Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (514)

Search Parameters:
Keywords = placental tissue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3064 KiB  
Article
Immunohistochemical Analysis of Placental Tissue of Women Infected with SARS-CoV-2 During Pregnancy—A Prospective Clinical Study
by Marija Bicanin Ilic, Tamara Nikolic Turnic, Aleksandar Nikolov, Srdjan Mujkovic, Ivana Likic Ladjevic, Igor Ilic, Marija Spasojevic, Nikola Jovic, Jovana Joksimovic Jovic, Dejana Rakic, Begzudin Ahmetovic, Sara Rosic and Aleksandra Dimitrijevic
Int. J. Mol. Sci. 2025, 26(15), 7659; https://doi.org/10.3390/ijms26157659 (registering DOI) - 7 Aug 2025
Abstract
SARS-CoV-2 has an affinity for binding to the human Angiotensin-converting enzyme 2 (ACE2) receptor through cleavage and conformational changes at the S1–S2 boundary and the receptor binding domain of the spike protein, which is also the most variable part of SARS-CoV-2. This study [...] Read more.
SARS-CoV-2 has an affinity for binding to the human Angiotensin-converting enzyme 2 (ACE2) receptor through cleavage and conformational changes at the S1–S2 boundary and the receptor binding domain of the spike protein, which is also the most variable part of SARS-CoV-2. This study aimed to investigate the expression of Angiotensin-converting enzyme 2 (ACE2), spike protein, and CD68+ markers in placental tissue to demonstrate a possible correlation with the level of systemic oxidative stress biomarkers in patients who were infected with SARS-CoV-2 during pregnancy. A prospective clinical cohort study was designed to investigate the presence of CD68+ macrophages, ACE2, and spike proteins in placental tissue using immunohistochemical methods and to compare these results with oxidative stress from our previous study. Spike and CD68+ macrophages’ immunoreactivity were more pronounced in the placental tissue of patients from the SARS-CoV-2 group. Placental tissue spike protein and CD68+ immunoreactivity correlate with maternal and fetal Thiobarbituric Acid Reactive (TBARS) levels. This study has confirmed that spike protein expression in placental tissue is associated with the newborn’s stay in intensive neonatal care. Therefore, immunoreactivity analysis for the Spike antigen is important in detecting newborns at risk of early neonatal complications. Full article
(This article belongs to the Special Issue Molecular Insights into Placental Pathology)
Show Figures

Figure 1

18 pages, 914 KiB  
Article
Microvascular, Biochemical, and Clinical Impact of Hyperbaric Oxygen Therapy in Recalcitrant Diabetic Foot Ulcers
by Daniela Martins-Mendes, Raquel Costa, Ilda Rodrigues, Óscar Camacho, Pedro Barata Coelho, Vítor Paixão-Dias, Carla Luís, Ana Cláudia Pereira, Rúben Fernandes, Jorge Lima and Raquel Soares
Cells 2025, 14(15), 1196; https://doi.org/10.3390/cells14151196 - 4 Aug 2025
Viewed by 181
Abstract
Background: Diabetic foot ulcers (DFUs) are a serious complication of diabetes and are often difficult to treat. Hyperbaric oxygen therapy (HBOT) has been proposed as an adjunctive treatment to promote healing, but its long-term clinical and biological effects remain insufficiently characterized. This study [...] Read more.
Background: Diabetic foot ulcers (DFUs) are a serious complication of diabetes and are often difficult to treat. Hyperbaric oxygen therapy (HBOT) has been proposed as an adjunctive treatment to promote healing, but its long-term clinical and biological effects remain insufficiently characterized. This study aimed to evaluate the impact of HBOT on systemic biomarkers, local microvasculature, and clinical outcomes in patients with DFUs. Methods: In this non-randomized prospective study, 20 patients with ischemic DFUs were followed over a 36-month period. Fourteen received HBOT in addition to standard care, while six received standard care alone. Clinical outcomes—including DFU resolution, recurrence, lower extremity amputation (LEA), and mortality—were assessed alongside systemic inflammatory and angiogenic biomarkers and wound characteristics at baseline and at 3, 6, 12, and 36 months. CD31 immunostaining was performed on available tissue samples. Results: The two groups were comparable at baseline (mean age 62 ± 12 years; diabetes duration 18 ± 9 years). At 3 months, the HBOT group showed significant reductions in erythrocyte sedimentation rate and DFU size (p < 0.05), with downward trends observed in C-reactive protein (CRP), vascular endothelial growth factor (VEGF), and placental growth factor (PlGF), and an increase in stromal-derived factor-1 alpha (SDF1-α). No significant changes were observed in the control group. CD31+ microvessel density appeared to increase in HBOT-treated DFU tissue after one month, although the sample size was limited. Patients receiving HBOT had lower rates of LEA and mortality, improved wound healing, and sustained outcomes over three years. DFU recurrence rates were similar between groups. Conclusions: HBOT was associated with improved wound healing and favorable biomarker profiles in patients with treatment-resistant ischemic DFUs. While these findings are encouraging, the small sample size and non-randomized design limit their generalizability, highlighting the need for larger, controlled studies. Full article
Show Figures

