Ashwagandha’s Multifaceted Effects on Human Health: Impact on Vascular Endothelium, Inflammation, Lipid Metabolism, and Cardiovascular Outcomes—A Review
Abstract
:1. Introduction
2. Vascular Endothelium
3. Inflammation
4. Lipid Metabolism Disorders
5. Cardiovascular Outcomes
6. Limitations
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gregory, J.; Vengalasetti, Y.V.; Bredesen, D.E.; Rao, R.V. Neuroprotective Herbs for the Management of Alzheimer’s Disease. Biomolecules 2021, 11, 543. [Google Scholar] [CrossRef]
- Luthra, R.; Roy, A. Role of Medicinal Plants against Neurodegenerative Diseases. Curr. Pharm. Biotechnol. 2022, 23, 123–139. [Google Scholar] [CrossRef]
- Wiciński, M.; Fajkiel-Madajczyk, A.; Kurant, Z.; Kurant, D.; Gryczka, K.; Falkowski, M.; Wiśniewska, M.; Słupski, M.; Ohla, J.; Zabrzyński, J. Can Ashwagandha Benefit the Endocrine System?—A Review. Int. J. Mol. Sci. 2023, 24, 16513. [Google Scholar] [CrossRef]
- Kashyap, V.K.; Peasah-Darkwah, G.; Dhasmana, A.; Jaggi, M.; Yallapu, M.M.; Chauhan, S.C. Withania somnifera: Progress towards a Pharmaceutical Agent for Immunomodulation and Cancer Therapeutics. Pharmaceutics 2022, 14, 611. [Google Scholar] [CrossRef]
- Della Porta, M.; Maier, J.A.; Cazzola, R. Effects of Withania somnifera on Cortisol Levels in Stressed Human Subjects: A Systematic Review. Nutrients 2023, 15, 5015. [Google Scholar] [CrossRef]
- Leonard, M.; Dickerson, B.; Estes, L.; Gonzalez, D.E.; Jenkins, V.; Johnson, S.; Xing, D.; Yoo, C.; Ko, J.; Purpura, M.; et al. Acute and Repeated Ashwagandha Supplementation Improves Markers of Cognitive Function and Mood. Nutrients 2024, 16, 1813. [Google Scholar] [CrossRef]
- Mikulska, P.; Malinowska, M.; Ignacyk, M.; Szustowski, P.; Nowak, J.; Pesta, K.; Szeląg, M.; Szklanny, D.; Judasz, E.; Kaczmarek, G.; et al. Ashwagandha (Withania somnifera)—Current Research on the Health-Promoting Activities: A Narrative Review. Pharmaceutics 2023, 15, 1057. [Google Scholar] [CrossRef]
- Mandlik Ingawale, D.S.; Namdeo, A.G. Pharmacological evaluation of Ashwagandha highlighting its healthcare claims, safety, and toxicity aspects. J. Diet. Suppl. 2021, 18, 183–226. [Google Scholar] [CrossRef]
- Afewerky, H.K.; Ayodeji, A.E.; Tiamiyu, B.B.; Orege, J.I.; Okeke, E.S.; Oyejobi, A.O.; Bate, P.N.N.; Adeyemi, S.B. Critical review of the Withania somnifera (L.) Dunal: Ethnobotany, pharmacological efficacy, and commercialization significance in Africa. Bull. Natl. Res. Cent. 2021, 45, 176. [Google Scholar] [CrossRef]
- Lee, S.R.; Lee, B.S.; Yu, J.S.; Kang, H.; Yoo, M.J.; Yi, S.A.; Han, J.W.; Kim, S.; Kim, J.K.; Kim, J.C.; et al. Identification of anti-adipogenic withanolides from the roots of Indian ginseng (Withania somnifera). J. Ginseng Res. 2022, 46, 357–366. [Google Scholar] [CrossRef]
- Cavaleri, F.; Chattopadhyay, S.; Palsule, V.; Kar, P.K.; Chatterjee, R. Study of Drug Target Identification and Associated Molecular Mechanisms for the Therapeutic Activity and Hair Follicle Induction of Two Ashwagandha Extracts Having Differential Withanolide Constitutions. J. Nutr. Metab. 2023, 2023, 9599744. [Google Scholar] [CrossRef]
- Guo, R.; Gan, L.; Lau, W.B.; Yan, Z.; Xie, D.; Gao, E.; Christopher, T.A.; Lopez, B.L.; Ma, X.; Wang, Y. Withaferin A Prevents Myocardial Ischemia/Reperfusion Injury by Upregulating AMP-Activated Protein Kinase-Dependent B-Cell Lymphoma2 Signaling. Circ. J. 2019, 83, 1726–1736. [Google Scholar] [CrossRef]
- Krüger-Genge, A.; Blocki, A.; Franke, R.-P.; Jung, F. Vascular Endothelial Cell Biology: An Update. Int. J. Mol. Sci. 2019, 20, 4411. [Google Scholar] [CrossRef]
- Rajendran, P.; Rengarajan, T.; Thangavel, J.; Nishigaki, Y.; Sakthisekaran, D.; Sethi, G.; Nishigaki, I. The vascular endothelium and human diseases. Int. J. Biol. Sci. 2013, 9, 1057–1069. [Google Scholar] [CrossRef]
- Cahill, P.A.; Redmond, E.M. Vascular endothelium—Gatekeeper of vessel health. Atherosclerosis 2016, 248, 97–109. [Google Scholar] [CrossRef]
