Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (129)

Search Parameters:
Keywords = pit filling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10699 KB  
Article
Apatite Geochemical Signatures of REE Ore-Forming Processes in Carbonatite System: A Case Study of the Weishan REE Deposit, Luxi Terrane
by Yi-Xue Gao, Shan-Shan Li, Chuan-Peng Liu, Ming-Qian Wu, Zhen Shang, Yi-Zhan Sun, Ze-Yu Yang and Kun-Feng Qiu
Minerals 2026, 16(1), 112; https://doi.org/10.3390/min16010112 - 21 Jan 2026
Viewed by 175
Abstract
The Weishan rare earth element (REE) deposit, located in western Shandong, North China Block, is a typical carbonatite REE deposit and constitutes the third largest light REE resource in China. Its mineralization is closely related to the multi-stage evolution of a carbonatite magma–hydrothermal [...] Read more.
The Weishan rare earth element (REE) deposit, located in western Shandong, North China Block, is a typical carbonatite REE deposit and constitutes the third largest light REE resource in China. Its mineralization is closely related to the multi-stage evolution of a carbonatite magma–hydrothermal system. However, the mechanisms governing REE enrichment, migration, and precipitation remain insufficiently constrained from a mineralogical perspective, which hampers the understanding of the ore-forming processes and the establishment of predictive exploration models. Apatite is a pervasively developed REE phase in the Weishan deposit which occurs in multiple generations, and thus represents an ideal recorder of the magmatic–hydrothermal evolution. In this study, different generations of apatite hosted in carbonatite orebodies from the Weishan deposit were investigated using cathodoluminescence (CL), electron probe microanalysis (EPMA), and in situ LA-ICP-MS trace element analysis. Three types of apatite were identified. In paragenetic sequence, Ap-1 occurs as polycrystalline aggregates coexisting with calcite, is enriched in Na, Sr, and LREEs, and shows high (La/Yb)N ratios, suggesting crystallization from an evolved carbonatite magma. Ap-2 and Ap-3 display typical replacement textures: both contain abundant dissolution pits and dissolution channels within the grains, which are filled by secondary minerals such as monazite and ancylite, and thus exhibit characteristic features of fluid-mediated dissolution–reprecipitation during the hydrothermal stage. Ap-2 is commonly associated with barite and strontianite, whereas Ap-3 is associated with pyrite and monazite and is characterized by relatively sharp grain boundaries with adjacent minerals. From Ap-1 to Ap-3, total REE contents decrease systematically, whereas Na, Sr, and P contents increase. All three apatite types lack Eu anomalies but display positive Ce anomalies. Discrimination diagrams involving LREE-Sr/Y and log(Ce)-log(Eu/Y) indicate that apatite in the Weishan REE deposit formed during the magmatic to hydrothermal evolution of a carbonatite, and that the dissolution of early magmatic apatite, followed by element remobilization and mineral reprecipitation, effectively records the progressive evolution of the ore-forming fluid. Full article
(This article belongs to the Special Issue Gold–Polymetallic Deposits in Convergent Margins)
Show Figures

Figure 1

15 pages, 6527 KB  
Article
Tribological Performance of Grease-Coated Rubber in High-Pressure Hydrogen Storage Applications
by Sheng Ye, Haijie Zhi, Wenqiang Wu, Sohail Yasin, Chaohua Gu, Jianfeng Shi and Sheng Zeng
Polymers 2026, 18(2), 284; https://doi.org/10.3390/polym18020284 - 21 Jan 2026
Viewed by 180
Abstract
Rubber materials undergo continuous wear in high-pressure seal applications. To address the risk of adhesive wear and consequent leakage of rubber seals operating under reciprocating sliding in high-pressure hydrogen storage and refueling systems, this study employed high-pressure hydrogen tribology testing. Ball-on-disk reciprocating tests [...] Read more.
Rubber materials undergo continuous wear in high-pressure seal applications. To address the risk of adhesive wear and consequent leakage of rubber seals operating under reciprocating sliding in high-pressure hydrogen storage and refueling systems, this study employed high-pressure hydrogen tribology testing. Ball-on-disk reciprocating tests were conducted using a 316L stainless-steel ball against silica-filled nitrile butadiene rubber (NBR), and the friction response and wear-morphology evolution were compared under ambient air, 1 MPa hydrogen (H2), 50 MPa H2, 50 MPa nitrogen (N2), and grease-coated conditions. Under dry sliding, the coefficient of friction (COF) of NBR in air and hydrogen ranged from 1.34 to 1.44, whereas it decreased markedly to 0.942 in 50 MPa N2. The wear volume under the four dry conditions was concentrated in the range of ~0.292–0.320 mm3. After grease coating, the steady-state COF in air and at 50 MPa H2 dropped to 0.099 and 0.105, respectively, and the wear features changed from ridge-like wear patterns/tear pits to regular, smooth indentations with slight running marks. The results demonstrate that a lubricating film can effectively separate direct metal–rubber contact and suppress stick–slip, enabling a low-friction, low-wear, and highly stable interface in high-pressure hydrogen, and providing a practical engineering route for reliable operation of rubber seals in hydrogen service. Full article
Show Figures

