Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = pit filling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8845 KiB  
Article
Occurrence State and Genesis of Large Particle Marcasite in a Thick Coal Seam of the Zhundong Coalfield in Xinjiang
by Xue Wu, Ning Lü, Shuo Feng, Wenfeng Wang, Jijun Tian, Xin Li and Hayerhan Xadethan
Minerals 2025, 15(8), 816; https://doi.org/10.3390/min15080816 (registering DOI) - 31 Jul 2025
Viewed by 165
Abstract
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with [...] Read more.
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with coal seams in some mining areas. A series of economic and environmental problems caused by the combustion of large-grained Fe-sulphide minerals in coal have seriously affected the economic, clean and efficient utilization of coal. In this paper, the ultra-thick coal seam of the Xishanyao formation in the Yihua open-pit mine of the Zhundong coalfield is taken as the research object. Through the analysis of coal quality, X-ray fluorescence spectrometer test of major elements in coal, inductively coupled plasma mass spectrometry test of trace elements, SEM-Raman identification of Fe-sulphide minerals in coal and LA-MC-ICP-MS test of sulfur isotope of marcasite, the coal quality characteristics, main and trace element characteristics, macro and micro occurrence characteristics of Fe-sulphide minerals and sulfur isotope characteristics of marcasite in the ultra-thick coal seam of the Xishanyao formation are tested. On this basis, the occurrence state and genesis of large particle Fe-sulphide minerals in the ultra-thick coal seam of the Xishanyao formation are clarified. The main results and understandings are as follows: (1) the occurrence state of Fe-sulphide minerals in extremely thick coal seams is clarified. The Fe-sulphide minerals in the extremely thick coal seam are mainly marcasite, and concentrated in the YH-2, YH-3, YH-8, YH-9, YH-14, YH-15 and YH-16 horizons. Macroscopically, Fe-sulphide minerals mainly occur in three forms: thin film Fe-sulphide minerals, nodular Fe-sulphide minerals, and disseminated Fe-sulphide minerals. Microscopically, they mainly occur in four forms: flake, block, spearhead, and crack filling. (2) The difference in sulfur isotope of marcasite was discussed, and the formation period of marcasite was preliminarily divided. The overall variation range of the δ34S value of marcasite is wide, and the extreme values are quite different. The polyflake marcasite was formed in the early stage of diagenesis and the δ34S value was negative, while the fissure filling marcasite was formed in the late stage of diagenesis and the δ34S value was positive. (3) The coal quality characteristics of the thick coal seam were analyzed. The organic components in the thick coal seam are mainly inertinite, and the inorganic components are mainly clay minerals and marcasite. (4) The difference between the element content in the thick coal seam of the Zhundong coalfield and the average element content of Chinese coal was compared. The major element oxides in the thick coal seam are mainly CaO and MgO, followed by SiO2, Al2O3, Fe2O3 and Na2O. Li, Ga, Ba, U and Th are enriched in trace elements. (5) The coal-accumulating environment characteristics of the extremely thick coal seam are revealed. The whole thick coal seam is formed in an acidic oxidation environment, and the horizon with Fe-sulphide minerals is in an acidic reduction environment. The acidic reduction environment is conducive to the formation of marcasite and is not conducive to the formation of pyrite. (6) There are many matrix vitrinite, inertinite content, clay content, and terrigenous debris in the extremely thick coal seam. The good supply of peat swamp, suitable reduction environment and pH value, as well as groundwater leaching and infiltration, together cause the occurrence of large-grained Fe-sulphide minerals in the extremely thick coal seam of the Xishanyao formation in the Zhundong coalfield. Full article
Show Figures