Figure 1

24 pages, 587 KiB  
Review
Uric Acid and Preeclampsia: Pathophysiological Interactions and the Emerging Role of Inflammasome Activation
by Celia Arias-Sánchez, Antonio Pérez-Olmos, Virginia Reverte, Isabel Hernández, Santiago Cuevas and María Teresa Llinás
Antioxidants 2025, 14(8), 928; https://doi.org/10.3390/antiox14080928 - 29 Jul 2025
Viewed by 477
Abstract
Preeclampsia (PE) is a multifactorial hypertensive disorder unique to pregnancy and a leading cause of maternal and fetal morbidity and mortality worldwide. Its pathogenesis involves placental dysfunction and an exaggerated maternal inflammatory response. Uric acid (UA), traditionally regarded as a marker of renal [...] Read more.
Preeclampsia (PE) is a multifactorial hypertensive disorder unique to pregnancy and a leading cause of maternal and fetal morbidity and mortality worldwide. Its pathogenesis involves placental dysfunction and an exaggerated maternal inflammatory response. Uric acid (UA), traditionally regarded as a marker of renal impairment, is increasingly recognized as an active contributor to the development of PE. Elevated UA levels are associated with oxidative stress, endothelial dysfunction, immune activation, and reduced renal clearance. Clinically, UA is measured in the second and third trimesters to assess disease severity and guide obstetric management, with higher levels correlating with early-onset PE and adverse perinatal outcomes. Its predictive accuracy improves when combined with other clinical and biochemical markers, particularly in low-resource settings. Mechanistically, UA and its monosodium urate crystals can activate the NLRP3 inflammasome, a cytosolic multiprotein complex of the innate immune system. This activation promotes the release of IL-1β and IL-18, exacerbating placental, vascular, and renal inflammation. NLRP3 inflammasome activation has been documented in placental tissues, immune cells, and kidneys of women with PE and is associated with hypertension, proteinuria, and endothelial injury. Experimental studies indicate that targeting UA metabolism or inhibiting NLRP3 activation, using agents such as allopurinol, metformin, or MCC950, can mitigate the clinical and histopathological features of PE. These findings support the dual role of UA as both a biomarker and a potential therapeutic target in the management of the disease. Full article
Show Figures

Graphical abstract

17 pages, 2388 KiB  
Review
Interactions Between Prolactin, Intracellular Signaling, and Possible Implications in the Contractility and Pathophysiology of Asthma
by Eduardo Calixto, Juan C. Gomez-Verjan, Marco Cerbón, Valeria Rodríguez-Chávez, Bianca S. Romero-Martínez, María E. Martinez-Enriquez, Luis M. Montaño, Héctor Solís-Chagoyán, Arnoldo Aquino-Gálvez, Nadia A. Rivero-Segura, Georgina González-Ávila, Ana del Carmen Susunaga Notario, Gloria E. Pérez-Figueroa, Verónica Carbajal, Edgar Flores-Soto and Bettina Sommer
Int. J. Mol. Sci. 2025, 26(15), 7332; https://doi.org/10.3390/ijms26157332 - 29 Jul 2025
Viewed by 378
Abstract
Prolactin (PRL) is a hormone primarily associated with lactation, but it plays various roles in both men and women. PRL belongs to the family of peptide hormones, including placental lactogen and growth hormone. Interestingly, PRL is a pleiotropic hormone affecting several physiological and [...] Read more.
Prolactin (PRL) is a hormone primarily associated with lactation, but it plays various roles in both men and women. PRL belongs to the family of peptide hormones, including placental lactogen and growth hormone. Interestingly, PRL is a pleiotropic hormone affecting several physiological and pathological conditions, including fertility. Moreover, several pathophysiological roles have been associated with this hormone, including those of the immune system, autoimmune disorders, asthma, and ageing. Additionally, PRL receptors are ubiquitously expressed in tissues, including the mammary gland, gonads, liver, kidney, adrenal gland, brain, heart, lungs, pituitary gland, uterus, skeletal muscle, skin blood cells, and immune system. Therefore, in the present paper, we cover the potential role that PRL may play in asthma by promoting inflammation and modulating immune responses. The detection of its receptor in lung tissue suggests a direct role in airway smooth muscle contractility through activation of signaling pathways such as JAK2-STAT5, MAPK/ERK1/2, and PI3K/Akt, as well as influencing ionic currents that regulate cell contraction, proliferation, and survival. In this sense, this review aims to explore the potential involvement of PRL in asthma pathophysiology by examining its interactions with intracellular signaling pathways and its possible impact on airway smooth muscle contractility and immune modulation. Full article
(This article belongs to the Special Issue New Insights into Airway Smooth Muscle: From Function to Dysfunction)
Show Figures