Figure 1

20 pages, 3989 KB  
Article
Quantifying Rainfall-Induced Instability Thresholds in Arid Open-Pit Mine Slopes: GeoStudio Insights from a 12-Hour Saturation Window
by Jia Zhang, Haoyue Zhao, Wei Huang, Xinyue Li, Guorui Wang, Adnan Ahmed, Feng Liu, Yu Gao, Yongfeng Gong, Jie Hu, Yabo Zhu and Saima Q. Memon
Water 2026, 18(1), 10; https://doi.org/10.3390/w18010010 - 20 Dec 2025
Viewed by 487
Abstract
In arid open-pit mines, rainfall-triggered slope instability presents significant risks, but quantitative thresholds are poorly defined due to limited integration of transient seepage and stability in low-permeability soils. This study fills this gap by using GeoStudio’s SEEP/W and SLOPE/W modules to simulate rainfall [...] Read more.
In arid open-pit mines, rainfall-triggered slope instability presents significant risks, but quantitative thresholds are poorly defined due to limited integration of transient seepage and stability in low-permeability soils. This study fills this gap by using GeoStudio’s SEEP/W and SLOPE/W modules to simulate rainfall effects on a moderately steep-slope (51° average) limestone mine slope in Ningxia’s Kazimiao Mining Area (annual precipitation: 181.1 mm). The novelty lies in identifying a 12 h saturation window under intense rainfall (≥100 mm h−1), during which pore water pressure stabilizes as soil reaches saturation, creating an “infiltration buffering effect” driven by arid soil properties (hydraulic conductivity: 2.12 × 10−4 cm s−1). Results show that the factor of safety (FOS) drops sharply within 12 h (e.g., from 1.614 naturally to 1.010 at 200 mm h−1) and then stabilizes, with FOS remaining >1.05 (basically stable) under rainfall intensities ≤ 50 mm h−1, but drops into the less-stable range (1.00–1.05) at 100–200 mm h−1, reaching marginal stability (FOS ≈ 0.98–1.02) after 24 h of extreme events, according to GB/T 32864-2016. Slope protection measures increase FOS (e.g., 2.518 naturally). These findings quantify higher instability thresholds in arid compared to humid regions, supporting regional guidelines and informing early-warning systems amid climate-related extremes. This framework enhances sustainable slope management for mines worldwide in arid–semi-arid zones. Full article
(This article belongs to the Special Issue Assessment of Ecological, Hydrological and Geological Environments)
Show Figures

