Eleutherococcus senticosus (Acanthopanax senticosus): An Important Adaptogenic Plant
Abstract
:1. Introduction
2. Ecological and Botanical Characteristics
3. Traditional Applications
4. Chemical Composition
4.1. Key Bioactive Constituents
4.2. Lignans and Eleutherosides
4.3. Coumarins
Compound | Amount (mg/g DW) | References | ||||
---|---|---|---|---|---|---|
Whole Plant | Leaves | Roots | Fruits | Stems | ||
Eleutherosides and lignans | ||||||
Eleutheroside B | 0.07–13.55 | NA | NA | NA | NA | [42] |
<LOD–0.54 | NA | NA | NA | NA | [43] | |
NA | NA | NA | NA | 1.13–1.23 | [44] | |
1.02–1.10 | NA | NA | NA | NA | [45] | |
NA | NA | NA | NA | 0.17 | [46] | |
Eleutheroside E | 0.19–23.62 | NA | NA | NA | NA | [42] |
NA | NA | NA | NA | 2.75–2.99 | [44] | |
2.53–2.77 | NA | NA | NA | NA | [45] | |
NA | NA | NA | NA | 0.05 | [46] | |
NA | NA | NA | NA | 0.28–0.74 | [47] | |
Liriodendrin | 0.07–0.22 | NA | NA | NA | NA | [43] |
Coumarins | ||||||
Isofraxidin | trace–2.00 | NA | NA | NA | NA | [42] |
NA | NA | 1.56 (in rhizome) | NA | NA | [48] | |
NA | NA | NA | NA | 0.02 | [46] | |
0.01–0.03 | NA | NA | NA | NA | [43] | |
Phenolic compounds and their derivatives | ||||||
Chlorogenic acid | 0.37–17.64 | NA | NA | NA | NA | [42] |
NA | 14.74–14.98 | 4.81–5.21 | 0.56–0.58 | 5.90–6.14 | [29] | |
NA | NA | NA | NA | 0.46 * | [46] | |
NA | 0.71–19.33 | NA | NA | NA | [49] | |
0.09–0.65 | NA | NA | NA | NA | [43] | |
Caffeic acid | trace–0.31 | NA | NA | NA | NA | [42] |
NA | 3.07–4.01 | 0.07–0.13 | ND | ND | [29] | |
0.03–0.08 | NA | NA | NA | NA | [43] | |
Protocatechuic acid | NA | NA | NA | NA | 2.98 * | [46] |
NA | 0.33–1.77 | NA | NA | NA | [49] | |
3.17–23.12 * | NA | NA | NA | NA | [43] | |
Mono-hydroxycinnamoylquinic acid derivatives | NA | 0.55–0.57 | 0.31–0.33 (shoots) | NA | 0.55–0.57 | [28] |
Di-hydroxycinnamoylquinic acid derivatives | NA | 5.08–5.14 | 2.97–3.07 (shoots) | 1.55–1.59 | 0.04–0.06 | [28] |
Hydroxycinnamoylshikimic acid derivatives | NA | 0.77–0.79 | 0.25–0.27 | 0.02–0.04 | ND | [28] |
Flavonoid derivatives | NA | 4.05–4.11 | 6.73–6.75 (shoots) | 0.80–0.82 | <0.01 | [28] |
Ciwujianoside C4 | NA | 0.27–36.73 | NA | NA | NA | [49] |
Methyl 5-O-feruloylquinate | NA | 1.37–15.41 | NA | NA | NA | [49] |
Rutin | NA | 0.1–11.11 | NA | NA | NA | [49] |
Hyperoside | NA | 0.63–36.56 | NA | NA | NA | [49] |
Saponins | ||||||
Ursolic acid | NA | NA | NA | 0.18–0.24 | NA | [50] |
NA | NA | NA | NA | 0.02 | [46] | |
Saponin PE | 0.89–14.71 | NA | NA | NA | NA | [49] |
3-O-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranoside-29-hydroxy oleanolic acid | NA | 0.46–16.20 | NA | NA | NA | [49] |
3-O-β-D-glucopyranosyl-(1→2)-α-L-arabinopyranoside-29-hydroxy oleanolic acid | NA | 0.31–11.86 | NA | NA | NA | [49] |
4.4. Other Phenolic Compounds
Type of Material | TPC | TFC | TAC | Total Saponin | Total Polysaccharide | References |
---|---|---|---|---|---|---|
Stem | 23.50 ± 0.42 mg GAE/g DW | 11.49 ± 1.49 mg RE/g DW | 2.88 ± 0.28 mg CE/g DW | NA | NA | [29] |
Root | 44.00 ± 0.14 mg GAE/g DW | 36.49 ± 0.37 mg CE/g DW | 7.61 ± 0.56 mg CE/g DW | NA | NA | [28] |
Leaf | NA | NA | NA | 25.72 ± 0.11 mg/g DW | NA | [28] |
56.08 ± 0.47 mg GAE/g DW | 41.23 ± 1.98 mg RE/g DW | 8.75 ± 1.02 mg CE/g DW | NA | NA | [29] | |
Fruit | 229.83 ± 9.34 mg GAE/g (methanolic extract) | 62.25 ± 7.12 mg QE/g (methanolic extract) | NA | NA | NA | [50] |
25.70 ± 0.69 mg GAE/g DW | 16.44 ± 0.99 mg RE/g DW | 10.86 ± 0.49 mg CE/g DW | NA | NA | [29] | |
NA | NA | NA | 3.57 mg/g | NA | [31] | |
Shoot | NA | NA | NA | 35.77 ± 0.24 mg/g DW | NA | [28] |
Plant | NA | NA | NA | NA | 35.45 ± 0.39 mg/g | [54] |
24.93 ± 0.23 mg GAE/g (in 1-butanol phase) | 61.0 ± 0.34 mg RE/g (in 1-butanol phase) | NA | 17.80 ± 0.59 mg ginsenosides/g (in 1-butanol phase) | 20.04 ± 0.78 mg glucose/g (in water phase) | [51] |
4.5. Volatile Compounds (Essential Oil)
4.6. Saponins
4.7. Polysaccharides and Glycoproteins
4.8. Recent Developments in Terms of Evaluation of ES Phytochemical Composition
5. Specific Scientific Research Confirming the Biological Activity Profiles
5.1. Adaptogenic Activity
5.2. Antidiabetic Activity
5.3. Neuroprotective Activity
5.4. Anticancer Activity
5.5. Antioxidative Activity
5.6. Immunomodulatory Activity
5.7. Cardiovascular and Cerebrovascular Activities
5.8. Anti-Inflammatory Activity
5.9. Antiulcer Activity
6. Forms of Administration, Dosage, and Toxicity
7. Aspects of Plant Biotechnology Research
7.1. Importance of Biotechnology Research
7.2. Micropropagation
7.3. Production of Secondary Metabolites via Plant In Vitro Culture Methods
Culture Conditions | Eleutheroside (µg/L) | References | |||
---|---|---|---|---|---|
B | E | E1 | |||
Bioreactor type | Balloon | 327 | 533 | 388 | [122] |
Bulb | 194 | 550 | 299 | ||
Cone | 223 | 418 | 198 | ||
Cylinder | 164 | 291 | 136 | ||
500 L horizontal drum-type airlift | 187 | 364 | 231 | ||
500 L balloon-type airlift | 220 | 413 | 262 | ||
Aeration volume (vvm) | 0.05 | 205 | 456 | 194 | |
0.1 | 257 | 442 | 267 | ||
0.2 | 210 | 428 | 214 | ||
0.3 | 190 | 313 | 183 | ||
0.05/0.1/0.2/0.3 | 290 | 593 | 341 | ||
Inoculum density (g/L) | 1 | 139 | 538 | 287 | |
3 | 225 | 526 | 277 | ||
5 | 243 | 580 | 377 | ||
7 | 229 | 434 | 307 | ||
9 | 169 | 242 | 274 | ||
Temperature (°C) | 12 | ND | 43.1 | 12.7 | [129,131] |
18 | 15.9 | 26.9 | 11.7 | ||
24 | 21.2 | 42.0 | 39.6 | ||
30 | ND | ND | ND | ||
Light conditions | Dark | 21.3 | 26.7 | 39.7 | [131] |
Fluorescent | 23.1 | 42.9 | 48.6 | ||
Blue | 27.9 | 25.0 | 24.6 | ||
Red | 14.9 | 54.5 | 50.4 | ||
Blue + far red | 22.6 | 37.2 | 35.8 | ||
Giberelic acid (mg/L) | 0.0 | 20.1 | 28.9 | 40.5 | |
1.0 | 31.2 | 35.4 | 55.4 | ||
2.0 | 43.1 | 71.6 | 73.7 | ||
3.0 | 45.2 | 75.4 | 74.9 | ||
4.0 | 41.0 | 72.9 | 77.1 | ||
8.0 | 25.5 | 39.9 | 17.9 | ||
Methyl jasmonate(µmol/L) | 0 | 25.55 | 28.60 | 88.70 | [132] |
50 | 26.73 | 89.05 | 235.74 | ||
100 | 27.95 | 93.95 | 271.90 | ||
150 | 32.70 | 89.00 | 437.20 | ||
200 | 37.40 | 99.40 | 649.95 | ||
300 | 33.05 | 90.90 | 366.45 | ||
400 | 31.51 | 85.26 | 276.33 |
Culture Conditions | Bioactive Compounds µg/L | References | ||||||
---|---|---|---|---|---|---|---|---|
Eleutheroside B | Eleutheroside E | ChlorogenicAcid | Total Phenolics | Total Flavonoids | Total Target Compounds | |||
Elicited adventitious roots | Contr. | 276.07 | 916.14 | 66.95 | 97.88 | 54.59 | 220.61 | [125] |
MJ 50 | 275.80 | 1193.68 | 78.22 | 154.91 | 69.33 | 303.93 | ||
MJ 100 | 258.91 | 1178.01 | 75.73 | 146.77 | 65.29 | 289.22 | ||
MJ 200 | 249.64 | 1124.45 | 62.03 | 136.90 | 61.31 | 261.61 | ||
MJ 400 | 211.83 | 758.91 | 45.50 | 120.43 | 55.76 | 222.66 | ||
SA 50 | 448.32 | 919.04 | 65.96 | 100.24 | 54.53 | 222.10 | ||
SA 100 | 937.85 | 878.41 | 62.24 | 92.37 | 50.87 | 207.30 | ||