Figure 1

16 pages, 2374 KiB  
Article
Soy Isoflavone Supplementation in Sow Diet Enhances Antioxidant Status and Promotes Intestinal Health of Newborn Piglets
by Le Liu, Lizhu Niu, Mengmeng Xu, Qing Yu, Lixin Chen, Hongyu Deng, Wen Chen and Long Che
Animals 2025, 15(15), 2223; https://doi.org/10.3390/ani15152223 - 28 Jul 2025
Viewed by 283
Abstract
This study aimed to explore the effects of dietary supplementation with soy isoflavones (SI) in the later stages of pregnancy on the antioxidant capacity of sows and intestinal health of newborn piglets. Forty sows with similar body weights and parity (average of 1–2 [...] Read more.
This study aimed to explore the effects of dietary supplementation with soy isoflavones (SI) in the later stages of pregnancy on the antioxidant capacity of sows and intestinal health of newborn piglets. Forty sows with similar body weights and parity (average of 1–2 parity) were randomly divided into two groups (n = 20): the control group and SI group (dose: 100 mg/kg of feed). Feeding was started on day 85 of gestation and continued until farrowing. SI supplementation significantly increased the antioxidant levels in the serum of the sows and newborn piglets, placental tissue, and the intestinal tract of the piglets. This observation was indicated by a decreased activity of the oxidative stress marker malondialdehyde (MDA); increased activity of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and catalase; and enhanced total antioxidant capacity. The organ indices of the intestine and liver and the villus height/crypt depth of the jejunum of newborn piglets significantly increased. SI supplementation activated the Nrf2 signaling pathway in the jejunum of neonatal piglets and the expression of placental antioxidant proteins, and it downregulated the expression of the Bax and Caspase 3 apoptotic proteins in the placenta and neonatal piglets. Intestinal and placental barrier integrity was strengthened. For example, ZO-1, Occludin, and Claudin 1 exhibited elevated expression. In conclusion, dietary supplementation with SI enhanced the antioxidant capacity of sows and piglets and improved the health of the placenta and intestinal tract of newborn piglets. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