- La Mendola, D.; Trincavelli, M.L.; Martini, C. Angiogenesis in Disease. Int. J. Mol. Sci. 2022, 23, 10962. [Google Scholar] [CrossRef]
- Griffioen, A.W.; Dudley, A.C. The rising impact of angiogenesis research. Angiogenesis 2022, 25, 435–437. [Google Scholar] [CrossRef]
- Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology 2005, 69, 4–10. [Google Scholar] [CrossRef]
- Mathur, R.; Gupta, S.K.; Singh, N.; Mathur, S.; Kochupillai, V.; Velpandian, T. Evaluation of the effect of Withania somnifera root extracts on cell cycle and angiogenesis. J. Ethnopharmacol. 2006, 105, 336–341. [Google Scholar] [CrossRef]
- Wang, Y.; Le, W.D. Autophagy and Ubiquitin-Proteasome System. Adv. Exp. Med. Biol. 2019, 1206, 527–550. [Google Scholar] [CrossRef]
- Staszczak, M. Szlak ubikwityna-proteasom jako cel strategii terapeutycznych [Ubiquitin-proteasome pathway as a target for therapeutic strategies]. Postepy Biochem. 2017, 63, 287–303. [Google Scholar] [PubMed]
- Shang, F.; Taylor, A. Roles for the ubiquitin-proteasome pathway in protein quality control and signaling in the retina: Implications in the pathogenesis of age-related macular degeneration. Mol. Aspects Med. 2012, 33, 446–466. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, H.A.; Quinn, G.A.; Nasef, M.M.; Mishra, V.; Aljabali, A.A.A.; El-Tanani, M.; Serrano-Aroca, Á.; Webba Da Silva, M.; McCarron, P.A.; Tambuwala, M.M. Crocin Inhibits Angiogenesis and Metastasis in Colon Cancer via TNF-α/NF-kB/VEGF Pathways. Cells 2022, 11, 1502. [Google Scholar] [CrossRef] [PubMed]
- Bąska, P.; Norbury, L.J. The Role of Nuclear Factor Kappa B (NF-κB) in the Immune Response against Parasites. Pathogens 2022, 11, 310. [Google Scholar] [CrossRef] [PubMed]
- Thoma, A.; Lightfoot, A.P. NF-kB and Inflammatory Cytokine Signalling: Role in Skeletal Muscle Atrophy. Adv. Exp. Med. Biol. 2018, 1088, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Mohan, R.; Hammers, H.J.; Bargagna-Mohan, P.; Zhan, X.H.; Herbstritt, C.J.; Ruiz, A.; Zhang, L.; Hanson, A.D.; Conner, B.P.; Rougas, J.; et al. Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 2004, 7, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Bargagna-Mohan, P.; Ravindranath, P.P.; Mohan, R. Small molecule anti-angiogenic probes of the ubiquitin proteasome pathway: Potential application to choroidal neovascularization. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4138–4145. [Google Scholar] [CrossRef] [PubMed]
- Tousoulis, D.; Kampoli, A.M.; Tentolouris, C.; Papageorgiou, N.; Stefanadis, C. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol. 2012, 10, 4–18. [Google Scholar] [CrossRef]
- Pathak, P.; Shukla, P.; Kanshana, J.S.; Jagavelu, K.; Sangwan, N.S.; Dwivedi, A.K.; Dikshit, M. Standardized root extract of Withania somnifera and Withanolide A exert moderate vasorelaxant effect in the rat aortic rings by enhancing nitric oxide generation. J. Ethnopharmacol. 2021, 278, 114296. [Google Scholar] [CrossRef]
- Cyr, A.R.; Huckaby, L.V.; Shiva, S.S.; Zuckerbraun, B.S. Nitric Oxide and Endothelial Dysfunction. Crit. Care Clin. 2020, 36, 307–321. [Google Scholar] [CrossRef]
- Iuvone, T.; Esposito, G.; Capasso, F.; Izzo, A.A. Induction of nitric oxide synthase expression by Withania somnifera in macrophages. Life Sci. 2003, 72, 1617–1625. [Google Scholar] [CrossRef]
- Incalza, M.A.; D’Oria, R.; Natalicchio, A.; Perrini, S.; Laviola, L.; Giorgino, F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018, 100, 1–19. [Google Scholar] [CrossRef]
- Shaito, A.; Aramouni, K.; Assaf, R.; Parenti, A.; Orekhov, A.; Yazbi, A.E.; Pintus, G.; Eid, A.H. Oxidative Stress-Induced Endothelial Dysfunction in Cardiovascular Diseases. Front. Biosci. 2022, 27, 105. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.I.; Ahmmed, I.; Ahmed, R.; Tanvir, E.M.; Afroz, R.; Paul, S.; Gan, S.H.; Alam, N. Amelioration of Isoproterenol-Induced Oxidative Damage in Rat Myocardium by Withania somnifera Leaf Extract. Biomed. Res. Int. 2015, 2015, 624159. [Google Scholar] [CrossRef]