SA 200 | 1761.62 | 609.74 | 38.18 | 65.21 | 31.83 | 137.60 | ||
SA 400 | 2329.67 | 294.15 | 14.61 | 44.04 | 22.39 | 83.67 | ||
MS medium salt strength | 1/4 | 181.39 | 460.03 | 24.68 | 48.50 | 25.98 | 99.80 | [126] |
1/2 | 296.96 | 757.91 | 19.00 | 43.83 | 21.48 | 85.36 | ||
3/4 | 283.51 | 825.45 | 16.25 | 37.21 | 16.63 | 71.19 | ||
1 | 222.51 | 675.57 | 11.47 | 31.87 | 12.33 | 56.57 | ||
2 | 161.43 | 414.40 | 11.73 | 29.38 | 11.72 | 53.41 | ||
NH4+:NO3− ratio (mmol/L) | 0:30 | 153.99 | 488.19 | 35.86 | 49.02 | 29.94 | 115.46 | [127] |
5:25 | 241.30 | 830.88 | 44.31 | 71.48 | 37.44 | 154.30 | ||
10:20 | 291.03 | 969.11 | 20.89 | 58.83 | 31.01 | 111.00 | ||
15:15 | 245.85 | 897.45 | 10.72 | 39.13 | 15.27 | 66.26 | ||
20:10 | 213.05 | 729.44 | 6.65 | 31.39 | 9.39 | 48.25 | ||
25:5 | 143.65 | 368.29 | 1.21 | 17.75 | 4.58 | 24.05 | ||
30:0 | 55.41 | 147.44 | 0.44 | 10.15 | 1.11 | 11.90 | ||
Inoculum (g/L) | 2.5 | 46.21 | 108.53 | 2.69 | 9.95 | 4.60 | 17.40 | [128] |
5.0 | 27.59 | 106.61 | 2.42 | 10.06 | 4.91 | 17.53 | ||
7.5 | 26.42 | 108.89 | 2.71 | 9.12 | 4.03 | 15.99 | ||
10.0 | 15.95 | 87.47 | 2.64 | 9.38 | 4.16 | 16.28 | ||
15.0 | 6.71 | 89.65 | 0.99 | 8.26 | 3.41 | 12.76 | ||
Aeration volume (vvm) | 0.4 | 49.35 | 106.88 | 3.02 | 9.09 | 5.34 | 17.60 | |
0.05 | 59.25 | 107.70 | 3.36 | 9.84 | 5.52 | 18.88 | ||
0.1 | 59.55 | 108.23 | 3.34 | 9.64 | 5.26 | 18.41 | ||
0.2 | 49.05 | 90.68 | 1.44 | 9.72 | 5.10 | 16.39 | ||
0.05–0.4 | 52.65 | 98.78 | 2.96 | 9.58 | 5.20 | 17.89 |
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Todorova, V.; Ivanov, K.; Delattre, C.; Nalbantova, V.; Karcheva-Bahchevanska, D.; Ivanova, S. Plant Adaptogens—History and Future Perspectives. Nutrients 2021, 13, 2861. [Google Scholar] [CrossRef] [PubMed]
- Gerontakos, S.; Taylor, A.; Avdeeva, A.Y.; Shikova, V.A.; Pozharitskaya, O.N.; Casteleijn, D.; Wardle, J.; Shikov, A.N. Findings of Russian Literature on the Clinical Application of Eleutherococcussenticosus (Rupr. & Maxim.): A Narrative Review. J. Ethnopharmacol. 2021, 278, 114274. [Google Scholar] [PubMed]
- Flora of China Eleutherococcussenticosus. Available online: http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=220004653 (accessed on 4 January 2024).
- Guo, S.; Wei, H.; Li, J.; Fan, R.; Xu, M.; Chen, X.; Wang, Z. Geographical Distribution and Environmental Correlates of Eleutherosides and Isofraxidin in Eleutherococcussenticosus from Natural Populations in Forests at Northeast China. Forests 2019, 10, 872. [Google Scholar] [CrossRef]
- The World Flora Online’ WFO. Eleutherococcussenticosus (Rupr. & Maxim.) Maxim. 2024. Available online: https://www.worldfloraonline.org/taxon/wfo-0000948117#B (accessed on 31 January 2024).
- Council of Europe; European Pharmacopoeia Commission; European Directorate for the Quality of Medicines & Healthcare. European Pharmacopoeia; Council of Europe, European Pharmacopoeia Commission, European Directorate for the Quality of Medicines & HealthCare: Strasbourg, France, 2019; ISBN 9789287189127. [Google Scholar]
- Ministry of Food and Drug Safety. Korean Pharmacopoeia, Monographs, Part II, 10th ed.; Ministry of Food and Drug Safety: Cheongju-si, Republic of Korea, 2016. [Google Scholar]
- The Ministry of Health, Labour and Welfare. Japanese Pharmacopoeia, Crude Drugs and Related Drugs, 18th ed.; The Ministry of Health, Labour and Welfare: Tokyo, Japan, 2021. [Google Scholar]
- World Health Organization. WHO Monographs on Selected Medicinal Plants; World Health Organization: Geneva, Switzerland, 2002; Volume 2, pp. 89–93. [Google Scholar]
- European Medicines Agency. Herbal Medicine: Summary for the Public Eleutherococcus Root Eleutherococcussenticosus (Rupr. et Maxim.) Maxim., Radix; European Medicines Agency: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Wang, Y.H.; Meng, Y.; Zhai, C.; Wang, M.; Avula, B.; Yuk, J.; Smith, K.M.; Isaac, G.; Khan, I.A. The Chemical Characterization of Eleutherococcussenticosus and Ci-Wu-Jia Tea Using UHPLC-UV-QTOF/MS. Int. J. Mol. Sci. 2019, 20, 475. [Google Scholar] [CrossRef]
- Graczyk, F.; Orzechowska, B.; Franz, D.; Strzemski, M.; Verpoorte, R.; Załuski, D. The Intractum from the Eleutherococcussenticosus Fruits Affects the Innate Immunity in Human Leukocytes: From the Ethnomedicinal Use to Contemporary Evidence-Based Research. J. Ethnopharmacol. 2021, 268, 113636. [Google Scholar] [CrossRef]
- Wielgorskaya, T.; Raven, P.H. Dictionary of Generic Names of Seed Plants; Columbia University Press: New York, NY, USA, 1996. [Google Scholar]
- Jia, A.; Zhang, Y.; Gao, H.; Zhang, Z.; Zhang, Y.; Wang, Z.; Zhang, J.; Deng, B.; Qiu, Z.; Fu, C. A Review of Acanthopanax senticosus (Rupr. and Maxim.) Harms: From Ethnopharmacological Use to Modern Application. J. Ethnopharmacol. 2021, 268, 113586. [Google Scholar] [CrossRef]
- Davydov, M.; Krikorian, A.D. Eleutherococcussenticosus (Rupr. & Maxim.) Maxim. (Araliaceae) as an Adaptogen: A Closer Look. J. Ethnopharmacol. 2000, 72, 345–393. [Google Scholar] [CrossRef]
- Łotocka, B.; Bączek, K. Anatomy of Vegetative Organs of Eleutherococcussenticosus (Rupr. & Maxim.) Maxim. (Araliaceae). Flora 2024, 314, 152470. [Google Scholar] [CrossRef]
- Graczyk, F.; Strzemski, M.; Balcerek, M.; Kozłowska, W.; Mazurek, B.; Karakuła, M.; Sowa, I.; Ptaszyńska, A.A.; Załuski, D. Pharmacognostic Evaluation and HPLC–PDA and HS–SPME/GC–MS Metabolomic Profiling of Eleutherococcussenticosus Fruits. Molecules 2021, 26, 1969. [Google Scholar] [CrossRef]
- National Institute of Biological Resources. Korean Red List of Threatened Species, 2nd ed.; National Institute of Biological Resources: Incheon, Republic of Korea, 2014. [Google Scholar]
- Zhang, S.; Zhang, H.; Ding, L.; Xia, Y.; Dai, W.; Han, X.; Siqin, T.; You, X. Evaluation and Selection of Excellent Provenances of Eleutherococcussenticosus. Forests 2023, 14, 1359. [Google Scholar] [CrossRef]
- Bączek, K.; Pawełczak, A.; Przybył, J.L.; Kosakowska, O.; Węglarz, Z. Secondary Metabolites of Various (Eleutherococcussenticosus/Rupr. et Maxim./Maxim) Organs Derived from plants Obtained by Somatic Embryogenesis. In Plant Cell and Tissue Differentiation and Secondary Metabolites Fundamentals and Applications; Ramawat, K.G., Ekiert, H.M., Goyal, S., Eds.; Springer Nature Switzerland AG: Amarillo, TX, USA, 2021; pp. 433–466. ISBN 978-3-030-30184-2. [Google Scholar]
- Yan-Lin, S.; Lin-De, L.; Soon-Kwan, H. Eleutherococcussenticosus as a Crude Medicine: Review of Biotechnological Effects. J. Med. Plant Res. 2011, 5, 6105–6111. [Google Scholar]
- Chen-Guang, Z.; Jing-Li, Y.; Li-Kun, L.; Cheng-Nan, L.; De-An, X.; Cheng-Hao, L. Research Progress in Somatic Embryogenesis of Siberian Ginseng (Eleutherococcussenticosus Maxim.). J. Med. Plant Res. 2011, 5, 7140–7145. [Google Scholar] [CrossRef]