12 pages, 659 KiB  
Review
HTLV-1 in Pregnancy and Neonatal Health: Evidence, Challenges, and Future Directions
by Ana Clara Assis Alves Emerick, Letícia Castilho Yamanaka, Stefany Silva Pereira, Tammy Caram Sabatine, Taline de Brito Cavalcante, Thamy Cristina Campos, Gustavo Yano Callado, Edward Araujo Júnior, Antonio Braga, Gloria Calagna and Evelyn Traina
Diagnostics 2025, 15(15), 1886; https://doi.org/10.3390/diagnostics15151886 - 28 Jul 2025
Viewed by 324
Abstract
Human T-cell lymphotropic virus (HTLV), a retrovirus associated with severe conditions such as leukemia/lymphoma and myelopathy, exhibits variable global prevalence, with higher rates observed in regions such as northeastern Brazil and sub-Saharan Africa. While intrauterine transmission can occur via viral expression in placental [...] Read more.
Human T-cell lymphotropic virus (HTLV), a retrovirus associated with severe conditions such as leukemia/lymphoma and myelopathy, exhibits variable global prevalence, with higher rates observed in regions such as northeastern Brazil and sub-Saharan Africa. While intrauterine transmission can occur via viral expression in placental tissue and contact with umbilical cord blood, the predominant route is vertical transmission through breastfeeding. Diagnostic testing, particularly serological screening with ELISA and confirmatory methods such as Western blot and PCR, is essential for early detection during pregnancy. The implementation of prenatal screening programs, as seen in Japan and Brazil, has proven effective in reducing vertical transmission by guiding interventions such as breastfeeding cessation in infected mothers. Beyond clinical implications, the psychosocial impact on affected pregnant women highlights the need for an interdisciplinary approach. Although the association between HTLV infection and adverse obstetric outcomes remains controversial, studies suggest increased risks of preterm birth, low birth weight, and other neonatal complications. Given the importance of early diagnosis and prevention, universal prenatal screening protocols represent a critical strategy to reduce viral transmission and its long-term consequences. Full article
(This article belongs to the Section Diagnostic Microbiology and Infectious Disease)
Show Figures

Figure 1

11 pages, 1677 KiB  
Article
Exposure to Treponema pallidum Alters Villous Histomorphology of Human Placentae
by Patience B. Tetteh-Quarcoo, Joana Twasam, John Ahenkorah, Bismarck Afedo Hottor, Nicholas T. K. D. Dayie, Stephen Opoku-Nyarko, Peter Ofori Appiah, Emmanuel Afutu, Fleischer C. N. Kotey, Eric S. Donkor, Emilia Asuquo Udofia, Nii Koney-Kwaku Koney, Benjamin Arko-Boham and Kevin Kofi Adutwum-Ofosu
Acta Microbiol. Hell. 2025, 70(3), 31; https://doi.org/10.3390/amh70030031 - 23 Jul 2025
Viewed by 263
Abstract
Syphilis, which is caused by Treponema pallidum, remains one of the most common congenital infection worldwide and has tremendous consequences for the mother and her developing foetus if left untreated. The complexity of the exposure to this pathogen extends beyond the well-established [...] Read more.
Syphilis, which is caused by Treponema pallidum, remains one of the most common congenital infection worldwide and has tremendous consequences for the mother and her developing foetus if left untreated. The complexity of the exposure to this pathogen extends beyond the well-established clinical manifestations, as it can profoundly affect placental histomorphology. This study aimed to compare T. pallidum-exposed placental villi structures with healthy placentae at term to evaluate the histomorphological differences using stereology. In this case-control study conducted at term (38 weeks ± 2 weeks), 78 placentae were collected from the hospital delivery suites, comprising 39 cases (T. pallidum-exposed) and 39 controls (non-exposed), who were gestational age-matched with other potential confounders excluded. Blood samples from the umbilical vein and placental basal plate were tested for syphilis, using rapid diagnostic test (RDT) kits for T. pallidum (TP) antibodies (IgG and IgM) to classify placentae as exposed to T. pallidum (cases) and non-exposed (controls). Tissue sections were prepared and stained with haematoxylin and eosin, and the mean volume densities of syncytial knots, foetal capillaries, syncytial denuded areas, and intervillous spaces were estimated using stereological methods. Statistical analysis was performed to compare the mean values between the case and control groups. Stereological assessment revealed significant differences between the T. pallidum-exposed and non-exposed groups with regard to syncytial knots (p < 0.0001), syncytial denudation (p < 0.0001), and foetal capillaries (p < 0.0001), but no significant difference in the intervillous space was found (p = 0.1592). Therefore, our study shows, for the first time, that the histomorphology of human placental villi appears to be altered by exposure to T. pallidum. It will, therefore, be interesting to determine whether these changes in the placental villi translate into long-term effects on the baby. Full article
Show Figures

