress in various human and animal models by modulating antioxidant compounds. While extensive research has documented these effects in humans, the adaptogenic potential [...] Read more.
The medicinal plant tulsi (Ocimum sanctum L.) is acknowledged for its invigorating and healing properties that enhance resilience to stress in various human and animal models by modulating antioxidant compounds. While extensive research has documented these effects in humans, the adaptogenic potential of tulsi in stressful in vitro plant systems has not been explored. This study aimed to elucidate the adaptogenic properties of tulsi leaf extract on the in vitro regeneration of tobacco leaf explants through an investigation of the indoleamines at different developmental stages. Shoot regeneration from leaf explants on the medium supplemented with tulsi extract (20%) was compared to the control, and the differences in indoleamine compounds were analyzed using ultra-performance liquid chromatography. Treatment of the explants with the extract resulted in an almost two-fold increase in the number of regenerants after four weeks of culture, and 9% of the regenerants resembled somatic embryo-like structures. The occurrence of browning in the extract-treated explants stopped on day 10, shoots began to develop, and a significant concentration of tryptamine and N-acetyl-serotonin accumulated. A comparative analysis of indoleamine compounds in intact and cut tobacco leaves also revealed the pivotal role of melatonin and 2-hydroxymelatonin functioning as antioxidants during stress adaptation. This study demonstrates that tulsi is a potent adaptogen that is capable of modulating plant morphogenesis in vitro, paving the way for further investigations into the role of adaptogens in plant stress biology. Full article
(This article belongs to the Special Issue In Vitro Morphogenesis of Plants)
Show Figures

Figure 1

16 pages, 1681 KiB  
Article
Dibenzocyclooctadiene Lignans from Schisandra chinensis with Anti-Inflammatory Effects
by Michal Rybnikář, Milan Malaník, Karel Šmejkal, Emil Švajdlenka, Polina Shpet, Pavel Babica, Stefano Dall’Acqua, Ondřej Smištík, Ondřej Jurček and Jakub Treml
Int. J. Mol. Sci. 2024, 25(6), 3465; https://doi.org/10.3390/ijms25063465 - 19 Mar 2024
Cited by 5 | Viewed by 2670
Abstract
Schisandra chinensis (Schisandraceae) is a medicinal plant widely used in traditional Chinese medicine. Under the name Wu Wei Zi, it is used to treat many diseases, especially as a stimulant, adaptogen, and hepatoprotective. Dibenzocyclooctadiene lignans are the main compounds responsible for the effect [...] Read more.
Schisandra chinensis (Schisandraceae) is a medicinal plant widely used in traditional Chinese medicine. Under the name Wu Wei Zi, it is used to treat many diseases, especially as a stimulant, adaptogen, and hepatoprotective. Dibenzocyclooctadiene lignans are the main compounds responsible for the effect of S. chinensis. As a part of ongoing studies to identify and evaluate anti-inflammatory natural compounds, we isolated a series of dibenzocyclooctadiene lignans and evaluated their biological activity. Furthermore, we isolated new sesquiterpene 7,7-dimethyl-11-methylidenespiro[5.5]undec-2-ene-3-carboxylic acid. Selected dibenzocyclooctadiene lignans were tested to assess their anti-inflammatory potential in LPS-stimulated monocytes by monitoring their anti-NF-κB activity, antioxidant activity in CAA assay, and their effect on gap junction intercellular communication in WB-ras cells. Some S. chinensis lignans showed antioxidant activity in CAA mode and affected the gap junction intercellular communication. The anti-inflammatory activity was proven for (−)-gomisin N, (+)-γ-schisandrin, rubrisandrin A, and (−)-gomisin J. Full article
Show Figures

Figure 1

Back to TopTop