Figure 1

17 pages, 5178 KiB  
Article
Improvement of Unconfined Compressive Strength in Granite Residual Soil by Indigenous Microorganisms
by Ya Wang, Meiqi Li, Hao Peng, Jiaxin Kang, Hong Guo, Yasheng Luo and Mingjiang Tao
Sustainability 2025, 17(15), 6895; https://doi.org/10.3390/su17156895 - 29 Jul 2025
Viewed by 228
Abstract
In order to study how indigenous microorganisms can enhance the strength properties of granite residual soil in the Hanzhong area, two Bacillus species that produce urease were isolated from the local soil. The two Bacillus species are Bacillus subtilis and Bacillus tequilensis, [...] Read more.
In order to study how indigenous microorganisms can enhance the strength properties of granite residual soil in the Hanzhong area, two Bacillus species that produce urease were isolated from the local soil. The two Bacillus species are Bacillus subtilis and Bacillus tequilensis, and they were used for the solidification and improvement of the granite residual soil. Unconfined compressive strength tests, scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were systematically used to analyze the influence and mechanism of different cementation solution concentrations on the improvement effect. It has been found that with the growth of cementing fluid concentration, the unconfined compressive strength of improved soil specimens shows an increasing tendency, reaching its highest value when the cementing solution concentration is 2.0 mol/L. Among different bacterial species, curing results vary; Bacillus tequilensis demonstrates better performance across various cementing solution concentrations. The examination of failure strain in improved soil samples indicates that brittleness has been successfully alleviated, with optimal outcomes obtained at a cementing solution concentration of 1.0 mol/L. SEM and XRD analyses show that calcium carbonate precipitates (CaCO3) are formed in soil samples treated by both strains. These precipitates effectively bond soil particles, verifying improvement effects on a microscopic level. The present study proposes an environmentally friendly and economical method for enhancing engineering applications of granite residual soil in Hanzhong area, which holds significant importance for projects such as artificial slope filling, subgrade filling, and foundation pit backfilling. Full article
Show Figures

Figure 1

13 pages, 2599 KiB  
Article
Enhancement of Dimensional Stability, Hydrophobicity, and Mechanical Strength of North American Red Alder Wood Through Silane Impregnation Combined with DES Pretreatment
by Yang Zheng, Ting Zhou, Chenyang Cai and Honghai Liu
Forests 2025, 16(7), 1152; https://doi.org/10.3390/f16071152 - 12 Jul 2025
Viewed by 231
Abstract
Wood is a green and renewable bio-based building material, but its hygroscopicity affects its dimensional stability, limiting its use in construction. Chemical modification can improve its properties, yet its effectiveness depends on wood permeability and traditional modifiers. This study first used a deep [...] Read more.
Wood is a green and renewable bio-based building material, but its hygroscopicity affects its dimensional stability, limiting its use in construction. Chemical modification can improve its properties, yet its effectiveness depends on wood permeability and traditional modifiers. This study first used a deep eutectic solvent (DES) to boost the permeability of North American alder wood. Then, methyl trimethoxysilane was impregnated under supercritical carbon dioxide (SCI), pressure (PI), vacuum (VI), and atmospheric pressure (AI) conditions. DES treatment damaged the cell structure, increasing wood permeability. Silane was deposited and polymerized in the cell lumen, chemically bonding with cell-wall components, filling walls and pits, and thickening walls. The VI group had the highest absolute density (0.59 g/cm3, +36.6%) and the lowest moisture absorption (4.4%, −33.3%). The AI group had the highest ASE (25%). The PI group showed the highest surface hardness (RL, 2592 N) and a water contact angle of 131.9°, much higher than natural wood. Overall, the VI group had the best performance. Silane reacts with cellulose, hemicellulose, and lignin in wood via hydrolysis and hydroxyl bonding, forming stable bonds that enhance the treated wood’s hydrophobicity, dimensional stability, and surface hardness. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