Figure 1

16 pages, 2265 KB  
Article
Research on the Flexural Capacity of Pre-Tensioned Prestressed Hollow Concrete-Filled Steel Tubular Piles with Consideration of Pile–Soil Interaction
by Lin Huang, Jun Gao and Haodong Li
Infrastructures 2025, 10(12), 332; https://doi.org/10.3390/infrastructures10120332 - 3 Dec 2025
Viewed by 286
Abstract
Compared to traditional single/double-row concrete cast-in-place piles or concrete walls commonly used in foundation pit engineering, pre-tensioned prestressed hollow concrete-filled steel tube piles (referred to as prestressed Steel Cylinder Piles, or prestressed SC piles) demonstrate superior advantages including high bearing capacity, light weight, [...] Read more.
Compared to traditional single/double-row concrete cast-in-place piles or concrete walls commonly used in foundation pit engineering, pre-tensioned prestressed hollow concrete-filled steel tube piles (referred to as prestressed Steel Cylinder Piles, or prestressed SC piles) demonstrate superior advantages including high bearing capacity, light weight, enhanced stiffness, excellent crack resistance, and cost-effectiveness, indicating a promising future in foundation pit engineering. However, current research has paid limited attention to such piles. Only a few experimental studies have focused on their flexural performance. No studies have presented bearing behavior investigations considering soil–pile interactions and the differences between these kinds of piles and traditional piles. To address this gap, this paper conducts a systematic investigation into the bearing performance of prestressed SC piles. A refined finite element analysis model capable of accurately characterizing pile–soil interactions is developed to analyze the mechanical behavior. Subsequently, the elastic foundation beam method recommended by design codes is employed to analyze the internal forces and displacement variations of these piles during excavation. Finally, the predictions by the design code are compared against those from the refined model. Results shows that the established finite element model presents reasonable predictions on monitoring data and experimental results, with deviations in bending moments and deformations within the range of 10–15%; a comparative analysis of different pile types reveals that prestressed SC piles exhibit smaller horizontal displacements and higher bearing capacities; the bending moments and deformations predicted by design methods (elastic foundation beam method) are conservative, with the predicted values significantly higher than those predicted by the refined model. Full article
Show Figures

Figure 1

23 pages, 23534 KB  
Article
Unraveling the Patterns and Drivers of Multi-Geohazards in Tangshan, China, by Integrating InSAR and ICA
by Bingtai Ma, Yang Wang, Jianqing Zhao, Qiang Shan, Degang Zhao, Yiwen Zhou and Fuwei Jiang
Appl. Sci. 2025, 15(23), 12584; https://doi.org/10.3390/app152312584 - 27 Nov 2025
Viewed by 501
Abstract
This study establishes an integrated “Detection–Decomposition–Interpretation” framework for geohazard assessment, with Tangshan City serving as a representative case. Using Sentinel-1 SAR images from 2020 to 2024, regional surface deformation was derived via the Small Baseline Subset InSAR (SBAS-InSAR) technique. Six categories of geohazards [...] Read more.
This study establishes an integrated “Detection–Decomposition–Interpretation” framework for geohazard assessment, with Tangshan City serving as a representative case. Using Sentinel-1 SAR images from 2020 to 2024, regional surface deformation was derived via the Small Baseline Subset InSAR (SBAS-InSAR) technique. Six categories of geohazards were systematically identified and classified: landslides, open-pit slope deformation, mining-induced subsidence, spoil heap deformation, tailings pond deformation, and reclamation settlement. A total of 115 potential hazards were spatially cataloged, revealing distinct zonation characteristics: the northern mountainous area is predominantly affected by landslides and open-pit mining hazards; the central plain exhibits concentrated mining subsidence; and the southern coastal zone is marked by large-scale reclamation settlement. For the southern reclamation area, where settlement mechanisms are complex, the Independent Component Analysis (ICA) method was applied to successfully decompose the deformation signals into three independent components: IC1, representing the dominant long-term irreversible settlement driven by fill consolidation, building loads, and groundwater extraction; IC2, reflecting seasonal deformation coupled with groundwater level fluctuations; and IC3, comprising residual noise. Time series analysis further reveals the coexistence of “decelerating” and “accelerating” settlement trends across different zones, indicative of their respective evolutionary stages—from decaying to actively progressing settlement. This study not only offers a scientific basis for geohazard prevention and control in Tangshan, but also provides a transferable framework for analyzing hazard mechanisms in other complex geographic settings. Full article
Show Figures