- Kaur, G.; Singh, N.; Samuel, S.S.; Bora, H.K.; Sharma, S.; Pachauri, S.D.; Dwivedi, A.K.; Siddiqui, H.H.; Hanif, K. Withania somnifera shows a protective effect in monocrotaline-induced pulmonary hypertension. Pharm. Biol. 2015, 53, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Kim, T.H.; Kang, M.J.; Choi, J.A.; Pack, D.Y.; Lee, I.R.; Kim, M.G.; Han, S.S.; Kim, B.Y.; Oh, S.M.; et al. Inhibitory effect of withaferin A on Helicobacter pylori-induced IL-8 production and NF-κB activation in gastric epithelial cells. Mol. Med. Rep. 2016, 13, 967–972. [Google Scholar] [CrossRef]
- Chaudhary, A.; Kalra, R.S.; Malik, V.; Katiyar, S.P.; Sundar, D.; Kaul, S.C.; Wadhwa, R. 2,3-Dihydro-3β-methoxy Withaferin-A Lacks Anti-Metastasis Potency: Bioinformatics and Experimental Evidences. Sci. Rep. 2019, 9, 17344. [Google Scholar] [CrossRef]
- Sanada, F.; Taniyama, Y.; Muratsu, J.; Otsu, R.; Shimizu, H.; Rakugi, H.; Morishita, R. Source of chronic inflammation in aging. Front. Cardiovasc. Med. 2018, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Kany, S.; Vollrath, J.; Relja, B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef]
- Jiapaer, Z.; Su, D.; Hua, L.; Lehmann, H.I.; Gokulnath, P.; Vulugundam, G.; Li, G. Regulation and roles of RNA modifications in aging-related diseases. Aging Cell 2022, 21, e13657. [Google Scholar] [CrossRef]
- Kiran, R.G. Comparative study of anti-inflammatory activity of Withania somnifera (Ashwagandha) with hydrocortisone in experimental animals (Albino rats). J. Med. Plants Stud. 2016, 4, 78–83. [Google Scholar]
- Devarasetti, A.K.; Bharani, K.K.; Anand, A.K.S.; Kollipaka, R.; Saranu, V.D.T. Adaptogenic Ashwagandha root extract modulates inflammatory markers in feline stress management: A double-blind placebo-controlled clinical trial. J. Appl. Anim. Res. 2023, 52, 2335921. [Google Scholar] [CrossRef]
- Kanjilal, S.; Gupta, A.K.; Patnaik, R.S.; Dey, A. Analysis of Clinical Trial Registry of India for Evidence of Anti-Arthritic Properties of Withania somnifera (Ashwagandha). Altern. Ther. Health Med. 2021, 27, 58–66. [Google Scholar] [PubMed]
- Galli, S.J.; Tsai, M.; Piliponsky, A.M. The development of allergic inflammation. Nature 2008, 454, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Saggam, A.; Limgaokar, K.; Borse, S.; Chavan-Gautam, P.; Dixit, S.; Tillu, G.; Patwardhan, B. Withania somnifera (L.) dunal: Opportunity for clinical repurposing in COVID-19 management. Front. Pharmacol. 2021, 12, 623795. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.M.; Gao, Z.W.; Xie, S.X.; Han, X.; Sun, Q.S. Withaferin A attenuates ovalbumin induced airway inflammation. Front. Biosci. 2019, 24, 576–596. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Chakraborty, S.; Anand, U.; Dey, S.; Nandy, S.; Ghorai, M.; Saha, S.C.; Patil, M.T.; Kandimalla, R.; Proćków, J.; et al. Withania somnifera (L.) Dunal (Ashwagandha): A comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects. Biomed. Pharmacother 2021, 143, 112175. [Google Scholar] [CrossRef] [PubMed]
- Lopresti, A.L.; Smith, S.J.; Malvi, H.; Kodgule, R. An investigation into the stress-relieving and pharmacological actions of an ashwagandha (Withania somnifera) extract: A randomized, double-blind, placebo-controlled study. Medicine 2019, 98, e17186. [Google Scholar] [CrossRef]
- Salve, J.; Pate, S.; Debnath, K.; Langade, D. Adaptogenic and Anxiolytic Effects of Ashwagandha Root Extract in Healthy Adults: A Double-blind, Randomized, Placebo-controlled Clinical Study. Cureus 2019, 11, e6466. [Google Scholar] [CrossRef]
- Orrù, A.; Marchese, G.; Ruiu, S. Alkaloids in Withania somnifera (L.) Dunal root extract contribute to its anti-inflammatory activity. Pharmacology 2023, 108, 301–307. [Google Scholar] [CrossRef]
- Saleem, S.; Muhammad, G.; Hussain, M.A.; Altaf, M.; Bukhari, S.N.A. Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective. Iran. J. Basic. Med. Sci. 2020, 23, 1501–1526. [Google Scholar] [CrossRef]
- Fazil, M.H.U.T.; Chirumamilla, C.S.; Perez-Novo, C.; Wong, B.H.S.; Kumar, S.; Sze, S.K.; Berghe, W.V.; Verma, N.K. The steroidal lactone withaferin A impedes T-cell motility by inhibiting the kinase ZAP70 and subsequent kinome signaling. J. Biol. Chem. 2021, 297, 101377. [Google Scholar] [CrossRef]