22 pages, 9767 KiB  
Article
Freeze–Thaw-Induced Degradation Mechanisms and Slope Stability of Filled Fractured Rock Masses in Cold Region Open-Pit Mines
by Jun Hou, Penghai Zhang, Ning Gao, Wanni Yan and Qinglei Yu
Appl. Sci. 2025, 15(13), 7429; https://doi.org/10.3390/app15137429 - 2 Jul 2025
Viewed by 242
Abstract
In cold regions, the rock mass of open-pit mine slopes is continuously exposed to freeze–thaw (FT) environments, during which the fracture structures and their infilling materials undergo significant degradation, severely affecting slope stability and the assessment of service life. Conventional laboratory [...] Read more.
In cold regions, the rock mass of open-pit mine slopes is continuously exposed to freeze–thaw (FT) environments, during which the fracture structures and their infilling materials undergo significant degradation, severely affecting slope stability and the assessment of service life. Conventional laboratory FT tests are typically based on uniform temperature settings, which fail to reflect the actual thermal variations at different burial depths, thereby limiting the accuracy of mechanical parameter acquisition. Taking the Wushan open-pit mine as the engineering background, this study establishes a temperature–depth relationship, defines multiple thermal intervals, and conducts direct shear tests on structural plane filling materials under various FT conditions to characterize the evolution of cohesion and internal friction angle. Results from rock mass testing and numerical simulation demonstrate that shear strength parameters exhibit an exponential decline with increasing FT cycles and decreasing burial depth, with the filling material playing a dominant role in the initial stage of degradation. Furthermore, a two-dimensional fracture network model of the rock mass was constructed, and the representative elementary volume (REV) was determined through the evolution of equivalent plastic strain. Based on this, spatial assignment of slope strength was performed, followed by stability analysis. Based on regression fitting using 0–25 FT cycles, regression model predictions indicate that when the number of FT cycles exceeds 42, the slope safety factor drops below 1.0, entering a critical instability state. This research successfully establishes a spatial field of mechanical parameters and evaluates slope stability, providing a theoretical foundation and parameter support for the long-term service evaluation and stability assessment of cold-region open-pit mine slopes. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

18 pages, 4676 KiB  
Article
Integrated Leakage Control Technology for Underground Structures in Karst Terrains: Multi-Stage Grouting and Zoned Remediation at Guangzhou Baiyun Metro Station
by Yanhong Wang, Wentian Xu, Shi Zheng, Jinsong Liu, Muyu Li and Yili Yuan
Buildings 2025, 15(13), 2239; https://doi.org/10.3390/buildings15132239 - 26 Jun 2025
Viewed by 360
Abstract
This study presents a comprehensive treatment system for addressing leakage challenges in underground structure construction within complex karst terrains, demonstrated through the case of Baiyun Station in Guangzhou. Integrating advanced geological investigation, dynamic grouting techniques, and adaptive structural remediation strategies, this methodology effectively [...] Read more.
This study presents a comprehensive treatment system for addressing leakage challenges in underground structure construction within complex karst terrains, demonstrated through the case of Baiyun Station in Guangzhou. Integrating advanced geological investigation, dynamic grouting techniques, and adaptive structural remediation strategies, this methodology effectively mitigates water inflow risks in structurally heterogeneous karst environments. Key innovations include the “one-trench two-drilling” exploration-grouting system for karst cave detection and filling, a multi-stage emergency water-gushing control protocol combining cofferdam sealing and dual-fluid grouting, and a zoned epoxy resin injection scheme for structural fissure remediation. Implementation at Baiyun Station achieved quantifiable outcomes: karst cave filling rates increased from 35.98% to 82.6%, foundation pit horizontal displacements reduced by 67–68%, and structural seepage repair rates reached 96.4%. The treatment system reduced construction costs by CNY 12 million and shortened schedules by 45 days through optimized pile formation efficiency (98% qualification rate) and minimized rework. While demonstrating superior performance in sealing > 0.2 mm fissures, limitations persist in addressing sub-micron fractures and ensuring long-term epoxy resin durability. This research establishes a replicable framework for underground engineering in karst regions, emphasizing real-time monitoring, multi-technology synergy, and environmental sustainability. Full article
Show Figures

Figure 1

14 pages, 3218 KiB  
Article
Accelerated Aging Process of Carbon Black-Reinforced PVC (CB-PVC) Insulation by UVB-Induced Chemical Degradation
by Claudia-Olimpia Stasac, Andrei-Dan Tomșe, Traian Octavian Costea, Livia Bandici, Mircea-Nicolae Arion and Francisc-Ioan Hathazi
Processes 2025, 13(6), 1844; https://doi.org/10.3390/pr13061844 - 11 Jun 2025
Viewed by 505
Abstract
This study examines the UVB-induced (Ultraviolet B radiation) degradation of carbon black-filled polyvinyl chloride (CB-PVC) composites. After 500 h of exposure, the material exhibited a 30.13% drop in dielectric strength, a 27.6% increase in surface roughness, and significant pit formation, indicating substantial physicochemical [...] Read more.
This study examines the UVB-induced (Ultraviolet B radiation) degradation of carbon black-filled polyvinyl chloride (CB-PVC) composites. After 500 h of exposure, the material exhibited a 30.13% drop in dielectric strength, a 27.6% increase in surface roughness, and significant pit formation, indicating substantial physicochemical deterioration. Degradation followed a triphasic kinetic pattern: an initial induction phase, an autocatalytic acceleration, and a stabilization phase, driven by radical propagation and photo-oxidation. These findings highlight the complex role of UVB in the photodegradation of cable sheeting. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