Figure 1

22 pages, 11489 KB  
Article
Comprehensive Detection of Groundwater-Affected Ancient Underground Voids During Old Town Renewal: A Case Study from Wuhan, China
by Jie Zhou, Wei Feng, Peng Guan, Junsheng Liu, Huilan Zhang and Zixiong Wang
Water 2025, 17(23), 3356; https://doi.org/10.3390/w17233356 - 24 Nov 2025
Viewed by 893
Abstract
Ancient underground voids present non-trivial hazards to urban redevelopment, particularly where groundwater conditions change during construction. We propose a staged, groundwater-aware workflow that integrates in-void mapping with area-scale geophysics and explicitly links water state to imaging performance. Following exposure of an undocumented masonry [...] Read more.
Ancient underground voids present non-trivial hazards to urban redevelopment, particularly where groundwater conditions change during construction. We propose a staged, groundwater-aware workflow that integrates in-void mapping with area-scale geophysics and explicitly links water state to imaging performance. Following exposure of an undocumented masonry tunnel in a foundation pit in Wuhan (China), we acquired underwater CCTV and sonar during water-filled conditions, and, after drainage, collected ground-penetrating radar (GPR, 75–150 MHz) and ultra-high-density electrical resistivity tomography (UHD-ERT, 1 m electrode spacing) data. Calibration lines over the breach anchored the depth/geometry and reduced interpretational non-uniqueness. Analytical estimates using Archie-type and CRIM relations, together with observed signatures, indicate that drainage increased resistivity and reduced electromagnetic attenuation, improving UHD-ERT contrast and GPR penetration. The merged evidence resolves a straight-walled arch (~1.8 m wide × ~1.9 m high) at ~4–5 m depth with a sealed end 4 m south of the breach. Sonar confirms a northward segment measuring 45 ± 2 m to a sealed wall; a GPR void-type anomaly at ~57 m along trend represents a candidate continuation that remains unverified with current access. Within the resolution and sensitivity of the 2D survey, no additional voids were detected elsewhere on site. This case demonstrates that coupling in-void CCTV/sonar with post-drainage GPR and UHD-ERT, organized by hydrologic stage, yields engineering-grade constraints for risk control. The workflow and boundary conditions provide a transferable template for water-influenced, urban environments. Full article
Show Figures

Figure 1

19 pages, 4909 KB  
Article
Monitoring Landform Changes in a Mining Area in Mexico Using Geomatic Techniques
by Saúl Dávila-Cisneros, Ana G. Castañeda-Miranda, Carlos Francisco Bautista-Capetillo, Erick Dante Mattos-Villarroel, Víktor Iván Rodríguez-Abdalá, Cruz Octavio Robles Rovelo, Laura Alejandra Pinedo-Torres, Alejandro Rodríguez-Trejo and Salvador Ibarra-Delgado
Geomatics 2025, 5(4), 63; https://doi.org/10.3390/geomatics5040063 - 13 Nov 2025
Viewed by 790
Abstract
Mining activities are conducted to extract valuable minerals from the Earth, which are used to manufacture many objects. However, these operations generate landform alterations, such as deep excavations, artificial embankments, and landscape reshaping. In this study, landform changes were monitored in a mining [...] Read more.
Mining activities are conducted to extract valuable minerals from the Earth, which are used to manufacture many objects. However, these operations generate landform alterations, such as deep excavations, artificial embankments, and landscape reshaping. In this study, landform changes were monitored in a mining area in Mazapil, Zacatecas, Mexico, using geomatic techniques. Multitemporal Landsat satellite images and digital elevation models (DEMs) from different years were used to detect and quantify landform alterations and estimate the volumes of removed material. The results show ground depressions greater than −333 m and waste material accumulations greater than +152 m, with an average standard deviation of ±3.6 m. A total excavation volume of 413.524 million m3 and a total fill volume of 431.194 million m3 were quantified, with an estimated standard deviation of ±810 m3. The proposed methodology proved effective for the remote quantification of large-scale relief disturbances in open-pit mining areas. It can also be used for environmental monitoring and hydrological risk assessment in active and inactive mining areas. Full article
Show Figures

Graphical abstract

27 pages, 3445 KB  
Article
Deformation Characteristics of an Ultra-Deep Foundation Pit Supported by Servo Steel Struts in Reclaimed Areas
by Junming Cai, Yunan Li, Ze Wu, Bin Peng and Yong Hu
Buildings 2025, 15(22), 4044; https://doi.org/10.3390/buildings15224044 - 10 Nov 2025
Viewed by 629
Abstract
This paper presents a case study on an ultra-deep excavation in a reclaimed area supported by servo steel struts, addressing the limited case-specific data on deformation behavior under such complex geological conditions. Comprehensive monitoring of the pit structure and surrounding environment was performed [...] Read more.
This paper presents a case study on an ultra-deep excavation in a reclaimed area supported by servo steel struts, addressing the limited case-specific data on deformation behavior under such complex geological conditions. Comprehensive monitoring of the pit structure and surrounding environment was performed throughout construction. Results highlight significant time-dependent deformation due to the rheological behavior of artificial fill and soft soil, with metro tunnel displacement during suspension phases contributing up to 29% of the total. Servo steel struts, via active axial force compensation, reduced maximum diaphragm wall displacement by 24%, ground settlement by 29%, and pipeline settlement by 46% compared to conventional supports. Integrated measures, including bottom-sealed diaphragm walls, isolation piles, and grouting curtains, successfully confined tunnel deformation within 5.4 mm, complying with strict safety criteria. A strong linear correlation between tunnel and wall displacements was observed, enabling a predictive envelope model for deformation. This study underscores the efficacy of servo steel struts in controlling excavation-induced deformation in reclaimed areas and offers practical insights for designing and managing ultra-deep excavations in similar challenging settings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