Figure 1

14 pages, 3796 KiB  
Article
Preliminary Analysis of Placental DNA Methylation Profiles in Piglets with Extreme Birth Weight Variations
by Zhiyuan Zhang, Baohua Tan, Jiawei Su, Jiaming Xue, Liyao Xiao, Zicong Li, Linjun Hong, Gengyuan Cai and Ting Gu
Animals 2025, 15(15), 2168; https://doi.org/10.3390/ani15152168 - 23 Jul 2025
Viewed by 242
Abstract
Adequate birth weight is essential for animal survival and subsequent growth. However, the mechanism by which placental DNA methylation influences fetal growth remains incompletely understood. This study employed whole-genome bi-sulfite sequencing (WGBS) and RNA sequencing to analyze placental tissues from two weak piglets [...] Read more.
Adequate birth weight is essential for animal survival and subsequent growth. However, the mechanism by which placental DNA methylation influences fetal growth remains incompletely understood. This study employed whole-genome bi-sulfite sequencing (WGBS) and RNA sequencing to analyze placental tissues from two weak piglets and two normal piglets born to the same sow. Transcriptome analysis identified 1989 differentially expressed genes (DEGs) enriched in blood/immune processes. Additionally, differentially methylated regions linked to DEG repression were enriched in extracellular matrix (ECM) receptors and angiogenesis pathways. To investigate the role of DNA methylation in gene regulation, porcine trophoblast cells (PTr2) were treated with either DMSO (control) or the DNA methylation inhibitor 5-Aza-2′-deoxycytidine (5-Aza). Real-time quantitative PCR (RT-qPCR) analysis demonstrated significant upregulation of PACC1, SLC7A1, and PKP1 gene expression in the 5-Aza-treated group compared to controls (p < 0.05). Furthermore, methylation-specific PCR (MS-PCR) assays confirmed that the transcriptional activity of these genes is directly modulated by DNA methylation. These findings suggest that the dynamic regulation of DNA methylation in gene promoters may influence variations in placental morphology and birth weight in piglets, offering new insights into epigenetic regulation of fetal development, though larger studies are needed for validation. Full article
(This article belongs to the Special Issue Advances in Omics to Enhance Livestock Production)
Show Figures

Figure 1

17 pages, 3334 KiB  
Article
Alterations in P-glycoprotein Expression in the Placenta of Obese Rats and Humans
by Péter Szatmári, Kata Kira Kemény, Andrea Surányi, Yakov Rachamim and Eszter Ducza
Int. J. Mol. Sci. 2025, 26(14), 6976; https://doi.org/10.3390/ijms26146976 - 20 Jul 2025
Viewed by 270
Abstract
Obesity affects approximately 30% of pregnancies worldwide and is one of the leading metabolic disorders among pregnant women. Maternal obesity is often associated with placental dysfunction and structural alterations, which increase the risk of developing complications. Efflux transporters, including P-glycoprotein (P-gp), may impact [...] Read more.
Obesity affects approximately 30% of pregnancies worldwide and is one of the leading metabolic disorders among pregnant women. Maternal obesity is often associated with placental dysfunction and structural alterations, which increase the risk of developing complications. Efflux transporters, including P-glycoprotein (P-gp), may impact placental function and fetal development. Consequently, our research examined the effects of obesity on P-glycoprotein expression in both a rat model and human placental tissue. P-gp expression was measured by RT-PCR and Western blot techniques in human and rat placental tissues. Moreover, we further characterized the high-fat and high-sugar diet (HFHSD)-induced gestational obesity rat model by measuring tissue weights. Significant decreases were observed in fetal, placental, and uterus weights in the obese animals near the end of pregnancy. In obese rats, mRNA and protein expression of placental P-gp showed a reduction on gestation days 15, 20, and 22. A similar P-gp reduction was observed in the term placenta in obese women in mRNA and protein levels. We hypothesize that the reduced expression of P-gp may heighten the susceptibility of both the fetus and placenta to P-gp substrates. This alteration could potentially result in an increased risk of pregnancy complications and obesity-related drug contraindications linked to P-gp transport during pregnancy. Full article
Show Figures