24 pages, 6992 KiB  
Article
Soil Parameter Inversion in Dredger Fill Strata Using GWO-MLSSVR for Deep Foundation Pit Engineering
by Changrui Chen, Sifan Li, Jinbi Ye, Fangjian Chen, Yibin Wu, Jin Yu, Yanyan Cai, Jinna Lin and Xianqi Zhou
Buildings 2025, 15(11), 1864; https://doi.org/10.3390/buildings15111864 - 28 May 2025
Viewed by 272
Abstract
Accurate determination of constitutive model parameters is crucial for reliable numerical simulation in deep foundation pit engineering. This study presents an inverse analysis method using Multioutput Least-Squares Support Vector Regression (MLSSVR) optimized by the Gray Wolf Optimization (GWO) algorithm to invert key parameters [...] Read more.
Accurate determination of constitutive model parameters is crucial for reliable numerical simulation in deep foundation pit engineering. This study presents an inverse analysis method using Multioutput Least-Squares Support Vector Regression (MLSSVR) optimized by the Gray Wolf Optimization (GWO) algorithm to invert key parameters of the Hardening Soil (HS) model. A case study on a foundation pit in the dredger fill stratum of Xiamen Railway integrates finite element simulation with machine learning. The proposed GWO-MLSSVR model demonstrates high predictive accuracy, with lateral displacement predictions closely matching field monitoring data and relative errors within 5% at various depths of measurement point. Compared to traditional inversion methods and MLSSVR models optimized by other algorithms, this approach significantly reduces prediction errors. Additionally, the influence of construction stages, input layer nodes, and training sample size on inversion performance is investigated. This method provides a practical and efficient solution for accurately obtaining soil parameters under complex soil conditions, thereby enhancing the reliability of geotechnical numerical simulations and offering valuable guidance for foundation pit design and safety assessment. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 6853 KiB  
Article
Research on the Corrosion Resistance and Mechanical Properties of Graphene Oxide–Modified AT13 Coatings
by Yuchen Xu, Zhenhua Chu, Jingxiang Xu, Wan Tang and Li Gao
Materials 2025, 18(10), 2168; https://doi.org/10.3390/ma18102168 - 8 May 2025
Viewed by 539
Abstract
The ongoing development of maritime powers has driven markedly growing requirements for novel naval and civilian vessel categories in recent years. The import temperature of gas turbines is rising, and the issue of corrosion can no longer be ignored, creating an urgent need [...] Read more.
The ongoing development of maritime powers has driven markedly growing requirements for novel naval and civilian vessel categories in recent years. The import temperature of gas turbines is rising, and the issue of corrosion can no longer be ignored, creating an urgent need to develop coatings with high-temperature resistance, corrosion resistance, and good toughness. This study utilized plasma spraying technology to prepare composite AT13 ceramic coatings with 0 wt.%, 5 wt.%, 10 wt.%, and 15 wt.% GO/Cu (GO:Cu = 1:10) content. It systematically investigated the effects of GO/Cu doping on the porosity, Vickers hardness, fracture toughness, thermal shock resistance, and corrosion resistance of the AT13 coatings while exploring the corrosion behavior of the composite coatings. The experimental results indicate that doping with GO/Cu can effectively fill the pores of the coatings, leading to an overall improvement in coating performance. The coating with 10 wt.% doping (G2) exhibited the best comprehensive performance, with a 72% reduction in porosity compared to the original coating, a 23.2% increase in Vickers hardness, a 31.4% enhancement in fracture toughness, and an 83% decrease in corrosion rate. It also demonstrated the best thermal shock resistance, maintaining a relatively intact surface after 31 days of immersion in artificial seawater, with only a few pitting and cracking defects observed in the areas of corrosion. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