37 pages, 2718 KB  
Article
Optimization of Energy Balance and Powertrain for Electric Mining Dump Trucks in Coal Mine Reclamation Operations
by Pavel V. Shishkin, Boris V. Malozyomov, Nikita V. Martyushev, Viktor V. Kondratiev, Evgeniy M. Dorofeev, Roman V. Kononenko and Galina Yu. Vit’kina
World Electr. Veh. J. 2025, 16(11), 601; https://doi.org/10.3390/wevj16110601 - 30 Oct 2025
Cited by 1 | Viewed by 1134
Abstract
The reclamation of exhausted open-pit coal mines is an energy-intensive and costly process. Traditional methods offer no economic return. This study explores the feasibility of using autonomous electric dump trucks (EDTs) to fill the pit, leveraging regenerative braking during descent to generate energy [...] Read more.
The reclamation of exhausted open-pit coal mines is an energy-intensive and costly process. Traditional methods offer no economic return. This study explores the feasibility of using autonomous electric dump trucks (EDTs) to fill the pit, leveraging regenerative braking during descent to generate energy and reduce operational costs. A comprehensive energy balance model was developed based on the operational cycle of the Komatsu HD605-7 (E-Dumper) in the unique downhill-loaded logistics of the Pery quarry. The model incorporates vehicle dynamics equations, including rolling resistance, gradient, and aerodynamic forces, to calculate net energy consumption per cycle. Three energy storage system (ESS) configurations were compared: NMC/NCA batteries, LiFePO4 (LFP) batteries, and a hybrid LFP + supercapacitor (SC) system. Simulation results demonstrate that the net energy per cycle decreases with increasing payload capacity, even becoming negative (net energy generation) for loads above 110 tons due to powerful regenerative braking on the 13% descent grade. The hybrid LFP + SC system proved most efficient, achieving the lowest specific energy consumption (kWh/ton) by effectively capturing high-power regenerative currents. While LFP batteries have a lower energy density, their superior cycle life, thermal stability, and safety make them the optimal choice for the harsh mining environment. The proposed operation strategy, utilizing EDTs in a downhill-loaded cycle, transforms mine reclamation from a cost center into a potentially energy-neutral or even energy-positive process. A hybrid ESS with LFP batteries and supercapacitors is recommended as the most reliable and efficient solution for this specific application. Full article
Show Figures

Figure 1

35 pages, 2174 KB  
Article
Determinants of the Shadow Economy—Implications for Fiscal Sustainability and Sustainable Development in the EU
by Grzegorz Przekota, Anna Kowal-Pawul and Anna Szczepańska-Przekota
Sustainability 2025, 17(20), 9033; https://doi.org/10.3390/su17209033 - 12 Oct 2025
Viewed by 2416
Abstract
The shadow economy weakens fiscal sustainability, hampers the financing of public goods, and impedes the achievement of sustainable development goals. The informal sector remains a persistent challenge for policymakers, as it distorts competition, reduces transparency, and undermines the effectiveness of economic and fiscal [...] Read more.
The shadow economy weakens fiscal sustainability, hampers the financing of public goods, and impedes the achievement of sustainable development goals. The informal sector remains a persistent challenge for policymakers, as it distorts competition, reduces transparency, and undermines the effectiveness of economic and fiscal policies. The aim of this article is to identify the key factors determining the size of the shadow economy in European Union countries and to provide policy-relevant insights. The analysis covers data on the share of the informal economy in GDP and macroeconomic variables such as GDP per capita, consumer price index, average wages, household consumption, government expenditure, and unemployment, as well as indicators of digital development in society and the economy (DESI, IDT), the share of cashless transactions in GDP, and information on the implementation of digital tax administration tools and restrictions on cash payments. Five hypotheses (H1–H5) are formulated concerning the effects of income growth, labour market conditions, digitalisation, cashless payments, and tax administration tools on the shadow economy. The research question addresses which factors—macroeconomic conditions, economic and social digitalisation, payment structures, and fiscal innovations in tax administration—play the most significant role in determining the size of the shadow economy in EU countries and whether these mechanisms have broader implications for fiscal sustainability and sustainable development. The empirical strategy is based on multilevel models with countries as clusters, complemented by correlation and comparative analyses. The results indicate that the most significant factor in limiting the size of the shadow economy is the level of GDP per capita and its growth, whereas the impact of card payments appears to be superficial, reflecting overall increases in wealth. Higher wages, household consumption, and digital development as measured by the DESI also play an important role. The implementation of digital solutions in tax administration, such as SAF-T or e-PIT/pre-filled forms, along with restrictions on cash transactions, can serve as complementary measures. The findings suggest that sustainable strategies to reduce the shadow economy should combine long-term economic growth with digitalisation and improved tax administration, which may additionally foster the harmonisation of economic systems and support sustainable development. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