- Murthy, H.N.; Kim, Y.S.; Georgiev, M.I.; Paek, K.Y. Biotechnological Production of Eleutherosides: Current State and Perspectives. Appl. Microbiol.Biotechnol. 2014, 98, 7319–7329. [Google Scholar] [CrossRef]
- Li, T.; Ferns, K.; Yan, Z.Q.; Yin, S.Y.; Kou, J.J.; Li, D.; Zeng, Z.; Yin, L.; Wang, X.; Bao, H.X.; et al. Acanthopanax senticosus: Photochemistry and Anticancer Potential. Am. J. Chin. Med. 2016, 44, 1543–1558. [Google Scholar] [CrossRef]
- Zhang, X.L.; Ren, F.; Huang, W.; Ding, R.T.; Zhou, Q.S.; Liu, X.W. Anti-Fatigue Activity of Extracts of Stem Bark from Acanthopanax senticosus. Molecules 2011, 16, 28–37. [Google Scholar] [CrossRef]
- Arouca, A.; Grassi-Kassisse, D.M. Eleutherococcussenticosus: Studies and Effects. Health 2013, 5, 1509–1515. [Google Scholar] [CrossRef]
- Huang, L.Z.; Zhao, H.F.; Huang, B.K.; Zheng, C.J.; Peng, W.; Qin, L.P. Acanthopanax senticosus: Review of Botany, Chemistry and Pharmacology. Pharmazie 2011, 66, 83–97. [Google Scholar]
- Kwon, R.H.; Na, H.; Kim, J.H.; Kim, S.A.; Kim, S.Y.; Jung, H.-A.; Lee, S.H.; Wee, C.-D.; Lee, K.-S.; Kim, H.-W. Comprehensive Profiling of Phenolic Compounds and Triterpenoid Saponins from Acanthopanax senticosus and Their Antioxidant, α-Glucosidase Inhibitory Activities. Sci. Rep. 2024, 14, 26330. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Cho, M.L.; Kim, D.-B.; Shin, G.-H.; Lee, J.-H.; Lee, J.S.; Park, S.-O.; Lee, S.-J.; Shin, H.M.; Lee, O.-H. The Antioxidant Activity and Their Major Antioxidant Compounds from Acanthopanax senticosus and A. Koreanum. Molecules 2015, 20, 13281–13295. [Google Scholar] [CrossRef]
- Huang, Y.H.; Li, J.T.; Zan, K.; Wang, J.; Fu, Q. The Traditional Uses, Secondary Metabolites, and Pharmacology of Eleutherococcus Species. Phytochem. Rev. 2021, 21, 1081–1184. [Google Scholar] [CrossRef]
- Zhang, X.; Guan, L.; Zhu, L.; Wang, K.; Gao, Y.; Li, J.; Yan, S.; Ji, N.; Zhou, Y.; Yao, X.; et al. A Review of the Extraction and Purification Methods, Biological Activities, and Applications of Active Compounds in Acanthopanax senticosus. Front. Nutr. 2024, 11, 1391601. [Google Scholar] [CrossRef] [PubMed]
- Baygildieva, D.I.; Braun, A.V.; Stavrianidi, A.N.; Rodin, I.A. Determination of Eleutheroside B and Eleutheroside E in Extracts from Eleutherococcussenticosus by Liquid Chromatography/Mass Spectrometry. J. Anal. Chem. 2020, 75, 1832–1837. [Google Scholar] [CrossRef]
- Us, M.R.; Zin, T.; Abdurrazak, M.; Ahmad, B.A. Chemistry and Pharmacology of Syringin, a Novel Bioglycoside: A Review. Asian J. Pharm. Clin. Res. 2015, 8, 20–25. [Google Scholar]
- Niu, H.-S.; Liu, I.-M.; Cheng, J.-T.; Lin, C.-L.; Hsu, F.-L. Hypoglycemic Effect of Syringin from Eleutherococcussenticosus in Streptozotocin-Induced Diabetic Rats. Planta Medica 2008, 74, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Um, M.Y.; Lee, H.; Jung, C.H.; Heo, S.H.; Ha, T.Y. Eleutheroside E, an Active Component of Eleutherococcussenticosus, Ameliorates Insulin Resistance in Type 2 Diabetic Db/Db Mice. Evid.-Based Complement. Altern. Med. 2013, 2013, 934183. [Google Scholar] [CrossRef]
- Pan, X.; Zhang, X.; Meng, Y.; Yang, Y.; Zhang, H.; Liu, T.; Sui, X.; Yuan, C. Developing an Effective Approach Based on Microwave Distillation and Extraction Using Deep Eutectic Solvents for Multiple Target Analytes Prepared from Eleutherococcussenticosus Fruits. Microchem. J. 2024, 207, 111905. [Google Scholar] [CrossRef]
- Li, X.-C.; Barnes, D.L.; Khan, I.A. A New Lignan Glycoside from Eleutherococcussenticosus. Planta Medica 2001, 67, 776–778. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.-Y.; Han, P.; Yue, J.-Q.; Li, F. Chemical Constituents from Acanthopanax senticosus and Their Cytotoxic Activities. Chem. Nat. Compd. 2022, 58, 610–613. [Google Scholar] [CrossRef]
- Feng, Z.-C.; Wang, S.; Li, J.; Wang, J.-S. New Neo-Lignan from Acanthopanax senticosus and the Cytotoxic Effects on Human Cancer Cell Lines. Nat. Prod. Commun. 2020, 15, 1934578X20941299. [Google Scholar] [CrossRef]
- Majnooni, M.B.; Fakhri, S.; Shokoohinia, Y.; Mojarrab, M.; Kazemi-Afrakoti, S.; Farzaei, M.H. Isofraxidin: Synthesis, Biosynthesis, Isolation, Pharmacokinetic and Pharmacological Properties. Molecules 2020, 25, 2040. [Google Scholar] [CrossRef]
- Jin, L.; Schmiech, M.; Gaafary, M.E.; Zhang, X.; Syrovets, T.; Simmet, T. A Comparative Study on Root and Bark Extracts of Eleutherococcussenticosus and Their Effects on Human Macrophages. Phytomedicine 2020, 68, 153181. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-P.; An, J.-T.; Wang, R.; Li, Q. Simultaneous Quantification of Five Bioactive Components of Acanthopanax senticosus and Its Extract by Ultra Performance Liquid Chromatography with Electrospray Ionization Time-of-Flight Mass Spectrometry. Molecules 2012, 17, 7903–7913. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Jia, Y.; Xu, L.; Wang, X.; Shen, Z.; Liu, Y.; Bi, K. Simultaneous Determination of Protocatechuic Acid, Syringin, Chlorogenic Acid, Caffeic Acid, Liriodendrin and Isofraxidin in Acanthopanax senticosus Harms by HPLC-DAD. Biol. Pharm. Bull. 2006, 29, 532–534. [Google Scholar] [CrossRef]
- Mu, L.-T.; Zhang, Q.-D.; Sun, S.-Y.; Liu, B.; Zhang, Y.; Zhang, X.-R.; Sun, C.-H. Study on the Technology of Efficient Extraction of Eleutheroside E from Acanthopanax senticosus by Green Solvent DES. Phytochem. Anal. 2022, 33, 879–885. [Google Scholar] [CrossRef]
- Yang, X.; Liu, T.; Qi, S.; Gu, H.; Li, J.; Yang, L. Tea Saponin Additive to Extract Eleutheroside B and E from Eleutherococcussenticosus by Ultrasonic Mediation and Its Application in a Semi-Pilot Scale. Ultrason. Sonochem. 2022, 86, 106039. [Google Scholar] [CrossRef]
- Pan, H.; Wang, Z.; Nie, S.; Yu, L.; Chang, Y.; Liu, Z.; Xu, J.; Fu, Y. Novel Green Three-Constituent Natural Deep Eutectic Solvent Enhances Biomass Extraction from Acanthopanax senticosus and the Extraction Mechanism. ACS Sustain. Chem. Eng. 2021, 9, 8835–8847. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Sun, Y. Semipreparative Separation and Determination of Eleutheroside E in Acanthopanax Giraldii Harms by High-Performance Liquid Chromatography. J. Chromatogr. Sci. 2005, 43, 249–252. [Google Scholar] [CrossRef]
- Sun, C.; Hou, J.; Sun, S.; Zhang, Y.; Zhang, X.; Mu, L. Efficient Extraction and Purification of Isofraxidin from Acanthopanax senticosus by DES. Anal. Chem. 2023, preprints. [Google Scholar] [CrossRef]
- Hu, J.; Wu, D.; Sun, Y.; Zhao, H.; Wang, Y.; Zhang, W.; Su, F.; Yang, B.; Wang, Q.; Kuang, H. Comprehensive Analysis of Eleutherococcussenticosus (Rupr. & Maxim.) Maxim. Leaves Based on UPLC-MS/MS: Separation and Rapid Qualitative and Quantitative Analysis. Front. Pharmacol. 2022, 13, 865586. [Google Scholar] [CrossRef]