21 pages, 20622 KiB  
Article
Diffusion and Consolidation of Slag-Based Geopolymer for Concrete Pavement Rehabilitation
by Wenjie Li, Jinchao Yue and Bin Liang
Appl. Sci. 2025, 15(8), 4373; https://doi.org/10.3390/app15084373 - 15 Apr 2025
Viewed by 441
Abstract
Homogenized micro-crack crushing is an optimal rehabilitation technology for concrete pavement; however, when there are weak road base issues, some measures need to be taken to treat the diseases. Grouting is a common technique for addressing weak road base issues. This study developed [...] Read more.
Homogenized micro-crack crushing is an optimal rehabilitation technology for concrete pavement; however, when there are weak road base issues, some measures need to be taken to treat the diseases. Grouting is a common technique for addressing weak road base issues. This study developed a new visual indoor grouting test system to analyze the diffusion and consolidation of slag-based geopolymer slurry. The reactants of the geopolymer and the consolidation state of the slurry and aggregate were observed. Moreover, the reinforcement effect of the slurry on a weak road base was studied through the on-site grouting and excavation of the test pit. The results show that, during indoor grouting tests, as the size of the aggregate decreases, the slurry diffusion depth gradually decreases: only 9.5–4.75 mm aggregate formed a complete cylindrical specimen. In the tests of unformed cylindrical specimens, the 9.5–4.75 mm aggregate will develop 20–50 mm splitting surfaces, while the 4.75–2.36 mm aggregate will develop slurry bulbs and veins of different sizes, but the development is not obvious in the 2.36–1.18 mm aggregate. Fine aggregate grouting will exhibit the pressure filtration effect—especially for the 2.36–1.18 mm aggregate, the pressure filtration effect is the most obvious. An SEM microstructural analysis demonstrated that the geopolymer with a water–slag ratio of 0.4 has a faster hydration and dissolution, which results in a decrease in the density of local reactants. However, the polymerization of geopolymers is more complete. The pores of the coarse aggregate are larger and the slurry filling is denser, while the pores of the fine aggregate are smaller and the consolidation is loose locally. The consolidation of aggregates has cracks at local locations, but the width of the cracks is relatively small. On-site grouting applications revealed that the geopolymer slurry filled the bottom voids of pavement slabs and deep gaps in the road base layers, and the average deflection of the driveway decreased from 104.8 (0.001 mm) to 48 (0.001 mm) after grouting. Weak road base conditions were successfully treated, leading to a significant improvement in bearing capacity. Full article
Show Figures

Figure 1

21 pages, 20519 KiB  
Article
Volume Estimation of Land Surface Change Based on GaoFen-7
by Chen Yin, Qingke Wen, Shuo Liu, Yixin Yuan, Dong Yang and Xiankun Shi
Remote Sens. 2025, 17(7), 1310; https://doi.org/10.3390/rs17071310 - 6 Apr 2025
Viewed by 546
Abstract
Volume of change provides a comprehensive and objective reflection of land surface transformation, meeting the emerging demand for feature change monitoring in the era of big data. However, existing land surface monitoring methods often focus on a single dimension, either horizontal or vertical, [...] Read more.
Volume of change provides a comprehensive and objective reflection of land surface transformation, meeting the emerging demand for feature change monitoring in the era of big data. However, existing land surface monitoring methods often focus on a single dimension, either horizontal or vertical, making it challenging to achieve quantitative volumetric change monitoring. Accurate volumetric change measurements are indispensable in many fields, such as monitoring open-pit coal mines. Therefore, the main content and conclusions of this paper are as follows: (1) A method for Automatic Control Points Extraction from ICESat-2/ATL08 products was developed, integrating Land cover types and Phenological information (ACPELP), achieving a mean absolute error (MAE) of 1.05 m in the horizontal direction and 1.99 m in the vertical direction for stereo change measurements. This method helps correct image positioning errors, enabling the acquisition of geospatially aligned GaoFen-7 (GF-7) imagery. (2) A function-based classification system for open-pit coal mines was established, enabling precise extraction of stereoscopic change region to support accurate volumetric calculations. (3) A method for calculating the mining and stripping volume of open-pit coal mines based on GF-7 imagery is proposed. The method utilizes photogrammetry to extract elevation features and combines spectral features with elevation data to estimate stripping volumes, achieving an excellent error rate (ER) of 0.26%. The results indicate that our method is cost-effective and highly practical, filling the gap in accurate and comprehensive monitoring of land surface changes. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Land Subsidence Monitoring)
Show Figures