25 pages, 8051 KB  
Article
Optimizing Counterweight Backfilling for Slope Stability in Weak Strata: An Integrated Approach Combining High-Resolution Monitoring and Numerical Modeling
by Refky Adi Nata, Gaofeng Ren, Yongxiang Ge, Congrui Zhang, Luwei Zhang, Heriyanto Panggabean and Verra Syahmer
Eng 2025, 6(9), 242; https://doi.org/10.3390/eng6090242 - 12 Sep 2025
Viewed by 975
Abstract
Slope instability in open-pit coal mines threatens safety and infrastructure. Displacement phenomena (cracks, deflection, heaving) signal potential failure. While counterweight backfilling stabilizes slopes, site-specific protocols for heterogeneous settings, such as Indonesia’s Barito Basin (Warukin Formation), lack standardization. This study addresses this gap at [...] Read more.
Slope instability in open-pit coal mines threatens safety and infrastructure. Displacement phenomena (cracks, deflection, heaving) signal potential failure. While counterweight backfilling stabilizes slopes, site-specific protocols for heterogeneous settings, such as Indonesia’s Barito Basin (Warukin Formation), lack standardization. This study addresses this gap at PT. Bhumi Rantau Energi’s Mahoni Pit by integrating high-resolution displacement monitoring (Leica Nova TM50), geotechnical analysis (RQD, RMR), and numerical modeling (SLIDE 7.0, RS2 v11). The objectives were to characterize the displacement mechanisms, quantify the counterweight effectiveness, and optimize the geometry. The results show “warning”-level velocities (>10 mm.h−1) across points, with peak displacement (907 mm.day−1 at IPD_MHN_26) driven by pore pressure in weak fill/mud layers (c′: 2–20 kPa; thickness: 71–100 m). Counterweights significantly increased the Factor of Safety (FoS) from critical levels (e.g., 0.960, PF = 74.4%) to stable values (e.g., 1.160, PF = 1.8%), representing 20–35% improvements. RS2 identified fill material as the primary displacement zone (max: 2.10 m). Optimized designs featured phased backfilling (200 k–10 M BCM) with a 50 m width and 11° inclination. Tailored counterweight deployment effectively mitigated the instability in slopes underlain by weak strata. The integrated approach provides a validated framework for optimizing designs in similar sedimentary basins, enhancing safety and reducing costs. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