Figure 1

11 pages, 857 KiB  
Article
Placental Expression of Sirtuins in Women with Gestational Diabetes
by Michał Czerewaty, Łukasz Ustianowski, Kajetan Kiełbowski, Estera Bakinowska, Krzysztof Safranow, Maciej Tarnowski, Tomasz Sroczyński and Andrzej Pawlik
Genes 2025, 16(7), 844; https://doi.org/10.3390/genes16070844 - 20 Jul 2025
Viewed by 365
Abstract
Background/Objectives: Gestational diabetes mellitus (GDM) is a common metabolic disorder in pregnant women. It can lead to several complications, such as preterm delivery, macrosomia, or metabolic disorders in newborns. Studies have revealed morphological and transcriptional differences between the placentas of patients with GDM [...] Read more.
Background/Objectives: Gestational diabetes mellitus (GDM) is a common metabolic disorder in pregnant women. It can lead to several complications, such as preterm delivery, macrosomia, or metabolic disorders in newborns. Studies have revealed morphological and transcriptional differences between the placentas of patients with GDM and women with normal glucose tolerance. Sirtuins (SIRTs) are nicotinamide adenine dinucleotide-dependent deacetylases that interact with and regulate the activity of numerous proteins. However, little is known about their role in the pathogenesis of GDM. This study was performed to analyze the placental expression of SIRTs and investigate their correlations with clinical parameters. Methods: GDM was diagnosed based on the 75 g oral glucose tolerance test in accordance with the criteria developed by the International Association of Diabetes and Pregnancy Study Groups. Placental tissues were collected, and the expression of SIRT1,-3,-4 and a reference gene (β-2 microglobulin) was analyzed. Results: The placental expression of SIRT1 and SIRT3 was elevated in women with GDM. However, there was no significant difference in SIRT4 expression between women with GDM and those with normal glucose tolerance. Furthermore, we found no significant correlations between SIRT1, SIRT3, and SIRT4 expression and clinical parameters. Conclusions: The findings of this study demonstrate elevated expression of SIRT1 and SIRT3 in the placentas of women with GDM. Further studies are required to confirm our observations and demonstrate the precise role of these enzymes in GDM. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

37 pages, 1761 KiB  
Review
Iron–Immune Crosstalk at the Maternal–Fetal Interface: Emerging Mechanisms in the Pathogenesis of Preeclampsia
by Jieyan Zhong, Ruhe Jiang, Nan Liu, Qingqing Cai, Qi Cao, Yan Du and Hongbo Zhao
Antioxidants 2025, 14(7), 890; https://doi.org/10.3390/antiox14070890 - 19 Jul 2025
Viewed by 639
Abstract
Preeclampsia (PE) is a pregnancy-specific hypertensive disorder characterized by systemic inflammation, endothelial dysfunction, and placental insufficiency. While inadequate trophoblast invasion and impaired spiral artery remodeling have long been recognized as central to its pathogenesis, emerging evidence underscores the critical roles of dysregulated iron [...] Read more.
Preeclampsia (PE) is a pregnancy-specific hypertensive disorder characterized by systemic inflammation, endothelial dysfunction, and placental insufficiency. While inadequate trophoblast invasion and impaired spiral artery remodeling have long been recognized as central to its pathogenesis, emerging evidence underscores the critical roles of dysregulated iron metabolism and its crosstalk with immune responses, particularly macrophage-mediated inflammation, in driving PE development. This review systematically explores the dynamic changes in iron metabolism during pregnancy, including increased maternal iron demand, placental iron transport mechanisms, and the molecular regulation of placental iron homeostasis. We further explore the contribution of ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, to trophoblast dysfunction and pregnancy-related diseases, including PE. Macrophages, pivotal immune regulators at the maternal–fetal interface, exhibit distinct polarization states that shape tissue remodeling and immune tolerance. We outline their origin, distribution, and polarization in pregnancy, and emphasize their aberrant phenotype and function in PE. The bidirectional crosstalk between iron and macrophages is also dissected: iron shapes macrophage polarization and function, while macrophages reciprocally modulate iron homeostasis. Notably, excessive reactive oxygen species (ROS) and pro-inflammatory cytokines secreted by M1-polarized macrophages may exacerbate trophoblast ferroptosis, amplifying placental injury. Within the context of PE, we delineate how iron overload and macrophage dysfunction synergize to potentiate placental inflammation and oxidative stress. Key iron-responsive immune pathways, such as the HO-1/hepcidin axis and IL-6/TNF-α signaling, are discussed in relation to disease severity. Finally, we highlight promising therapeutic strategies targeting the iron–immune axis, encompassing three key modalities—iron chelation therapy, precision immunomodulation, and metabolic reprogramming interventions—which may offer novel avenues for PE prevention and treatment. Full article
Show Figures