- Singh, P.; Salman, K.A.; Shameem, M.; Warsi, M.S. Withania somnifera (L.) Dunal as Add-On Therapy for COPD Patients: A Randomized, Placebo-Controlled, Double-Blind Study. Front. Pharmacol. 2022, 13, 901710. [Google Scholar] [CrossRef] [PubMed]
- Rungratanawanich, W.; Qu, Y.; Wang, X.; Essa, M.M.; Song, B.J. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcoholmediated tissue injury. Exp. Mol. Med. 2021, 53, 168–188. [Google Scholar] [CrossRef] [PubMed]
- Atluri, V.S.R.; Tiwari, S.; Rodriguez, M.; Kaushik, A.; Yndart, A.; Kolishetti, N.; Nair, M. Inhibition of amyloid-Beta production, associated Neuroinflammation, and histone deacetylase 2-mediated epigenetic modifications prevent neuropathology in Alzheimer’s disease in vitro model. Front. Aging Neurosci. 2020, 11, 342. [Google Scholar] [CrossRef] [PubMed]
- Panossian, A.; Seo, E.J.; Efferth, T. Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. Phytomedicine 2018, 50, 257–284. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Hou, C.C.; Cheng, C.F.; Chiu, T.H.; Hsu, Y.H.; Sue, Y.M.; Chen, C.H. Peroxisomal proliferator-activated receptor-alpha protects renal tubular cells from doxorubicin-induced apoptosis. Mol. Pharmacol. 2007, 72, 1238–1245. [Google Scholar] [CrossRef] [PubMed]
- Esteban, V.; Lorenzo, O.; Suzuki, Y.; Mezzano, S.; Blanco, J.; Kretzler, M.; Ruiz-Ortega, M. Angiotensin II, via AT1 and AT2 receptors and NF-kappaB pathway, regulates the inflammatory response in unilateral ureteral obstruction. J. Am. Soc. Nephrol. 2004, 15, 1514–1529. [Google Scholar] [CrossRef] [PubMed]
- Grunz-Borgmann, E.; Mossine, V.; Fritsche, K.; Parrish, A.R. Ashwagandha attenuates TNF-α- and LPS-induced NF-κB activation and CCL2 and CCL5 gene expression in NRK-52E cells. BMC Complement. Altern. Med. 2015, 15, 434. [Google Scholar] [CrossRef]
- Devkar, S.T.; Kandhare, A.D.; Zanwar, A.A.; Jagtap, S.D.; Katyare, S.S.; Bodhankar, S.L.; Hegde, M.V. Hepatoprotective effect of withanolide-rich fraction in acetaminophen-intoxicated rat: Decisive role of TNF-α, IL-1β, COX-II and iNOS. Pharm. Biol. 2016, 54, 2394–2403. [Google Scholar] [CrossRef]
- Kaileh, M.; Vanden Berghe, W.; Heyerick, A.; Horion, J.; Piette, J.; Libert, C.; De Keukeleire, D.; Essawi, T.; Haegeman, G. Withaferin a strongly elicits IkappaB kinase beta hyperphosphorylation concomitant with potent inhibition of its kinase activity. J. Biol. Chem. 2007, 282, 4253–4264. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Zhang, J.; Jiang, Y.; Wang, S.; Yang, Z. Overlapping Pattern of the Four Individual Components of Dyslipidemia in Adults: Analysis of Nationally Representative Data. J. Clin. Med. 2024, 13, 3624. [Google Scholar] [CrossRef] [PubMed]
- Sharebiani, H.; Mokaram, M.; Mirghani, M.; Fazeli, B.; Stanek, A. The Effects of Antioxidant Supplementation on the Pathologic Mechanisms of Metabolic Syndrome and Cardiovascular Disease Development. Nutrients 2024, 16, 1641. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.; McCallin, T.; Martinez, J.; Chacko, S.; Yusuf, S. Hyperlipidemia. Pediatr. Rev. 2020, 41, 393–402. [Google Scholar] [CrossRef]
- Ruze, R.; Liu, T.; Zou, X.; Song, J.; Chen, Y.; Xu, R.; Yin, X.; Xu, Q. Obesity and type 2 diabetes mellitus: Connections in epidemiology, pathogenesis, and treatments. Front. Endocrinol 2023, 14, 1161521. [Google Scholar] [CrossRef] [PubMed]
- Karr, S. Epidemiology and management of hyperlipidemia. Am. J. Manag. Care. 2017, 23, S139–S148. [Google Scholar]
- Lee, D.-H.; Ahn, J.; Jang, Y.-J.; Seo, H.-D.; Ha, T.-Y.; Kim, M.J.; Huh, Y.H.; Jung, C.H. Withania somnifera Extract Enhances Energy Expenditure via Improving Mitochondrial Function in Adipose Tissue and Skeletal Muscle. Nutrients 2020, 12, 431. [Google Scholar] [CrossRef]