- Jang, D.; Lee, J.; Eom, S.H.; Lee, S.M.; Gil, J.; Lim, H.B.; Hyun, T.K. Composition, Antioxidant and Antimicrobial Activities of Eleutherococcussenticosus Fruit Extracts. J. Appl. Pharm. Sci. 2016, 6, 125–130. [Google Scholar] [CrossRef]
- Liu, R.; Chu, X.; Su, J.; Fu, X.; Kan, Q.; Wang, X.; Zhang, X. Enzyme-Assisted Ultrasonic Extraction of Total Flavonoids from Acanthopanax senticosus and Their Enrichment and Antioxidant Properties. Processes 2021, 9, 1708. [Google Scholar] [CrossRef]
- Todorova, V.; Ivanov, K.; Ivanova, S. Comparison between the Biological Active Compounds in Plants with Adaptogenic Properties (RhaponticumCarthamoides, Lepidium Meyenii, Eleutherococcussenticosus and Panax ginseng). Plants 2022, 11, 64. [Google Scholar] [CrossRef]
- Chen, H.-J.; Zhang, X.-S.; Zhang, J.-W.; Gu, H.-X.; Huang, J.-X. Chemical Constituents from the Stems of Acanthopanax senticosus with Their Inhibitory Activity on α-Glucosidase. J. Asian Nat. Prod. Res. 2021, 23, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Su, J.; Wang, X.; Zhang, R.; Li, X.; Li, Y.; Ding, Y.; Chu, X. Eco-Friendly and Efficient Extraction of Polysaccharides from Acanthopanax senticosus by Ultrasound-Assisted Deep Eutectic Solvent. Molecules 2024, 29, 942. [Google Scholar] [CrossRef]
- Yang, G.-E.; Li, W.; Huang, C.; Lin, L.; Zhang, Q.; Koike, K. Phenolic Constituents from the Stems of Acanthopanax senticosus. Chem. Nat. Compd. 2011, 46, 876–879. [Google Scholar] [CrossRef]
- Rao, A.V.; Gurfinkel, D.M. The Bioactivity of Saponins: Triterpenoid and Steroidal Glycosides. Drug Metabol. Drug Interact. 2000, 17, 211–235. [Google Scholar] [CrossRef]
- Jiang, W.; Li, W.; Han, L.; Liu, L.; Zhang, Q.; Zhang, S.; Nikaido, T.; Koike, K. Biologically Active Triterpenoid Saponins from Acanthopanax senticosus. J. Nat. Prod. 2006, 69, 1577–1581. [Google Scholar] [CrossRef]
- Park, S.-Y.; Chang, S.-Y.; Yook, C.-S.; Nohara, T. New 3,4-Seco-Lupane-Type Triterpene Glycosides from Acanthopanax senticosus Forma Inermis. J. Nat. Prod. 2000, 63, 1630–1633. [Google Scholar] [CrossRef]
- Zhang, M.-L.; Sun, Y.-P.; Liu, Y.; Pan, J.; Guan, W.; Li, X.-M.; Wang, S.-Y.; Naseem, A.; Yang, B.-Y.; Kuang, H.-X. Five New Sesquiterpenoids from the Fruits of Acanthopanax senticosus (Rupr. & Maxim.) Harms. Fitoterapia 2021, 149, 104827. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, P.; Zhang, M.-L.; Pan, J.; Guan, W.; Li, X.-M.; Yang, B.-Y.; Kuang, H.-X. Triterpenoid Saponins from the Fruit of Acanthopanax senticosus (Rupr. & Maxim.) Harms. Front. Chem. 2022, 10, 825763. [Google Scholar] [CrossRef]
- Xia, Y.-G.; Huang, Y.-X.; Liang, J.; Kuang, H.-X. Comparable Studies of Two Polysaccharides from Leaves of Acanthopanax senticosus: Structure and Antioxidation. Int. J. Biol. Macromol. 2020, 147, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, C.; Leng, A.; Qu, J. Advances in the Extraction, Purification, Structural Characteristics and Biological Activities of Eleutherococcussenticosus Polysaccharides: A Promising Medicinal and Edible Resource With Development Value. Front.Pharmacol. 2021, 12, 753007. [Google Scholar] [CrossRef]
- Zhou, S.; Wen, X.; Zhao, Y.; Bai, X.; Qin, X.; Chu, W. Structural Elucidation of a Acanthopanax senticosus Polysaccharide CQ-1 and Its Hepatoprotective Activity via Gut Health Regulation and Antioxidative Defense. Int. J. Biol.Macromol. 2024, 281, 136343. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Yoon, T.J.; Kang, K.R.; Lee, K.H.; Kim, W.H.; Suh, Y.H.; Song, J.; Jung, M.H. Glycoprotein Isolated from Acanthopanax senticosus Protects against Hepatotoxicity Induced by Acute and Chronic Alcohol Treatment. Biol. Pharm. Bull. 2006, 29, 306–314. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, X.; Xue, J.; Li, X.; Li, Y.; Ding, Y.; Feng, Y.; Zhang, X.; Su, J.; Chu, X. Optimization of Liquid Fermentation of Acanthopanax senticosus Leaves and Its Non-Targeted Metabolomics Analysis. Molecules 2024, 29, 4749. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Jiang, Y.; Chen, J.; Li, S.; Wang, Y.; Chai, L.; Ma, J.; Wang, Z. Comprehensive Analysis of Eleutherococcussenticosus (Rupr. & Maxim.) Maxim. Fruits Based on UPLC–MS/MS and GC–MS: A Rapid Qualitative Analysis. Food Sci. Nutr. 2023, 12, 1911–1927. [Google Scholar] [CrossRef]
- State Pharmacopoeia Commission of P.R. China. Pharmacopoeia of the People’s Republic of China, 1st ed.; China Medical Science Press: Beijing, China, 2015. [Google Scholar]
- Meng, Q.; Pan, J.; Liu, Y.; Chen, L.; Ren, Y. Anti-Tumour Effects of Polysaccharide Extracted from Acanthopanax senticosus and Cell-Mediated Immunity. Exp. Ther. Med. 2018, 15, 1694–1701. [Google Scholar] [CrossRef]
- Yi, J.M.; Kim, M.S.; Seo, S.W.; Lee, K.N.; Yook, C.S.; Kim, H.M. Acanthopanax senticosus Root Inhibits Mast Cell-Dependent Anaphylaxis. Clin. Chim. Acta 2001, 312, 163–168. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, S.G.; Kang, S.K.; Chung, S.H. Acanthopanax senticosus Reverses Fatty Liver Disease and Hyperglycemia in Ob/Ob Mice. Arch. Pharm. Res. 2006, 29, 768–776. [Google Scholar] [CrossRef]
- Yoon, T.J.; Yoo, Y.C.; Lee, S.W.; Shin, K.S.; Choi, W.H.; Hwang, S.H.; Ha, E.S.; Jo, S.K.; Kim, S.H.; Park, W.M. Anti-Metastatic Activity of Acanthopanax senticosus Extract and Its Possible Immunological Mechanism of Action. J. Ethnopharmacol. 2004, 93, 247–253. [Google Scholar] [CrossRef]
- Kuo, J.; Chen, K.W.C.; Cheng, I.S.; Tsai, P.H.; Lu, Y.J.; Lee, N.Y. The Effect of Eight Weeks of Supplementation with Eleutherococcussenticosus on Endurance Capacity and Metabolism in Human. Chin. J. Physiol. 2010, 53, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Sumiyoshi, M. Effects of Various Eleutherococcussenticosus Cortex on Swimming Time, Natural Killer Activity and Corticosterone Level in Forced Swimming Stressed Mice. J. Ethnopharmacol. 2004, 95, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.L.; Park, S.Y.; Kim, Y.H.; Park, G.; Lee, S.J. Acanthopanax senticosus Exerts Neuroprotective Effects through HO-1 Signaling in Hippocampal and Microglial Cells. Environ. Toxicol. Pharmacol. 2013, 35, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Park, J.; Yoon, J.; Kim, M.Y.; Choi, H.Y.; Kim, H. Neuroprotective Effects of Eleutherococcussenticosus Bark on Transient Global Cerebral Ischemia in Rats. J. Ethnopharmacol. 2012, 139, 6–11. [Google Scholar] [CrossRef]
- Watanabe, K.; Kamata, K.; Sato, J.; Takahashi, T. Fundamental Studies on the Inhibitory Action of Acanthopanax senticosus Harms on Glucose Absorption. J. Ethnopharmacol. 2010, 132, 193–199. [Google Scholar] [CrossRef]