26 pages, 8845 KB  
Article
Occurrence State and Genesis of Large Particle Marcasite in a Thick Coal Seam of the Zhundong Coalfield in Xinjiang
by Xue Wu, Ning Lü, Shuo Feng, Wenfeng Wang, Jijun Tian, Xin Li and Hayerhan Xadethan
Minerals 2025, 15(8), 816; https://doi.org/10.3390/min15080816 - 31 Jul 2025
Viewed by 808
Abstract
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with [...] Read more.
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with coal seams in some mining areas. A series of economic and environmental problems caused by the combustion of large-grained Fe-sulphide minerals in coal have seriously affected the economic, clean and efficient utilization of coal. In this paper, the ultra-thick coal seam of the Xishanyao formation in the Yihua open-pit mine of the Zhundong coalfield is taken as the research object. Through the analysis of coal quality, X-ray fluorescence spectrometer test of major elements in coal, inductively coupled plasma mass spectrometry test of trace elements, SEM-Raman identification of Fe-sulphide minerals in coal and LA-MC-ICP-MS test of sulfur isotope of marcasite, the coal quality characteristics, main and trace element characteristics, macro and micro occurrence characteristics of Fe-sulphide minerals and sulfur isotope characteristics of marcasite in the ultra-thick coal seam of the Xishanyao formation are tested. On this basis, the occurrence state and genesis of large particle Fe-sulphide minerals in the ultra-thick coal seam of the Xishanyao formation are clarified. The main results and understandings are as follows: (1) the occurrence state of Fe-sulphide minerals in extremely thick coal seams is clarified. The Fe-sulphide minerals in the extremely thick coal seam are mainly marcasite, and concentrated in the YH-2, YH-3, YH-8, YH-9, YH-14, YH-15 and YH-16 horizons. Macroscopically, Fe-sulphide minerals mainly occur in three forms: thin film Fe-sulphide minerals, nodular Fe-sulphide minerals, and disseminated Fe-sulphide minerals. Microscopically, they mainly occur in four forms: flake, block, spearhead, and crack filling. (2) The difference in sulfur isotope of marcasite was discussed, and the formation period of marcasite was preliminarily divided. The overall variation range of the δ34S value of marcasite is wide, and the extreme values are quite different. The polyflake marcasite was formed in the early stage of diagenesis and the δ34S value was negative, while the fissure filling marcasite was formed in the late stage of diagenesis and the δ34S value was positive. (3) The coal quality characteristics of the thick coal seam were analyzed. The organic components in the thick coal seam are mainly inertinite, and the inorganic components are mainly clay minerals and marcasite. (4) The difference between the element content in the thick coal seam of the Zhundong coalfield and the average element content of Chinese coal was compared. The major element oxides in the thick coal seam are mainly CaO and MgO, followed by SiO2, Al2O3, Fe2O3 and Na2O. Li, Ga, Ba, U and Th are enriched in trace elements. (5) The coal-accumulating environment characteristics of the extremely thick coal seam are revealed. The whole thick coal seam is formed in an acidic oxidation environment, and the horizon with Fe-sulphide minerals is in an acidic reduction environment. The acidic reduction environment is conducive to the formation of marcasite and is not conducive to the formation of pyrite. (6) There are many matrix vitrinite, inertinite content, clay content, and terrigenous debris in the extremely thick coal seam. The good supply of peat swamp, suitable reduction environment and pH value, as well as groundwater leaching and infiltration, together cause the occurrence of large-grained Fe-sulphide minerals in the extremely thick coal seam of the Xishanyao formation in the Zhundong coalfield. Full article
Show Figures

Figure 1

17 pages, 5178 KB  
Article
Improvement of Unconfined Compressive Strength in Granite Residual Soil by Indigenous Microorganisms
by Ya Wang, Meiqi Li, Hao Peng, Jiaxin Kang, Hong Guo, Yasheng Luo and Mingjiang Tao
Sustainability 2025, 17(15), 6895; https://doi.org/10.3390/su17156895 - 29 Jul 2025
Cited by 1 | Viewed by 782
Abstract
In order to study how indigenous microorganisms can enhance the strength properties of granite residual soil in the Hanzhong area, two Bacillus species that produce urease were isolated from the local soil. The two Bacillus species are Bacillus subtilis and Bacillus tequilensis, [...] Read more.
In order to study how indigenous microorganisms can enhance the strength properties of granite residual soil in the Hanzhong area, two Bacillus species that produce urease were isolated from the local soil. The two Bacillus species are Bacillus subtilis and Bacillus tequilensis, and they were used for the solidification and improvement of the granite residual soil. Unconfined compressive strength tests, scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were systematically used to analyze the influence and mechanism of different cementation solution concentrations on the improvement effect. It has been found that with the growth of cementing fluid concentration, the unconfined compressive strength of improved soil specimens shows an increasing tendency, reaching its highest value when the cementing solution concentration is 2.0 mol/L. Among different bacterial species, curing results vary; Bacillus tequilensis demonstrates better performance across various cementing solution concentrations. The examination of failure strain in improved soil samples indicates that brittleness has been successfully alleviated, with optimal outcomes obtained at a cementing solution concentration of 1.0 mol/L. SEM and XRD analyses show that calcium carbonate precipitates (CaCO3) are formed in soil samples treated by both strains. These precipitates effectively bond soil particles, verifying improvement effects on a microscopic level. The present study proposes an environmentally friendly and economical method for enhancing engineering applications of granite residual soil in Hanzhong area, which holds significant importance for projects such as artificial slope filling, subgrade filling, and foundation pit backfilling. Full article
Show Figures