- Zahran, E.; El Sebaei, M.G.; Awadin, W.; Elbahnaswy, S.; Risha, E.; Elseady, Y. Withania somnifera dietary supplementation improves lipid profile, intestinal histomorphology in healthy Nile tilapia (Oreochromis niloticus), and modulates cytokines response to Streptococcus infection. Fish. Shellfish. Immunol. 2020, 106, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shi, Y.; Yan, M.; Zhang, G. Modulatory action of withaferin-A on oxidative damage through regulation of inflammatory mediators and apoptosis via PI3K/AKT signaling pathway in high cholesterol-induced atherosclerosis in experimental rats. J. Biochem. Mol. Toxicol. 2022, 36, e23154. [Google Scholar] [CrossRef]
- Abu Bakar, M.H.; Azmi, M.N.; Shariff, K.A.; Tan, J.S. Withaferin A Protects Against High-Fat Diet-Induced Obesity Via Attenuation of Oxidative Stress, Inflammation, and Insulin Resistance. Appl. Biochem. Biotechnol. 2019, 188, 241–259. [Google Scholar] [CrossRef]
- Soh, S.; Ong, W.-Y. Effect of Withanolide A on 7-Ketocholesterol Induced Cytotoxicity in hCMEC/D3 Brain Endothelial Cells. Cells 2022, 11, 457. [Google Scholar] [CrossRef]
- Rakha, A.; Ramzan, Z.; Umar, N.; Rasheed, H.; Fatima, A.; Ahmed, Z.; Kieliszek, M.; Aadil, R.M. The Role of Ashwagandha in Metabolic Syndrome: A Review of Traditional Knowledge and Recent Research Findings. J. Biol. Regul. Homeost. Agents 2023, 37, 5091–5103. [Google Scholar] [CrossRef]
- Lee, B.S.; Yoo, M.J.; Kang, H.; Lee, S.R.; Kim, S.; Yu, J.S.; Kim, J.C.; Jang, T.S.; Pang, C.; Kim, K.H. Withasomniferol D, a New Anti-Adipogenic Withanolide from the Roots of Ashwagandha (Withania somnifera). Pharmaceuticals 2021, 14, 1017. [Google Scholar] [CrossRef] [PubMed]
- Akhani, S.; Gotmare, S.R. Hypolipidemic effect of Ashwagandha (Withania somnifera) and Arjuna (Terminalia arjuna): An in vitro study. Natl. J. Physiol. Pharm. Pharmacol. 2023, 13, 1084–1087. [Google Scholar] [CrossRef]
- Cardiovascular Diseases. Available online: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1 (accessed on 11 June 2024).
- Wiciński, M.; Górski, K.; Wódkiewicz, E.; Walczak, M.; Nowaczewska, M.; Malinowski, B. Vasculoprotective Effects of Vildagliptin. Focus on Atherogenesis. Int. J. Mol. Sci. 2020, 21, 2275. [Google Scholar] [CrossRef] [PubMed]
- Bidani, A.K.; Griffin, K.A. Long-term renal consequences of hypertension for normal and diseased kidneys. Curr. Opin. Nephrol. Hypertens. 2002, 11, 73–80. [Google Scholar] [CrossRef]
- Dziedziak, J.; Zaleska-Zmijewska, A.; Szaflik, J.P.; Cudnoch-Jȩdrzejewska, A. Impact of Arterial Hypertension on the Eye: A Review of the Pathogenesis, Diagnostic Methods, and Treatment of Hypertensive Retinopathy. Med. Sci. Monit. 2022, 28, e935135. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.J.; Lopresti, A.L.; Fairchild, T.J. Exploring the efficacy and safety of a novel standardized ashwagandha (Withania somnifera) root extract (Witholytin®) in adults experiencing high stress and fatigue in a randomized, double-blind, placebo-controlled trial. J. Psychopharmacol. 2023, 37, 1091. [Google Scholar] [CrossRef] [PubMed]
- Gopukumar, K.; Thanawala, S.; Somepalli, V.; Rao, T.S.S.; Thamatam, V.B.; Chauhan, S. Efficacy and Safety of Ashwagandha Root Extract on Cognitive Functions in Healthy, Stressed Adults: A Randomized, Double-Blind, Placebo-Controlled Study. Evid. Based Complement. Alternat. Med. 2021, 2021, 8254344. [Google Scholar] [CrossRef]
- Esmaealzadeh, N.; Iranpanah, A.; Sarris, J.; Rahimi, R. A literature review of the studies concerning selected plant-derived adaptogens and their general function in body with a focus on animal studies. Phytomedicine 2022, 105, 154354. [Google Scholar] [CrossRef]
- Speers, A.B.; Cabey, K.A.; Soumyanath, A.; Wright, K.M. Effects of Withania somnifera (Ashwagandha) on Stress and the Stress- Related Neuropsychiatric Disorders Anxiety, Depression, and Insomnia. Curr. Neuropharmacol. 2021, 19, 1468–1495. [Google Scholar] [CrossRef] [PubMed]
- Langade, D.; Kanchi, S.; Salve, J.; Debnath, K.; Ambegaokar, D. Efficacy and Safety of Ashwagandha (Withania somnifera) Root Extract in Insomnia and Anxiety: A Double-blind, Randomized, Placebo-controlled Study. Cureus 2019, 11, e5797. [Google Scholar] [CrossRef] [PubMed]