- Zhou, H.; Xing, J.; Liu, S.; Song, F.; Cai, Z.; Pi, Z.; Liu, Z.; Liu, S. Screening and Determination for Potential α-Glucosidase Inhibitors from Leaves of Acanthopanax senticosus Harms by Using UF-LC/MS and ESI-MS n. Phytochem. Anal. 2012, 23, 315–323. [Google Scholar] [CrossRef]
- Li, J.L.; Li, N.; Xing, S.S.; Zhang, N.; Li, B.B.; Chen, J.G.; Ahn, J.S.; Cui, L. New Neo-Lignan from Acanthopanax senticosus with Protein Tyrosine Phosphatase 1B Inhibitory Activity. Arch. Pharm. Res. 2017, 40, 1265–1270. [Google Scholar] [CrossRef]
- Li, X.T.; Zhou, J.C.; Zhou, Y.; Ren, Y.S.; Huang, Y.H.; Wang, S.M.; Tan, L.; Yang, Z.Y.; Ge, Y.W. Pharmacological Effects of Eleutherococcussenticosus on the Neurological Disorders. Phytother. Res. 2022, 36, 3490–3504. [Google Scholar] [CrossRef]
- Bai, Y.; Tohda, C.; Zhu, S.; Hattori, M.; Komatsu, K. Active Components from Siberian Ginseng (Eleutherococcussenticosus) for Protection of Amyloid β(25-35)-Induced Neuritic Atrophy in Cultured Rat Cortical Neurons. J. Nat. Med. 2011, 65, 417–423. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Ding, W.-L.; Li, X.-T.; Cai, M.-T.; Li, H.-L.; Yang, Z.-Y.; Piao, X.-H.; Zhu, S.; Tohda, C.; Komatsu, K.; et al. Memory Enhancement Effect of Saponins from Eleutherococcussenticosus Leaves and Blood–Brain Barrier-Permeated Saponins Profiling Using a Pseudotargeted Monitoring Strategy. Food Funct. 2022, 13, 3603–3620. [Google Scholar] [CrossRef]
- Fujikawa, T.; Soya, H.; Hibasami, H.; Kawashima, H.; Takeda, H.; Nishibe, S.; Nakashima, K. Effect of Acanthopanax senticosus Harms on Biogenic Monoamine Levels in the Rat Brain. Phytother. Res. 2002, 16, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Meng, X.; Zhao, W.; Xu, S.Q.; Wang, S.Y.; Li, M.M.; Guan, W.; Chen, Q.S.; Zhang, L.L.; Kuang, H.X.; et al. Phenylpropanoids of Eleutherococcussenticosus (Rupr. & Maxim.) Maxim. Alleviate Oxidative Stress in Alzheimer’s Disease In Vitro and In Vivo Models by Regulating Mst1 and Affecting the Nrf2/Sirt3 Pathway. Bioorg. Chem. 2025, 159, 108347. [Google Scholar] [CrossRef]
- Hibasami, H.; Fujikawa, T.; Takeda, H.; Nishibe, S.; Satoh, T.; Fujisawa, T.; Nakashima, K. Induction of Apoptosis by Acanthopanax senticosus HARMS and Its Component, Sesamin in Human Stomach Cancer KATO III Cells. Oncol. Rep. 2000, 7, 1213–1216. [Google Scholar] [CrossRef]
- Siao, A.C.; Hou, C.W.; Kao, Y.H.; Jeng, K.C. Effect of Sesamin on Apoptosis and Cell Cycle Arrest in Human Breast Cancer MCF-7 Cells. Asian Pac. J. Cancer Prev. 2015, 16, 3779–3783. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, S.; Hwang, G.; Jeon, C.; Kang, K. Effect of Extract of Acanthopanax senticosus Fruit on Breast Cancer Cells. J. Intern. Korean Med. 2022, 43, 529–541. [Google Scholar] [CrossRef]
- Kou, X.; Li, Y.; Wang, L.; Song, X.; Li, D.; Wang, Z.; Zhao, Y.; Zhang, X.; Li, J.; Xing, Z. Apoptosis-Inducing Effects of Aqueous Extract of Eleutherococcussenticosus on Non-Small Cell Lung Cancer Cell Proliferation. Chin. J. Anal. Chem. 2025, 53, 100510. [Google Scholar] [CrossRef]
- Ha, E.S.; Hwang, S.H.; Shin, K.-S.; Yu, K.-W.; Lee, K.-H.; Choi, J.S.; Park, W.-M.; Yoon, T.J. Anti-Metastatic Activity of Glycoprotein Fractionated from Acanthopanax senticosus, Involvement of NK-Cell and Macrophage Activation. Arch. Pharm. Res. 2004, 27, 217–224. [Google Scholar] [CrossRef]
- Yamazaki, T.; Shimosaka, S.; Sasaki, H.; Matsumura, T.; Tukiyama, T.; Tokiwa, T. (+)-Syringaresinol-Di-O-β-d-Glucoside, a Phenolic Compound from Acanthopanax senticosus Harms, Suppresses Proinflammatory Mediators in SW982 Human Synovial Sarcoma Cells by Inhibiting Activating Protein-1 and/or Nuclear Factor-ΚB Activities. Toxicol. Vitr. 2007, 21, 1530–1537. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, T.; Tokiwa, T. Isofraxidin, a Coumarin Component from Acanthopanax senticosus, Inhibits Matrix Metalloproteinase-7 Expression and Cell Invasion of Human Hepatoma Cells. Biol. Pharm. Bull. 2010, 33, 1716–1722. [Google Scholar] [CrossRef]
- Bespalov, V.G.; Aleksandrov, V.A.; Semenov, A.L.; Kovan’ko, E.G.; Ivanov, S.D. Comparative Effects of Difluoromethylornithine and Siberian Ginseng Root Tincture on Radiation-Induced Carcinogenesis in Rats and Their Lifespan. Adv. Gerontol. 2013, 3, 70–76. [Google Scholar] [CrossRef]
- Lee, C.H.; Huang, C.W.; Chang, P.C.; Shiau, J.P.; Lin, I.P.; Lin, M.Y.; Lai, C.C.; Chen, C.Y. Reactive Oxygen Species Mediate the Chemopreventive Effects of Syringin in Breast Cancer Cells. Phytomedicine 2019, 61, 152844. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Chen, J.; Hu, H.; Lin, S.; Jin, L.; Luo, L.; Yan, X.; Zhang, C. Acanthopanax senticosus Polysaccharide Suppressing Proliferation and Metastasis of the Human Non-Small Cell Lung Cancer NCI-H520 Cells Is Associated with Wnt/β-Catenin Signaling. Neoplasma 2019, 66, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Zhang, X.; Kan, Q.; Chu, X. Antioxidant Activity of Acanthopanax senticosus Flavonoids in H2O2-Induced RAW 264.7 Cells and DSS-Induced Colitis in Mice. Molecules 2022, 27, 2872. [Google Scholar] [CrossRef]
- Fu, J.; Yuan, J.; Tu, Y.; Fu, J.; Zhang, N.; Gao, B.; Fu, G.; Zhang, Y. A Polysaccharide from Acanthopanax senticosus Improves the Antioxidant Status in Alloxan-Induced Diabetic Mice. Carbohydr. Polym. 2012, 88, 517–521. [Google Scholar] [CrossRef]
- Załuski, D.; Kuźniewski, R.; Janeczko, Z. HPTLC-Profiling of Eleutherosides, Mechanism of Antioxidative Action of Eleutheroside E1, the PAMPA Test with LC/MS Detection and the Structure–Activity Relationship. Saudi J. Biol. Sci. 2018, 25, 520–528. [Google Scholar] [CrossRef]
- Song, W.; Shi, J.; Baranenko, D.; Jing, J.; Lu, W. Radioprotective Effects of Active Compounds of Acanthopanax senticosus from the Lesser Khingan Mountain Range in China Wei. RSC Adv. 2016, 6, 65–72. [Google Scholar] [CrossRef]
- Lee, S.; Son, D.; Ryu, J.; Yeon, S.L.; Sang, H.J.; Kang, J.; Sang, Y.L.; Kim, H.S.; Shin, K.H. Anti-Oxidant Activities of Acanthopanax senticosus Stems and Their Lignan Components. Arch. Pharm. Res. 2004, 27, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Wang, Q.; Li, Z.; Feng, Y.; Li, Y.; Yang, S.; Feng, Y. Different Metabolites in the Roots, Seeds, and Leaves of Acanthopanax senticosus and Their Role in Alleviating Oxidative Stress. J. Anal. Methods Chem. 2021, 2021, 6628880. [Google Scholar] [CrossRef]
- Cho, J.Y.; Nam, K.H.; Kim, A.R.; Park, J.; Yoo, E.S.; Baik, K.U.; Yu, Y.H.; Park, M.H. In-Vitro and in-Vivo Immunomodulatory Effects of Syringin. J. Pharm. Pharmacol. 2001, 53, 1287–1294. [Google Scholar] [CrossRef]
- Lau, K.M.; Yue, G.G.L.; Chan, Y.Y.; Kwok, H.F.; Gao, S.; Wong, C.W.; Lau, C.B.S. A Review on the Immunomodulatory Activity of Acanthopanax senticosus and Its Active Components. Chin. Med. 2019, 14, 25. [Google Scholar] [CrossRef]