Figure 1

16 pages, 2436 KiB  
Article
Assessment of the Status of Water, Sanitation and Hygiene (WASH) Services at Primary Schools in uMfolozi Local Municipality, Kwa-Zulu Natal, South Africa
by Lindokuhle C. Radebe, Matlou I. Mokgobu, Gomotsegang F. Molelekwa and Matodzi M. Mokoena
Int. J. Environ. Res. Public Health 2025, 22(3), 360; https://doi.org/10.3390/ijerph22030360 - 28 Feb 2025
Viewed by 1160
Abstract
This study assessed the status of water, sanitation, and hygiene (WASH) services at (49) selected primary schools in uMfolozi Local Municipality, which is situated in the province of Kwa-Zulu Natal in South Africa. Data were collected using an observational checklist tool and by [...] Read more.
This study assessed the status of water, sanitation, and hygiene (WASH) services at (49) selected primary schools in uMfolozi Local Municipality, which is situated in the province of Kwa-Zulu Natal in South Africa. Data were collected using an observational checklist tool and by conducting a walk-through survey to inspect the conditions of sanitary facilities, observe the hand-washing practices of the school learners, and analyse the accessibility to safe drinking water in school premises. The data were analysed with the Statistical Package for Social Science Version 29. This study revealed that there is easy access to safe drinking water in all but one school. The dependability of the water supply seemed to be one of the most urgent problems in every school, even though all of them have some kind of drinking water infrastructure on their grounds. Municipal water (n = 25, 36%) and rainwater (n = 25, 36%) were the most common type of water used in schools compared to borehole (n = 15, 22%) and tanker truck water (n = 4, 6%). Schools must have a reserved water supply because of the inconsistent supply of municipal water, and because rainwater is a seasonal harvest while borehole water may be affected by factors like load-shedding. The UNICEF-described ratio of one tap or disperser per fifty learners suggests that the water taps in the schoolyard were insufficient in some schools (n = 25, 36%). Rainwater is collected through a gutter system in the school building roofs and stored in 5000–10,000 Jojo tanks. Borehole water is pumped into Jojo tanks at an elevated position where it is stored, and learners receive the water through taps connected to the borehole tanks. During an emergency when there is no water supply from other sources, tanker trucks are hired to fill tanks that are also used to store rainwater. The borehole and rainwater quality appeared to be clear, but water treatment had not been performed, and the microbial quality was unknown. This shows that the Sustainable Development Goal (SGD) 6, clean water and sanitation, is still far from being met. According to national norms and standards for domestic water and sanitation services, people who do not use water treatment or purification techniques fall in the ‘no service’ category and contribute to the water backlog. Pit latrines (n = 46, 94%) and flush toilet (n = 3, 6%) were found to be the only convenient toilet systems used. The number of toilets is not sufficient according to the guidelines. There are (n = 46, 94%) of the schools in the study area using pit latrine due to insufficient or no water supply. In 89.8% of primary schools, sanitation facilities are in working condition in terms of repair and hygiene, while 10.2% are not usable in terms of hygiene, and these are mostly boy’s toilets. All schools (n = 46, 94%) that have flush toilets is because they received sponsorship from non-government stakeholders that funded them in achieving piped water systems that permit the functionality of flush toilets. For the purposes of this study, hygiene was evaluate based on the items found in toilets and handwashing practices. The hygiene aspects of toilets included tissues, cleanness, and toilet seat. For handwashing practices we looked the number of washing basins, the colour of water, and having soaps to use. In the schools that did provide handwashing facilities, some of the toilets were broken, there was no water, or there was no drainage system in place to allow them to function. However, according to the school act, the handwash basins should be inside the facilities. A total of (n = 7, 14%) of handwash basins were inside the toilets. Only (n = 2, 4%) of schools had handwashing facilities which were Jojo tanks with taps near toilets, which were outside of the toilet, with no soap provided. Additionally, (n = 40, 82%) of learners used drinking points for handwashing, which can possibly transmit microbes among them. The findings revealed that, in general, (n = 32, 64%) of school toilets were clean, while, in general, the girls’ toilets were cleaner than the boys’ toilets. In all the schools, the cleaning services were from the people who were involved in school nutrition. In conclusion, there were water sources available for access to water inside schools; however, the situation can be improved by increasing the number of water source points. Pit latrines were the main used toilets, which were in a majority of the schools, and did not have the necessary terms for hygiene such as handwashing basin, tissues, and others. The lack of the main aspect, i.e., access to water and sanitation items, results in an impact on hygiene to learners as they will fail to practice proper hygiene. However, improvement can still be made by keeping the boys’ toilets clean while increasing the number of handwashing basins inside the toilets, so that they do not use taps outside the toilets. Schools should work towards meeting the required number of handwashing basins to increase access to handwashing facilities. Full article
Show Figures