- Osborne, M.T.; Shin, L.M.; Mehta, N.N.; Pitman, R.K.; Fayad, Z.A.; Tawakol, A. Disentangling the Links Between Psychosocial Stress and Cardiovascular Disease. Circ. Cardiovasc. Imaging 2020, 13, e010931. [Google Scholar] [CrossRef] [PubMed]
- Matthews, K.A.; Katholi, C.R.; McCreath, H.; Whooley, M.A.; Williams, D.R.; Zhu, S.; Markovitz, J.H. Blood pressure reactivity to psychological stress predicts hypertension in the CARDIA study. Circulation 2004, 110, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Gupta, S.K.; Tiwari, S.; Mishra, A.K. Safety of Ashwagandha Root Extract: A Randomized, Placebo-Controlled, study in Healthy Volunteers. Complement. Ther. Med. 2021, 57, 102642. [Google Scholar] [CrossRef]
- Kushwaha, S.; Betsy, A.; Chawla, P. Effect of Ashwagandha (Withania somnifera) root powder supplementation in treatment of hypertension. Stud. Ethno-Med. 2012, 6, 111–115. [Google Scholar] [CrossRef]
- Sandhu, J.S.; Shah, B.; Shenoy, S.; Chauhan, S.; Lavekar, G.S.; Padhi, M.M. Effects of Withania somnifera (Ashwagandha) and Terminalia arjuna (Arjuna) on physical performance and cardiorespiratory endurance in healthy young adults. Int. J. Ayurveda Res. 2010, 1, 144. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, I.; Arya, D.S.; Dinda, A.; Talwar, K.K.; Joshi, S.; Gupta, S.K. Mechanisms of cardioprotective effect of Withania somnifera in experimentally induced myocardial infarction. Basic. Clin. Pharmacol. Toxicol. 2004, 94, 184–190. [Google Scholar] [CrossRef]
- Mohanty, I.R.; Arya, D.S.; Gupta, S.K. Withania somnifera provides cardioprotection and attenuates ischemia-reperfusion-induced apoptosis. Clin. Nutr. 2008, 27, 635–642. [Google Scholar] [CrossRef]
- Yan, Z.; Guo, R.; Gan, L.; Lau, W.B.; Cao, X.; Zhao, J.; Ma, X.; Christopher, T.A.; Lopez, B.L.; Wang, Y. Withaferin A inhibits apoptosis via activated Akt-mediated inhibition of oxidative stress. Life Sci. 2018, 211, 91–101. [Google Scholar] [CrossRef]
- Thakkar, S.; Anklam, E.; Xu, A.; Ulberth, F.; Li, J.; Li, B.; Hugas, M.; Sarma, N.; Crerar, S.; Swift, S.; et al. Regulatory landscape of dietary supplements and herbal medicines from a global perspective. Regul. Toxicol. Pharmacol. 2020, 114, 104647. [Google Scholar] [CrossRef] [PubMed]
- Vazirani, S.; Kothari, A.; Fujimoto, J.; Gomez, M. Supplements Are Not a Synonym for Safe: Suspected Liver Injury from Ashwagandha. Fed. Pract. 2023, 40, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Philips, C.A.; Valsan, A.; Theruvath, A.H.; Ravindran, R.; Oommen, T.T.; Rajesh, S.; Augustine, P.; Liver Research Club India. Ashwagandha-induced liver injury-A case series from India and literature review. Hepatol. Commun. 2023, 7, e0270. [Google Scholar] [CrossRef] [PubMed]
- Akhgarjand, C.; Asoudeh, F.; Bagheri, A.; Kalantar, Z.; Vahabi, Z.; Shab-bidar, S.; Rezvani, H.; Djafarian, K. Does Ashwagandha supplementation have a beneficial effect on the management of anxiety and stress? A systematic review and meta-analysis of randomized controlled trials. Phyther. Res. 2022, 36, 4115–4124. [Google Scholar] [CrossRef]
- Pires, N.; Gota, V.; Gulia, A.; Hingorani, L.; Agarwal, M.; Puri, A. Safety and pharmacokinetics of Withaferin-A in advanced stage high grade osteosarcoma: A phase I trial. J. Ayurveda Integr. Med. 2020, 11, 68–72. [Google Scholar] [CrossRef]
Authors | Subject of Study | Dose | Results |
---|---|---|---|
Kaur et al. (2015) [35] | MCT-challenged rats with PH (pulmonary hypertension) | W. somnifera root powder (50 and 100 mg/kg/d, p.o.) | ↓ RVP, ↓ RVH; ↑ TUNEL-positive cells, ↓ procaspase-3; ↑ IL-10, ↓ TNF-α, ↓ NF-κB; ↑ eNOS, ↓ HIF-1α |
Khalil et al. (2015) [34] | Wistar albino rats (n = 40) | WSLEt (100 mg/kg) for 4 weeks | ↓ heart weight, ↓ cTnI; ↓ TC, ↓ TGs, ↓ VLDL-C, ↑ HDL-C; ↑ SOD, ↑ GRx, ↑ GPx, ↑ GST, ↓ LPO; ↓ inflammatory cells |
Iuvone et al. (2003) [31] | The monocyte/macrophage cell line J774 | WS (1–256 μg/mL) | ↑ NO; ↓ NO synthase inhibitor L-NAME; ↓ TLCK—an inhibitor of NF-κB activation |