- Lin, Q.Y.; Jin, L.J.; Cao, Z.H.; Li, H.Q.; Xu, Y.P. Protective Effect of Acanthopanax senticosus Extract against Endotoxic Shock in Mice. J. Ethnopharmacol. 2008, 118, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Schmolz, M.W.; Sacher, F.; Aicher, B. The Synthesis of Rantes, G-CSF, IL-4, IL-5, IL-6, IL-12 and IL-13 in Human Whole-Blood Cultures Is Modulated by an Extract from Eleutherococcussenticosus L. Roots. Phytother. Res. 2001, 15, 268–270. [Google Scholar] [CrossRef]
- Steinmann, G.G.; Esperester, A.; Joller, P. Immunopharmacological in Vitro Effects of Eleutherococcussenticosus Extracts. Arzneim.-Forsch. Drug Res. 2001, 51, 76–83. [Google Scholar] [CrossRef]
- Panossian, A.; Davtyan, T.; Gukassyan, N.; Gukasova, G.; Mamikonyan, G.; Gabrielian, E.; Wikman, G. Effect of Andrographolide and Kan Jang—Fixed Combination of Extract SHA-10 and Extract SHE-3—On Proliferation of Human Lymphocytes, Production of Cytokines and Immune Activation Markers in the Whole Blood Cells Culture. Phytomedicine 2002, 9, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Han, S.B.; Yoon, Y.D.; Ahn, H.J.; Lee, H.S.; Lee, C.W.; Yoon, W.K.; Park, S.K.; Kim, H.M. Toll-like Receptor-Mediated Activation of B Cells and Macrophages by Polysaccharide Isolated from Cell Culture of Acanthopanax senticosus. Int. Immunopharmacol. 2003, 3, 1301–1312. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Shan, C.; Ma, X.; Qin, Y.; Ju, A.; Duan, A.; Luan, W.; Zhang, Y. Immunomodulatory Effect of Acanthopanax senticosus Polysaccharide on Immunosuppressed Chickens. Poult. Sci. 2021, 100, 623–630. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Zhang, H.; Ren, P.; Cheng, X.; Hong, F.; Liu, J.; Zhang, R.; Zhao, J.; Gou, D. Immunostimulatory Effects Mechanism of Polysaccharide Extracted from Acanthopanax senticosus on RAW 264.7 Cells through Activating the TLR/MAPK/NF-ΚB Signaling Pathway. Sci. Rep. 2025, 15, 13440–13458. [Google Scholar] [CrossRef]
- Facchinetti, F.; Neri, I.; Tarabusi, M. Eleutherococcussenticosus Reduces Cardiovascular Stress Response in Healthy Subjects: A Randomized, Placebo-Controlled Trial. Stress Health 2002, 18, 11–17. [Google Scholar] [CrossRef]
- Sui, D.Y.; Qu, S.C.; Yu, X.F.; Chen, Y.P.; Ma, X.Y. Protective Effect of ASS on Myocardial Ischemia-Reperfusion Injury in Rats. Zhongguo Zhong Yao Za Zhi 2004, 29, 71–74. [Google Scholar]
- Wang, X.; Zhou, G.; Liu, C.; Wei, R.; Zhu, S.; Xu, Y.; Wu, M.; Miao, Q. Acanthopanax versus 3-Methyladenine Ameliorates Sodium Taurocholate-Induced Severe Acute Pancreatitis by Inhibiting the Autophagic Pathway in Rats. Mediat. Inflamm. 2016, 2016, 8369704. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Su, J.; Chu, X. Acanthopanax senticosus Total Flavonoids Alleviate Lipopolysaccharide-Induced Intestinal Inflammation and Modulate the Gut Microbiota in Mice. Biosci. Rep. 2022, 42, BSR20212670. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.J.; Zhu, L.L.; Xia, L.M.; Peng, W.B.; Wang, Q. Acanthopanax senticosus Attenuates Inflammation in Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting the NF-ΚB Pathway. Genet. Mol. Res. 2014, 13, 10537–10544. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Li, J.H.; Bai, G.; Shen, G.S.; Chen, J.; Liu, J.N.; Shuo, W.; Liu, X.J. Acanthopanax senticosus Polysaccharides-Induced Intestinal Tight Junction Injury Alleviation via Inhibition of NF-ΚB/MLCK Pathway in a Mouse Endotoxemia Model. World J. Gastroenterol. 2017, 23, 2175–2184. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Ma, J.; Chu, X.; Gao, Y.; Zhang, Y.; Zhang, X.; Zhang, F.; Liu, Z.; Zhang, J.; Chu, L. Effects of Total Flavones from Acanthopanax senticosus on L-Type Calcium Channels, Calcium Transient and Contractility in Rat Ventricular Myocytes. Phytother. Res. 2015, 29, 533–539. [Google Scholar] [CrossRef]
- Tao, D.; Dong, Y.; Che, D.; Wang, Z.; Zheng, Y.; Han, R.; Jiang, H. Acanthopanax senticosus Polysaccharide Alleviates LPS-Induced Intestinal Inflammation in Piglets by Gut Microbiota and Hyodeoxycholic Acid Regulation. Int. J. Biol. Macromol. 2025, 307, 141467. [Google Scholar] [CrossRef]
- Fujikawa, T.; Yamaguchi, A.; Morita, I.; Takeda, H.; Nishibe, S. Protective Effects of Acanthopanax senticosus Harms from Hokkaido and Its Components on Gastric Ulcer in Restrained Cold Water Stressed Rats. Biol. Pharm. Bull. 1996, 19, 1227–1230. [Google Scholar] [CrossRef]
- Schmidt, M.; Thomsen, M.; Kelber, O.; Kraft, K. Myths and Facts in Herbal Medicines: Eleutherococcussenticosus (Siberian Ginseng) and Its Contraindication in Hypertensive Patients. Botanics 2014, 2014, 27–32. [Google Scholar] [CrossRef]
- Takahashi, T.; Kaku, T.; Sato, T.; Watanabe, K.; Sato, J. Effects of Acanthopanax senticosus HARMS Extract on Drug Transport in Human Intestinal Cell Line Caco-2. J. Nat. Med. 2010, 64, 55–62. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, S.; Wang, S.; Hu, Y.; Zhang, G.; Dong, Y.; Yang, S.; Miao, J.; Chen, W.; Sheng, J. Chromosomal-Scale Genome Assembly of Eleutherococcussenticosus Provides Insights into Chromosome Evolution in Araliaceae. Mol. Ecol. Resour. 2021, 21, 2204–2220. [Google Scholar] [CrossRef]
- Xu, M.Y.; Wu, K.X.; Liu, Y.; Liu, J.; Tang, Z.H. Effects of Light Intensity on the Growth, Photosynthetic Characteristics, and Secondary Metabolites of Eleutherococcussenticosus Harms. Photosynthetica 2020, 58, 881–889. [Google Scholar] [CrossRef]
- Shohael, A.M.; Murthy, H.N.; Paek, K.Y. Pilot-Scale Culture of Somatic Embryos of Eleutherococcussenticosus in Airlift Bioreactors for the Production of Eleutherosides. Biotechnol. Lett. 2014, 36, 1727–1733. [Google Scholar] [CrossRef] [PubMed]
- Ho Ahn, C.; Shin, J.W.; Lee, H.N.; Yoon, H.W.; Seo, J.M.; Kim, Y.R.; Geul Baek, S.; Nam, J.I.; Choi, Y.E. Comparison of Cryoprotectants and Cryopreservation Protocols for Eleutherococcussenticosus via Somatic Embryogenesis. J. For. Environ. Sci. 2022, 38, 152–158. [Google Scholar] [CrossRef]
- You, X.L.; Choi, Y.E.; Yi, J.S. Micropropagation of Eleutherococcussenticosus through Axillary Bud Culture. For. Sci. Technol. 2005, 1, 38–44. [Google Scholar] [CrossRef]
- Lee, E.J.; Park, S.Y.; Paek, K.Y. Enhancement Strategies of Bioactive Compound Production in Adventitious Root Cultures of EleutherococcusKoreanum Nakai Subjected to Methyl Jasmonate and Salicylic Acid Elicitation through Airlift Bioreactors. Plant Cell Tissue Organ Cult. 2015, 120, 1–10. [Google Scholar] [CrossRef]
- Lee, E.J.; Paek, K.Y. Enhanced Productivity of Biomass and Bioactive Compounds through Bioreactor Cultures of EleutherococcusKoreanum Nakai Adventitious Roots Affected by Medium Salt Strength. Ind. Crops Prod. 2012, 36, 460–465. [Google Scholar] [CrossRef]