Figure 1

15 pages, 258 KiB  
Article
Towards Sustainable Solutions: Assessing Rural Access to Safe Drinking Water and Sanitation in Atyrau, Kazakhstan
by Zhanerke Bolatova, Riza Sharapatova, Yerlan Kabiyev, Ronny Berndtsson and Kamshat Tussupova
Water 2025, 17(5), 664; https://doi.org/10.3390/w17050664 - 25 Feb 2025
Viewed by 1459
Abstract
The Sustainable Development Goals (SDGs) build on the Millennium Development Goals (MDGs) and aim to promote sustainable global development by addressing poverty, inequality, and environmental sustainability. Among the key objectives of the SDGs, Goal 6 targets universal access to safely managed drinking water [...] Read more.
The Sustainable Development Goals (SDGs) build on the Millennium Development Goals (MDGs) and aim to promote sustainable global development by addressing poverty, inequality, and environmental sustainability. Among the key objectives of the SDGs, Goal 6 targets universal access to safely managed drinking water and sanitation by 2030, recognizing the critical link between water, sanitation, hygiene (WASH), and public health. However, global challenges persist, particularly in rural areas, where infrastructure deficits and socio-economic barriers hinder progress. In regions like rural Kazakhstan, where sanitation monitoring is limited and much of the water grid is substandard, addressing these gaps is essential to meet SDG 6 targets. For this purpose, we used structured questionnaires to assess water access, sanitation services, and a multinomial logistic regression analysis to examine the factors influencing households’ willingness to pay (WTP) for individual water supply systems in Atyrau households. Water sources, sanitation availability, and household practices were investigated offering insights into sustainable water and sanitation management. Indoor taps served 44.2% of households, while 60.5% used centralized systems for drinking water. Daily interruptions affected 19.9%, with 23.0% dissatisfied with quality. Outdoor toilets were used by 79.6%, and 43.7% relied on pit-filling. While 82.5% of respondents favored free individual water supply installations, only 11.6% were willing to pay the $426 installation cost, highlighting financial constraints. Consequently, there are persistent challenges in ensuring safe drinking water and sanitation in rural areas of Kazakhstan. Infrastructure gaps, poor water quality, and reliance on outdoor toilets pose health risks. Financial constraints further limit access. Targeted investments, improved oversight, and community engagement are critical for sustainable solutions aligned with the SDGs. Full article
(This article belongs to the Section Urban Water Management)
14 pages, 4752 KiB  
Article
Mechanical Strength and Mechanism Analysis of Silt Soil Cured by Straw Ash–Calcium Carbide Slag
by Yue Huang, Wenyuan Xu, Yongcheng Ji and Liang Yang
Materials 2025, 18(2), 455; https://doi.org/10.3390/ma18020455 - 20 Jan 2025
Cited by 1 | Viewed by 1128
Abstract
Large-scale engineering projects frequently involve pit excavation and wetland landfill operations, resulting in significant silt accumulation that occupies land and adversely affects the environment. Curing technology offers a solution for reusing this waste silt. In this study, straw ash and calcium carbide slag [...] Read more.
Large-scale engineering projects frequently involve pit excavation and wetland landfill operations, resulting in significant silt accumulation that occupies land and adversely affects the environment. Curing technology offers a solution for reusing this waste silt. In this study, straw ash and calcium carbide slag are proposed as effective curing agents for silt soil. Various indoor tests were conducted to evaluate the mechanical properties of the cured silt soil, while X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to analyze its mineral composition and micro-morphology. The results showed that increasing the curing agent dosage significantly improved soil strength. Specifically, at a 10% dosage, the California bearing ratio (CBR) value increased to 18.7%, which is 13.4 times higher than untreated silt soil and exceeds road specifications by 8%. At a 20% dosage, the unconfined compressive strength (UCS) value reached 1.38 MPa, meeting the ≥0.8 MPa requirement for roadbeds. Based on economic considerations, a 20% dosage of straw ash–calcium carbide slag was selected as optimal. Microscopic analysis revealed that the addition of these agents promoted the formation of hydrated calcium silicate, filling pores and enhancing the mechanical properties of the cured soil, resulting in a more dense and stable structure. Full article
Show Figures