Mathur et al. (2006) [19] | Chick-chorioallantoic membrane (CAM) with VEGF | 2.5, 5, and 10 ng of WS root extract and fractions | ↓ mean microvessel density; ↓ MVD |
Subcutaneous implantation of gel foam sponges with VEGF in male Swiss albino mice (25–35 g) | 100 ng of WS root extract and fractions | ||
Mohan et al. (2004) [26] | Human umbilical vein endothelial cells induced by FGF-2 | 5, 10, and 50 µg/mL of WS fractions; 24 h of coincubation | ↓ sprouting index |
Human umbilical vein endothelial cells stimulated with TNF-α | 0.2, 1, and 5 µM of withaferin A; 30 min of treatment + 20 min of TNF-α coincubation | ↓ TNF-α-induced NF-κB activation; ↑ polyubiquitinated proteins | |
Bargagna-Mohan et al. (2006) [27] | Human choroidal endothelial cells and human umbilical vein endothelial cells, both stimulated with TNF-α | 0.25, 0.5, and 1 µM of withanolide D; 30 min of treatment + 20 min of TNF-α coincubation | ↑ IκBα; ↑ ubiquitinated species |
Human choroidal endothelial cells and human umbilical vein endothelial cells, both stimulated with VEGF | 0.5, 1, and 2 µM of withaferin A; 12 h | ↑ HO-1 | |
Pathak et al. (2017) [29] | Transverse aortic rings (4 mm) of 10-week-old male Wistar rats (250 g) | 0.1–100 µg/mL of standardized WS root extract (NM) and 0.1–100 µg/mL of marker compound withanolide A | ↑ vasorelaxation |
Human endothelial cell line EA.hy926 | 3 h of treatment with 0.5–100 µg/mL of NM and 0.5–50 µg/mL of withanolide A | ↑ NO; ↑ eNOS | |
Kim et al. (2015) [36] | AGS cells infected with H. pylori in the absence or presence of withaferin A (pre-treated and co-treated) | 10–500 nM of withaferin A; 24 h of experiment | ↔ VEGF |
Chaudhary et al. (2019) [37] | AGS cells pre-treated with withaferin A and infected with H. pylori Osteosarcoma cell lines treated with WA and 3βmWi-A | 500 nM of withaferin A; 6 h of experiment; 0.3 and 0.6 µM of withaferin A and 3βmWi-A for 48 h | ↔ HIF-1α; ↓ VEGF (for withaferin A); ↑ VEGF (for 3βmWi-A) |
Authors | Subject of Study | Dose | Results |
---|---|---|---|
Lopresti et al. (2019) [48] | Stressed, healthy adults | 240 mg of a standardized Ashwagandha extract (Shoden) | ↓ morning serum cortisol and ↓ DHEA |
Salve et al. (2019) [49] | Stressed healthy adults | 250 mg and 600 mg of Ashwagandha extract | ↓ morning serum cortisol; 600 mg better effect |
Fazil et al. (2021) [52] | T cells | 0.3–1.25 μM withaferin A | Inhibition of the ZAP70 kinase and retardation of T-cell motility |
Singh et al. 2022 [53] | COPD patients qualified as GOLD 2 and 3 | 250 mg of WS root capsules | ↓ ACE-2, ↓ MPO, and ↓ IL-6 |
Atluri et al. (2020) [55] | SH-APP cells | 50 nM–1 μM of withaferin A | ↓ Aβ, ↓ IL-1β, and ↓ NF-κB |
Panossian et al. (2018) [56] | Cultivated neuroglial cells | WS (5.0 µg/mL) corresponding dose in humans 300 mg; WSL (1.5 µg/mL) corresponding dose in humans 90 mg | ↓ ALOX12, ↓ DPEP2, and ↓ leukotriene C4 synthetase |
Grunz-Borgmann et al. (2015) [59] | Rat kidney NRK-52E cell line | 450 mg of a standardized extract containing a minimum of 2.5% total withanolides | Inhibition of TNFα on CCL2 and CCL5 gene expression |
Devkar et al. (2016) [60] | Male Swiss albino mice | 50 mg/kg, 100 mg/kg, and 200 mg/kg of the withanolide-rich extract | Every dose: ↓ TNFα and ↓ IL-1β mRNA expression; 200 mg/kg: ↓ iNOS and ↓ COX-2 mRNA expression |
Kaileh et al. (2007) [61] | Murine fibrosarcoma L929sA cells and human embryonic kidney 293T cells, IKK-α- and IKK-β-deficient mouse embryonic fibroblasts and cervix cancer cells (HeLa), and MDA-MB-231 human breast cancer cells | Withaferin A, withanolide A, and 12-deoxywithastramonolide (1 mg/mL) | ↓ IL-6; ↓ NFκB B-driven gene expression; ↑ AP1-driven gene expression; ↓ NFκB/DNA binding; ↓ NFκB translocation; ↓ TNF-induced phosphorylation and degradation of IκBα; ↓ TNF-induced IKKβ activity; ↑ induces the phosphorylation of IKKβ through the MEK/ERK Pathway |
Authors | Subject of Study | Dose | Results |
---|---|---|---|