- Lee, E.J.; Paek, K.Y. Effect of Nitrogen Source on Biomass and Bioactive Compound Production in Submerged Cultures of EleutherococcusKoreanum Nakai Adventitious Roots. Biotechnol. Prog. 2012, 28, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.-J.; Moh, S.-H.; Park, S.-Y. Production of Biomass and Bioactive Compounds in Adventitious Root cultures of EleutherococcusKoreanum Nakai. In Production of Biomass and Bioactive Compounds Using Bioreactor Technology; Paek, K.-Y., Murthy, H.N., Zhong, J.-J., Eds.; Springer Science+Business Media: Dordrecht, The Netherlands, 2014; pp. 223–249. [Google Scholar]
- Shohael, A.M.; Ali, M.B.; Yu, K.W.; Hahn, E.J.; Paek, K.Y. Effect of Temperature on Secondary Metabolites Production and Antioxidant Enzyme Activities in Eleutherococcussenticosus Somatic Embryos. Plant Cell Tissue Organ Cult. 2006, 85, 219–228. [Google Scholar] [CrossRef]
- Jeong, J.H.; Kim, Y.S.; Moon, H.K.; Hwang, S.J.; Choi, Y.E. Effects of LED on Growth, Morphogenesis and Eleutheroside Contents of in Vitro Cultured Plantlets of Eleutherococcussenticosus Maxim. Korean J. Med. Crop Sci. 2009, 1, 39–45. [Google Scholar]
- Shohael, A.M.; Khatun, S.M.; Murthy, H.N.; Paek, K.-Y. Production of Bioactive compounds from Somatic Embryo Suspension cultures of Siberian Ginseng in Bioreactors. In Production of Biomass and Bioactive Compounds Using Bioreactor Technology; Paek, K.-Y., Murthy, H.N., Zhong, J.-J., Eds.; Springer Science+Business Media: Dordrecht, The Netherlands, 2014; pp. 317–336. ISBN 978-94-017-9222-6. [Google Scholar]
- Shohael, A.M.; Murthy, H.N.; Hahn, E.J.; Paek, K.Y. Methyl Jasmonate Induced Overproduction of Eleutherosides in Somatic Embryos of Eleutherococcussenticosus Cultured in Bioreactors. Electron. J. Biotechnol. 2007, 10, 633–637. [Google Scholar] [CrossRef]
- Jin, L.; Wu, F.; Li, X.; Li, H.; Du, C.; Jiang, Q.; You, J.; Li, S.; Xu, Y. Anti-Depressant Effects of Aqueous Extract from Acanthopanax Senticosus in Mice. Phytother. Res. 2013, 27, 1829–1833. [Google Scholar] [CrossRef]
- Miyazaki, S.; Oikawa, H.; Takekoshi, H.; Hoshizaki, M.; Ogata, M.; Fujikawa, T. Anxiolytic Effects of Acanthopanax Senticosus HARMS Occur via Regulation of Autonomic Function and Activate Hippocampal BDNF-TrkB Signaling. Molecules 2019, 24, 1–15. [Google Scholar] [CrossRef]
- Zhou, A.Y.; Song, B.W.; Fu, C.Y.; Baranenko, D.D.; Wang, E.J.; Li, F.Y.; Lu, G.W. Acanthopanax Senticosus Reduces Brain Injury in Mice Exposed to Low Linear Energy Transfer Radiation. Biomed. Pharmacother. 2018, 99, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Bu, Y.; Jin, Z.H.; Park, S.Y.; Baek, S.; Rho, S.; Ha, N.; Park, S.K.; Kim, S.Y.; Kim, H. Siberian Ginseng Reduces Infarct Volume in Transient Focal Cerebral Ischaemia in Sprague-Dawley Rats. Phytother. Res. 2005, 19, 167–169. [Google Scholar] [CrossRef]
- Liu, S.M.; Li, X.Z.; Huo, Y.; Lu, F. Protective Effect of Extract of Acanthopanax Senticosus Harms on Dopaminergic Neurons in Parkinson’s Disease Mice. Phytomedicine 2012, 19, 631–638. [Google Scholar] [CrossRef]
- Fujikawa, T.; Miguchi, S.; Kanada, N.; Nakai, N.; Ogata, M.; Suzuki, I.; Nakashima, K. Acanthopanax Senticosus Harms as a Prophylactic for MPTP-Induced Parkinson’s Disease in Rats. J. Ethnopharmacol. 2005, 97, 375–381. [Google Scholar] [CrossRef]
- Tohda, C.; Ichimura, M.; Bai, Y.; Tanaka, K.; Zhu, S.; Komatsu, K. Inhibitory Effects of Eleutherococcus Senticosus Extracts on Amyloid β(25-35)-Induced Neuritic Atrophy and Synaptic Loss. J. Pharmacol. Sci. 2008, 107, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Li, H.; Zhao, L.; Li, X.; You, J.; Jiang, Q.; Li, S.; Jin, L.; Xu, Y. Protective Effects of Aqueous Extract from Acanthopanax Senticosus against Corticosterone-Induced Neurotoxicity in PC12 Cells. J. Ethnopharmacol. 2013, 148, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y. Experimental Intervention Effect of Acanthopanax Senticosus Polysaccharide on Lewis Lung Cancer in Mice. Teratog. Carcinog. Mutagen. 2001, 04, 270. [Google Scholar]
- Chen, X.J. The Anti-Tumor and Immune Effects of Acanthopanax Senticosus Polysaccharide. Cancer 1984, 3, 191–193. [Google Scholar]
- Meng, Q.L. Basic Pharmacological Research on the Development of Changbai Mountain Acanthopanax Senticosus Polysaccharide; Jilin Agricultural University: Changchun, China, 2018. [Google Scholar]
- Cao, G.W.; Du, P. Astragalus Polysaccharides, Acanthopanax Senticosus Polysaccharides and Lycium Barbarum Polysaccharides Regulate the Anti-Tumor Activity of LAK Cells In Vivo. J. Second Mil. Med. Univ. 1993, 14, 10–13. [Google Scholar]
- Zhang, N.Z.; Zhang, W.Z.; Chen, X.J. Pathological Study of the Influence of Acanthopanax Senticosus Polysaccharide and GST on Experimental Liver Cancer. Cancer Res. 1997, 2, 78–80. [Google Scholar]
- Zhao, J.X. Induces Apoptosis of Acanthopanax Senticosus Polysaccharides on H446 Cells. Chin. J. Cell Biol. 2018, 2, 239–242. [Google Scholar] [CrossRef]
- Zhao, J.X. ASPS Induces G_2/M Arrest of H446 Cells by Activation of ERK Signal Pathway. Bas. Clin. Med. 2010, 30, 59–62. [Google Scholar]
- Wang, F.F. Study on the Structure and Chemical Modification of Acanthopanax Senticosus Polysaccharide; Ocean University of China: Qingdao, China, 2006. [Google Scholar]
- Wang, H.; Sun, B.; Zhang, Z.; Chen, J.; Hao, Q.; Sun, Y.; Yang, Y.; Wang, Z.; Pei, J. Effects of Acanthopanax Senticosus Polysaccharide on the Proliferation, Apoptosis and Cell Cycle in Human HepG2 Cells. Pharmazie 2016, 71, 201–204. [Google Scholar] [CrossRef]
- Jin, W. Experimental Study of Acanthopanax Senticosus Polysaccharide on the Proliferation and Apoptosis of Human Cervical Cancer HeLa Cells in Vitro. Chin. Traditional Patent Med. 2014, 36, 162–164. [Google Scholar]
- Jin, W. Acanthopanax Senticosus Polysaccharide Down-Regulates Survivin Protein Expression and Induces HeLa Cell Apoptosis. Chin. Traditional Patent Med. 2016, 38, 902–904. [Google Scholar]
- Tong, L. Experimental Study on the Anti-Tumor Effect and Mechanism of Acanthopanax Senticosus Polysaccharide. Chin. Pharmacol. Bull. 1994, 10, 105–109. [Google Scholar]
- Chen, J.Y.; Yu, S.J.; Xiao, D. The Effection of Acanthopanax Senticosus Polysaccharide on Cancer Stem Cells. Chin. J. Lab. Diagn. 2019, 23, 1233–1238. [Google Scholar]
- Meng, Q.F.; Yu, X.K.; Xu, M.Y.; Li, M.L.; Gao, Z.H.; Fan, H. Extraction of Acanthopanacis Senticosi Polysaccharides and Their Antioxidative Effect. J. Jilin Univ. Inf. Sci. Ed. 2005, 43, 683–686. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, B.; Zhang, Y. Protective Effects of Acanthopanax Polysaccharides on Cerebral Ischemia–Reperfusion Injury and Its Mechanisms. Int. J. Biol. Macromol. 2015, 72, 946–950. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Q.C.; Cao, J.H. The Protective Effect of Acanthopanax Senticosus Polysaccharide on H2O2 Induced Apoptosis of Rat Hippocampal Neurons. Chin. J. Clin. Neurosurg. 2013, 18, 681–683. [Google Scholar]