Figure 1

27 pages, 7011 KiB  
Review
Conceptus Elongation, Implantation, and Early Placental Development in Species with Central Implantation: Pigs, Sheep, and Cows
by Gregory A. Johnson, Thainá Minela, Heewon Seo, Fuller W. Bazer, Robert C. Burghardt, Guoyao Wu, Ky G. Pohler, Claire Stenhouse, Joe W. Cain, Zachary K. Seekford and Dallas R. Soffa
Biomolecules 2025, 15(7), 1037; https://doi.org/10.3390/biom15071037 - 17 Jul 2025
Viewed by 563
Abstract
Species have different strategies for implantation and placentation. Much can be learned about general molecular and cellular biology through the examination and comparison of these differences. To varying degrees, implantation in all species includes alterations in epithelial polarity, the transformation of the endometrial [...] Read more.
Species have different strategies for implantation and placentation. Much can be learned about general molecular and cellular biology through the examination and comparison of these differences. To varying degrees, implantation in all species includes alterations in epithelial polarity, the transformation of the endometrial stroma, the differentiation of the trophoblast, cell-to-cell and tissue-to-tissue signaling through hormones, cytokines, and extracellular vesicles, and the alteration of the maternal immune system. This review focuses on implantation in pigs, sheep, and cows. These species share with mice/rats and humans/primates the key events of early embryonic development, pregnancy recognition, and the establishment of functional placentation. However, there are differences between the pregnancies of livestock and other species that make livestock unique biomedical models for the study of pregnancy and cell biology in general. Pig, sheep, and cow conceptuses (embryo/fetus and associated placental membranes) elongate prior to implantation, displaying central implantation, extended periods of conceptus attachment to the uterus, and epitheliochorial (pigs) and synepitheliochorial (sheep and cows) placentation. This review will discuss what is understood about how the trophoblast and extraembryonic endoderm of pig, sheep, and cow conceptuses elongate, and how a major goal of current in vitro models is to achieve conceptus elongation. It will then examine the adhesion cascade for conceptus implantation that initiates early placental development in pigs, sheep, and cows. Finally, it will conclude with a brief overview of early placental development in pigs, sheep, and cows, with a listing of some important “omics” studies that have been published. Full article
Show Figures

Figure 1

14 pages, 474 KiB  
Article
Calcium Metabolism, Immunity and Reproduction in Early Postpartum Dairy Cows
by Szilvia Kusza, Zoltán Bagi, Putri Kusuma Astuti, George Wanjala, Ottó Szenci and Árpád Csaba Bajcsy
Animals 2025, 15(14), 2103; https://doi.org/10.3390/ani15142103 - 16 Jul 2025
Viewed by 337
Abstract
Vitamin D is essential for calcium homeostasis, bone mineralization, immunity, and disease prevention. In a field study with Holstein-Friesian dairy cows, the impact of prepartum vitamin D3 treatment on early postpartum placental gene expression, focusing on calcium metabolism, feto-placental growth, and immune [...] Read more.
Vitamin D is essential for calcium homeostasis, bone mineralization, immunity, and disease prevention. In a field study with Holstein-Friesian dairy cows, the impact of prepartum vitamin D3 treatment on early postpartum placental gene expression, focusing on calcium metabolism, feto-placental growth, and immune response, had been investigated. Eight multiparous cows were treated with 10 mL vitamin D3 (1 million IU cholecalciferol/mL) intramuscularly on day 273 of pregnancy, while eight others remained untreated and served as controls. Placental tissues were collected post-calving, and gene expression was analyzed using quantitative real-time PCR. Among 23 genes, 5 showed significant downregulation in the treated group: CaBP-9k (reduced by 88.1% from 32.80 ± 91.50 to 3.90 ± 8.54), ESR1 (reduced by 95.7% from 7.89 ± 17.87 to 0.34 ± 0.34), LHR (reduced by 96.5% from 3.75 ± 5.45 to 0.13 ± 0.17), NOD1 (reduced by 94.1% from 4.21 ± 7.00 to 0.25 ± 0.30), and TLR1 (reduced by 99.7% from 24.80 ± 61.45 to 0.07 ± 0.08). These results suggest that vitamin D3 supplementation affects key pathways related to calcium transport, reproductive function, and immune response in the bovine placenta. These molecular changes may help to explain improved calcium homeostasis and reduced postpartum complications, offering insights into how targeted nutritional interventions can enhance reproductive efficiency in high-producing dairy cows. Full article
(This article belongs to the Special Issue Advances in Cattle Genetics and Breeding)
Show Figures