Smith et al. (2023) [79] | 120 overweight or mildly obese women and men | 200 mg of WS root extract standardized to 1.5% total withanolides, twice daily, for 12 weeks | ↓ stress; No significant change in BP |
Verma et al. (2021) [86] | Randomized, double-blind, placebo-controlled, and parallel-group study; 80 healthy participants | Ashwagandha root extract 300 mg for 8 weeks | No AE reported; ↔ BW, BP; ↔ ALT, AST, ALP; ↔ TSH, fT3, fT4 |
Kushwaha et al. (2012) [87] | 51 stress-oriented hypertensive subjects in the age group of 40 to 70 years old | 2 g Ashwagandha root powder, orally, for 91 days (with milk or with water) | ↔ BMI; ↔ SBP; ↓ DBP |
Sandhu et al. (2010) [88] | Healthy college-going young adults between 18 and 25 years old | 500 mg capsules of WS extract (no information about used dosage in capsules) once daily, for 8 weeks | ↑ maximum oxygen consumption capacity at moderate intensity; No significant change was observed in balance and resting BP; ↓ resting SBP when supplemented simultaneously with WS and Terminalia arjuna extract |
Mohanty et al. (2004) [89] | Wistar albino male rats | 25, 50, and 100 mg/kg orally for 4 weeks | ↑ glutathione (50 and 100 mg/kg); ↑ antioxidant enzyme glutathione peroxidase; ↑ superoxide dismutase; ↑ lactate dehydrogenase; ↑ creatinine phosphokinase; ↔ blood pressure; ↓ left ventricular end-diastolic pressure; ↑ myocardial relaxation (left ventricular pressure decline); ↑ contractility (50 mg/kg); ↓ myonecrosis and ↓ edema |
Mohanty et al. (2008) [90] | Adult male Wistar rats | Hydro-alcoholic extract of WS (50 mg/kg) orally, for 30 days | ↑ GSH, ↓ TBARS, ↑ CPK; ↓ Bax protein, ↑ Bcl-2; ↓ TUNEL-positive cells |
Langade et al. (2019) [83] | Randomized, double-blind, placebo-controlled study of 60 patients with insomnia | Ashwagandha root extract, 300 mg | ↓ SOL, ↓ WASO; ↑ TST, ↑ TIB, ↑ SE; ↓ PSQI; ↓ HAM-A |
Yan et al. (2018) [91] | Primary neonatal cardiomyocytes (NRVMs) were isolated from 1- to 2-day-old Sprague Dawley rats; 8–10-week-old wild-type mice | fWFA (0 nM, 100 nM, 1000 nM) | ↓ apoptotic cell death; ↑ HO-1, ↑ Prdx-1, ↑ SOD-2 (via activation of Akt pathway); ↓ ROS |
Guo et al. (2019) [12] | Adult male wild-type (WT) mice and adult male AMPK-DN mice [dominant negative α2-subunit (D157A) of AMPK] | Low-dose (1 mg/kg) or high-dose (5 mg/kg) WFA | (1 mg/kg) ↑ LVEF, ↑ dP/dtmax and dP/dtmin, ↓ infarct size; (5 mg/kg) ↓ dP/dtmax and dP/dtmin (both) ↓ TUNEL staining, ↓ caspase-3 activity; ↑ Bcl2, ↓ Bcl2/ Bax; ↑ AMPK |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiciński, M.; Fajkiel-Madajczyk, A.; Kurant, Z.; Liss, S.; Szyperski, P.; Szambelan, M.; Gromadzki, B.; Rupniak, I.; Słupski, M.; Sadowska-Krawczenko, I. Ashwagandha’s Multifaceted Effects on Human Health: Impact on Vascular Endothelium, Inflammation, Lipid Metabolism, and Cardiovascular Outcomes—A Review. Nutrients 2024, 16, 2481. https://doi.org/10.3390/nu16152481
Wiciński M, Fajkiel-Madajczyk A, Kurant Z, Liss S, Szyperski P, Szambelan M, Gromadzki B, Rupniak I, Słupski M, Sadowska-Krawczenko I. Ashwagandha’s Multifaceted Effects on Human Health: Impact on Vascular Endothelium, Inflammation, Lipid Metabolism, and Cardiovascular Outcomes—A Review. Nutrients. 2024; 16(15):2481. https://doi.org/10.3390/nu16152481
Chicago/Turabian StyleWiciński, Michał, Anna Fajkiel-Madajczyk, Zuzanna Kurant, Sara Liss, Paweł Szyperski, Monika Szambelan, Bartłomiej Gromadzki, Iga Rupniak, Maciej Słupski, and Iwona Sadowska-Krawczenko. 2024. "Ashwagandha’s Multifaceted Effects on Human Health: Impact on Vascular Endothelium, Inflammation, Lipid Metabolism, and Cardiovascular Outcomes—A Review" Nutrients 16, no. 15: 2481. https://doi.org/10.3390/nu16152481
APA StyleWiciński, M., Fajkiel-Madajczyk, A., Kurant, Z., Liss, S., Szyperski, P., Szambelan, M., Gromadzki, B., Rupniak, I., Słupski, M., & Sadowska-Krawczenko, I. (2024). Ashwagandha’s Multifaceted Effects on Human Health: Impact on Vascular Endothelium, Inflammation, Lipid Metabolism, and Cardiovascular Outcomes—A Review. Nutrients, 16(15), 2481. https://doi.org/10.3390/nu16152481