Figure 1

11 pages, 254 KiB  
Article
Regional Epidemiological Study on the Dental Status of the First Permanent Molar in Romanian Schoolchildren
by Liana Beresescu, Gabriela Felicia Beresescu, Daniela Esian, Alexandru Vlasa, Csilla Benedek, Raluca Sabau and Alexandra Mihaela Stoica
Dent. J. 2025, 13(1), 26; https://doi.org/10.3390/dj13010026 - 10 Jan 2025
Cited by 1 | Viewed by 1028
Abstract
Background/Objectives: Dental caries remains a significant public health challenge in Romania, with recent studies reporting a prevalence of 40% in children’s permanent teeth, with 90% of cases untreated. This study aimed to evaluate the dental status of the first permanent molars in children [...] Read more.
Background/Objectives: Dental caries remains a significant public health challenge in Romania, with recent studies reporting a prevalence of 40% in children’s permanent teeth, with 90% of cases untreated. This study aimed to evaluate the dental status of the first permanent molars in children aged 11–12 years. Methods: This cross-sectional study was conducted over 12 months at the Integrated Center for Dental Medicine in Târgu Mureș and two private clinics in Transylvania. A total of 516 children, aged 11–12 years, were examined using the ICDAS II classification. Data on carious lesions and dental treatments performed were collected. Results: Of the 2064 first permanent molars examined, 57.99% had carious lesions, fillings, or extractions, while 41.28% were free from caries. Among the affected molars, 41.71% had untreated caries, 9.30% were filled, and 6.25% were sealed. Boys showed a significantly higher prevalence of advanced lesions (ICDAS 4–6) compared to girls. Caries predominantly affected the pits and fissures (87.46%). Conclusions: This study reveals a high prevalence of carious lesions in first permanent molars and a low rate of treatment. The findings emphasize the need for improved oral health education, increased access to dental care, and the development of national strategies to prevent and treat dental caries in children. Full article
(This article belongs to the Special Issue Oral Health Care in Paediatric Dentistry Volume 2)
21 pages, 11485 KiB  
Article
Numerical Investigation on Deep-Foundation Pit Excavation Supported by Box-Type Retaining Walls
by Peng Peng, Weiyao Kong, Saishuai Huang, Yi Long and Yang Lu
Buildings 2025, 15(1), 109; https://doi.org/10.3390/buildings15010109 - 31 Dec 2024
Cited by 1 | Viewed by 821
Abstract
In soft soil foundations, the utilization of box-type retaining walls as a support method represents a novel approach. This study focuses on investigating the key factors influencing lateral wall deflection and ground settlement behind the wall in deep excavation projects supported by box-type [...] Read more.
In soft soil foundations, the utilization of box-type retaining walls as a support method represents a novel approach. This study focuses on investigating the key factors influencing lateral wall deflection and ground settlement behind the wall in deep excavation projects supported by box-type retaining walls. Based on a practical engineering case in Shanghai, the large deformation Lagrangian numerical simulation software FLAC-3D is employed to simulate the displacement of box-type retaining walls as well as the surface settlement surrounding the excavation pit during the excavation process of deep-foundation pits. This research encompasses aspects such as the box size, the filling material within the box, and the constituent materials of the retaining wall. Ultimately, it is concluded that variations in the size of the box-retaining wall have a significant impact on wall deflection and surrounding ground settlement, while the filling material and constituent materials have relatively minor effects. This study provides a theoretical basis and scientific reference for the design and construction of box-type retaining walls in deep-foundation pit engineering. Full article
Show Figures

Figure 1

Back to TopTop