Figure 1

8 pages, 197 KiB  
Communication
Repeated Detection of Bartonella DNA in Feline Placenta: Potential Implications for Placental and Fetal Development
by Charlotte O. Moore, Ricardo Maggi, Kelli Ferris and Edward B. Breitschwerdt
Animals 2025, 15(14), 2041; https://doi.org/10.3390/ani15142041 - 11 Jul 2025
Viewed by 294
Abstract
The domestic cat is the primary reservoir host of three flea-borne Bartonella species, one of which (Bartonella henselae) causes reduced fertility and reproductive failure in experimentally infected cats. Vertical transmission of Bartonella has been documented only in B-cell deficient mice, but [...] Read more.
The domestic cat is the primary reservoir host of three flea-borne Bartonella species, one of which (Bartonella henselae) causes reduced fertility and reproductive failure in experimentally infected cats. Vertical transmission of Bartonella has been documented only in B-cell deficient mice, but not immunocompetent animals. As many free-roaming cats are chronically infected with Bartonella and may be immunocompromised by environmental stress or coinfection, we attempted to isolate Bartonella from the fetal and placental tissues of pregnant queens spayed during trap–neuter–release. Four samples from each tissue (ovary, uterus, fetus, and placenta) were split for direct DNA extraction, liquid culture, and culture on a blood agar plate. Samples from infected queens were inoculated into liquid media and sampled weekly for three weeks for DNA extraction and plating. Bartonella DNA was sequenced directly from 28% (5/18) of the free-roaming queens. For these five queens, liquid enrichment culture was attempted in duplicate for fetal and placental samples. Bartonella clarridgeiae DNA was amplified using qPCR liquid enrichment cultures from the placentas of two cats. These findings suggest that viable Bartonella organisms are present in feline reproductive tissue. Additional studies are needed to assess the transplacental transmission of Bartonella spp. and Bartonella’s influence on fetal development. Full article
(This article belongs to the Section Companion Animals)
21 pages, 10370 KiB  
Article
Modeling Early Stages of Trophectoderm–Endometrium Interactions Using Trophoblastic and Endometrial Organoids and the Generation of Lacunoids/Cystoids
by Islam M. Saadeldin, Budur Alshehri, Maha AlThubyani, Falah H. Almohanna, Goran Matic, Ayman A. Swelum, Serdar Coskun, Khalid A. Awartani and Abdullah M. Assiri
Cells 2025, 14(14), 1051; https://doi.org/10.3390/cells14141051 - 9 Jul 2025
Viewed by 996
Abstract
This study presents the first successful generation and comprehensive characterization of trophoblastic organoids (TOs) and the derivation of three-dimensional cavity- or sac-like structures—termed lacunoids/cystoids—from sheep intracytoplasmic sperm injection (ICSI) embryos. TOs were generated from sheep ICSI embryos for the first time and were [...] Read more.
This study presents the first successful generation and comprehensive characterization of trophoblastic organoids (TOs) and the derivation of three-dimensional cavity- or sac-like structures—termed lacunoids/cystoids—from sheep intracytoplasmic sperm injection (ICSI) embryos. TOs were generated from sheep ICSI embryos for the first time and were shown to express trophoblastic markers at levels comparable to those in embryonic tissue. Detailed morphological characterization was conducted for both the TOs and the derived lacunoids/cystoids. Additionally, the TOs’ interactions with endometrial organoids (EOs), as well as those with preimplantation embryos, were investigated through co-culture experiments. The TOs expressed key trophoblastic markers, including CDX2, GATA3, syncytin-1, KRT18, KRT7, and Sox2, confirming their validity as a model for studying sheep trophoblast biology. The generation of lacunoids/cystoids from the TOs further revealed their structural and developmental characteristics, contributing valuable insights into early placental development and trophoblast-related pathologies. The TOs also supported extended embryonic development, and their co-culture with EOs induced dynamic changes in gene expression, particularly in angiogenesis-related genes, in both organoid types. This novel and reproducible in vitro model offers a reliable platform to study early placental development, effectively recapitulating the biological crosstalk between the trophectoderm and endometrium. The in-depth characterization of TOs and lacunoids/cystoids highlights their potential to advance our understanding of trophoblast differentiation and related developmental disorders. Full article
(This article belongs to the Special Issue Organoids and Models from Stem Cells)
Show Figures

Figure 1

Back to TopTop