Figure 1

13 pages, 2599 KB  
Article
Enhancement of Dimensional Stability, Hydrophobicity, and Mechanical Strength of North American Red Alder Wood Through Silane Impregnation Combined with DES Pretreatment
by Yang Zheng, Ting Zhou, Chenyang Cai and Honghai Liu
Forests 2025, 16(7), 1152; https://doi.org/10.3390/f16071152 - 12 Jul 2025
Cited by 2 | Viewed by 764
Abstract
Wood is a green and renewable bio-based building material, but its hygroscopicity affects its dimensional stability, limiting its use in construction. Chemical modification can improve its properties, yet its effectiveness depends on wood permeability and traditional modifiers. This study first used a deep [...] Read more.
Wood is a green and renewable bio-based building material, but its hygroscopicity affects its dimensional stability, limiting its use in construction. Chemical modification can improve its properties, yet its effectiveness depends on wood permeability and traditional modifiers. This study first used a deep eutectic solvent (DES) to boost the permeability of North American alder wood. Then, methyl trimethoxysilane was impregnated under supercritical carbon dioxide (SCI), pressure (PI), vacuum (VI), and atmospheric pressure (AI) conditions. DES treatment damaged the cell structure, increasing wood permeability. Silane was deposited and polymerized in the cell lumen, chemically bonding with cell-wall components, filling walls and pits, and thickening walls. The VI group had the highest absolute density (0.59 g/cm3, +36.6%) and the lowest moisture absorption (4.4%, −33.3%). The AI group had the highest ASE (25%). The PI group showed the highest surface hardness (RL, 2592 N) and a water contact angle of 131.9°, much higher than natural wood. Overall, the VI group had the best performance. Silane reacts with cellulose, hemicellulose, and lignin in wood via hydrolysis and hydroxyl bonding, forming stable bonds that enhance the treated wood’s hydrophobicity, dimensional stability, and surface hardness. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

22 pages, 9767 KB  
Article
Freeze–Thaw-Induced Degradation Mechanisms and Slope Stability of Filled Fractured Rock Masses in Cold Region Open-Pit Mines
by Jun Hou, Penghai Zhang, Ning Gao, Wanni Yan and Qinglei Yu
Appl. Sci. 2025, 15(13), 7429; https://doi.org/10.3390/app15137429 - 2 Jul 2025
Cited by 2 | Viewed by 1061
Abstract
In cold regions, the rock mass of open-pit mine slopes is continuously exposed to freeze–thaw (FT) environments, during which the fracture structures and their infilling materials undergo significant degradation, severely affecting slope stability and the assessment of service life. Conventional laboratory [...] Read more.
In cold regions, the rock mass of open-pit mine slopes is continuously exposed to freeze–thaw (FT) environments, during which the fracture structures and their infilling materials undergo significant degradation, severely affecting slope stability and the assessment of service life. Conventional laboratory FT tests are typically based on uniform temperature settings, which fail to reflect the actual thermal variations at different burial depths, thereby limiting the accuracy of mechanical parameter acquisition. Taking the Wushan open-pit mine as the engineering background, this study establishes a temperature–depth relationship, defines multiple thermal intervals, and conducts direct shear tests on structural plane filling materials under various FT conditions to characterize the evolution of cohesion and internal friction angle. Results from rock mass testing and numerical simulation demonstrate that shear strength parameters exhibit an exponential decline with increasing FT cycles and decreasing burial depth, with the filling material playing a dominant role in the initial stage of degradation. Furthermore, a two-dimensional fracture network model of the rock mass was constructed, and the representative elementary volume (REV) was determined through the evolution of equivalent plastic strain. Based on this, spatial assignment of slope strength was performed, followed by stability analysis. Based on regression fitting using 0–25 FT cycles, regression model predictions indicate that when the number of FT cycles exceeds 42, the slope safety factor drops below 1.0, entering a critical instability state. This research successfully establishes a spatial field of mechanical parameters and evaluates slope stability, providing a theoretical foundation and parameter support for the long-term service evaluation and stability assessment of cold-region open-pit mine slopes. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

Back to TopTop