- Chen, R.; Liu, Z.; Zhao, J.; Chen, R.; Meng, F.; Zhang, M.; Ge, W. Antioxidant and Immunobiological Activity of Water-Soluble Polysaccharide Fractions Purified from Acanthopanax Senticosu. Food Chem. 2011, 127, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Diao, B.; Tang, Y.; Zhu, Y.L. The Effect of Acanthopanax Senticosus Polysaccharide on the Expression of NF-Κb in Hippocampal Neurons Injured by H2O2. Chin. J. Clin. Neurosurg. 2010, 15, 350–352. [Google Scholar]
- Diao, B. Effects of Acanthopanacis Senticosi Polysaccharides on Expression of INOS MRNA in Hippocampal Neurons Damaged by Oxidative Stress. Military Medical Journal South China 2008, 19, 15–17. [Google Scholar]
- Jiang, Y.; Wang, M.H. Different Solvent Fractions of Acanthopanax Senticosus Harms Exert Antioxidant and Anti-Inflammatory Activities and Inhibit the Human Kv1.3 Channel. J. Med. Food 2015, 18, 468–475. [Google Scholar] [CrossRef]
- Zhang, N.; Zhao, L.-Y.; Mao, D.; Du, Z.-Y.; Zhang, X.-J.; Zhai, X.-N.; An, B.-S.; Liu, S.-M. Modulation Effect of Acanthopanax Senticosus Polysaccharides through Inflammatory Cytokines in Protecting Immunological Liver-Injured Mice [Article in Chinese]. Zhongguo Zhong Yao Za Zhi 2019, 44, 2947–2952. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Mu, Q.; Li, W.; Xing, W.; Zhang, H.; Fan, T.; Yao, H.; He, L. Isofraxidin Protects Mice from LPS Challenge by Inhibiting Pro-Inflammatory Cytokines and Alleviating Histopathological Changes. Immunobiology 2015, 220, 406–413. [Google Scholar] [CrossRef]
- He, C.; Chen, X.; Zhao, C.; Qie, Y.; Yan, Z.; Zhu, X. Eleutheroside E Ameliorates Arthritis Severity in Collagen-Induced Arthritis Mice Model by Suppressing Inflammatory Cytokine Release. Inflammation 2014, 37, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.S. Immunoregulatory Effect of Polysaccharide of Acanthopanax Senticosus (PAS). I. Immunological Mechanism of PAS against Cancer [Article in Chinese]. Zhonghua Zhong Liu Za Zhi 1989, 11, 338–340. [Google Scholar]
- Xie, S.S. Effect of Acanthopanax Senticosus Polysaccharide on Immune Function Reconstruction in Mice with Allogeneic Bone Marrow Transplantation. J. Beijing Med. Univ. 1989, 4, 289–291. [Google Scholar]
- Xu, S.K. Effect of Acanthopanax Senticosus Polysaccharide (ASPS) on Immune Function of Mice. Chin. Patent Med. 1990, 3, 25–26. [Google Scholar]
- Luo, Q. Effects of Acanthopanax Senticosus Polysaccharide on Immune Function of Normal Mice. Heilongjiang Anim. Sci. Vet. Med. 2013, 13, 120–122. [Google Scholar]
- Luo, Q. Effects of Acanthopanax Senticosus Polysaccharide on Lymphocyte Transformation Rate and Peripheral Lymphocyte Subsets in Normal Mice. J. Henan Agric. Sci. 2013, 42, 137–140. [Google Scholar]
- Zhai, X.N. Effect of Acanthopanax Senticosus Polysaccharide on Immune Function of Mice. Traditional Chin. Med. Inf. 2020, 37, 42–45. [Google Scholar] [CrossRef]
- Sun, S.K.; Song, T.; Lu, Y. Immunomodulatory Effects of Acanthopanax Senticosus Acidic Polysaccharides in Cyclophosphamide-Induced Immunocompromised Mice. Immunological J. 2018, 34, 863–868. [Google Scholar] [CrossRef]
- Han, J.; Bian, L.; Liu, X.; Zhang, F.; Zhang, Y.; Yu, N. Effects of Acanthopanax Senticosus Polysaccharide Supplementation on Growth Performance, Immunity, Blood Parameters and Expression of pro-Inflammatory Cytokines Genes in Challenged Weaned Piglets. Asian-Australas. J. Anim. Sci. 2014, 27, 1035–1043. [Google Scholar] [CrossRef]
- Luo, Q. Study on Cell K562 Apoptosis Induced by Acanthopanax Senticosus In Vitro. J. Hebei North Univ. (Med. Ed.) 2008, 5, 17–19. [Google Scholar]
- Zhang, N. Modulation of Acanthopanax Senticosus Polysaccharides on Expression of IL-2,IL-4, INF-γ Cytokines, and MRNA in BALB/c Immunological Liver-Injured Mice. Drug Eval. Res. 2018, 41, 557–561. [Google Scholar]
- Yang, X.D. Protective Effects of Acanthopanax Senticosus Polysaccharide on Immune Liver Injury in Mice; Heilongjiang University of Traditional Chinese Medicine: Harbin, China, 2016. [Google Scholar]
- Zhang, H.; Wang, S.; Jin, L.H. Acanthopanax Senticosus Polysaccharide Regulates the Intestinal Homeostasis Disruption Induced by Toxic Chemicals in Drosophila. Phytother. Res. 2020, 34, 193–200. [Google Scholar] [CrossRef]
- Lu, F. Investigation of Protective Effect of Acanthopanax Senticosus Polysaccharides on Immunological Liver Injury in Mice by Metabolomics Methods. New Chin. Med. Clin. Pharmacol. 2016, 27, 823–829. [Google Scholar] [CrossRef]
- Wang, R.; Shi, L.; Liu, S.; Liu, Z.; Song, F.; Sun, Z.; Liu, Z. Mass Spectrometry-Based Urinary Metabolomics for the Investigation on the Mechanism of Action of Eleutherococcus Senticosus (Rupr. & Maxim.) Maxim. Leaves against Ischemic Stroke in Rats. J. Ethnopharmacol. 2019, 241, 111969. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Yu, X.; Qu, S.; Xu, H.; Sui, D. Acanthopanax Senticosides B Ameliorates Oxidative Damage Induced by Hydrogen Peroxide in Cultured Neonatal Rat Cardiomyocytes. Eur. J. Pharmacol. 2010, 627, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cheng, C.; Baranenko, D.; Wang, J.; Li, Y.; Lu, W. Effects of Acanthopanax Senticosus on Brain Injury Induced by Simulated Spatial Radiation in Mouse Model Based on Pharmacokinetics and Comparative Proteomics. Int. J. Mol. Sci. 2018, 19. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kos, G.; Czarnek, K.; Sadok, I.; Krzyszczak-Turczyn, A.; Kubica, P.; Fila, K.; Emre, G.; Tatarczak-Michalewska, M.; Latalska, M.; Blicharska, E.; et al. Eleutherococcus senticosus (Acanthopanax senticosus): An Important Adaptogenic Plant. Molecules 2025, 30, 2512. https://doi.org/10.3390/molecules30122512
Kos G, Czarnek K, Sadok I, Krzyszczak-Turczyn A, Kubica P, Fila K, Emre G, Tatarczak-Michalewska M, Latalska M, Blicharska E, et al. Eleutherococcus senticosus (Acanthopanax senticosus): An Important Adaptogenic Plant. Molecules. 2025; 30(12):2512. https://doi.org/10.3390/molecules30122512
Chicago/Turabian StyleKos, Grzegorz, Katarzyna Czarnek, Ilona Sadok, Agnieszka Krzyszczak-Turczyn, Paweł Kubica, Karolina Fila, Gizem Emre, Małgorzata Tatarczak-Michalewska, Małgorzata Latalska, Eliza Blicharska, and et al. 2025. "Eleutherococcus senticosus (Acanthopanax senticosus): An Important Adaptogenic Plant" Molecules 30, no. 12: 2512. https://doi.org/10.3390/molecules30122512
APA StyleKos, G., Czarnek, K., Sadok, I., Krzyszczak-Turczyn, A., Kubica, P., Fila, K., Emre, G., Tatarczak-Michalewska, M., Latalska, M., Blicharska, E., Załuski, D., Şekeroğlu, N., & Szopa, A. (2025). Eleutherococcus senticosus (Acanthopanax senticosus): An Important Adaptogenic Plant. Molecules, 30(12), 2512. https://doi.org/10.3390/molecules30122512