Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,567)

Search Parameters:
Keywords = pigmentation control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2356 KB  
Review
Therapeutic Potential of Neopyropia yezoensis: An Updated Review
by Anshul Sharma, Na Young Yoon and Hae-Jeung Lee
Mar. Drugs 2025, 23(11), 415; https://doi.org/10.3390/md23110415 - 23 Oct 2025
Abstract
Neopyropia (N.) yezoensis is a widely cultivated red alga in East Asia and valued worldwide for its rich bioactive constituents recognized for their health benefits, including polsaccharides, porphyrans, pigments, phenolic compounds, phycobiliproteins, polyunsaturated fatty acids, myosporin-like amino acids, and both synthetic [...] Read more.
Neopyropia (N.) yezoensis is a widely cultivated red alga in East Asia and valued worldwide for its rich bioactive constituents recognized for their health benefits, including polsaccharides, porphyrans, pigments, phenolic compounds, phycobiliproteins, polyunsaturated fatty acids, myosporin-like amino acids, and both synthetic and recombinant peptides. This review summarizes the current knowledge regarding the therapeutic potential of N. yezoensis extracts and their bioactive compounds. Based on in vitro, ex vitro, and in vivo experimental data (including those on Drosophila melanogaster larvae), this review comprehensively discusses its antioxidant, anti-inflammatory, neuroprotective, anti-atopic dermatitis, anti-colitis, anticancer, anti-aging, anti-atrophy, metabolic health-promoting effects, improving renal health, proliferating, anti-osteoarthritic, anti-allergic, antibacterial, and antivirus activities. The prebiotic effect of N. yezoensis porphyran through modulation of the gut microbiota was also investigated. Studies have indicated that protein hydrolysates and peptides derived from N. yezoensis with low molecular weights and aromatic and/or hydrophobic amino acids contribute significantly to these diverse bioactivities. Although N. yezoensis has shown promising bioactivity in preclinical models, validated clinical data in humans are currently lacking. Future research should prioritize the design and implementation of well-controlled human clinical trials to fully explore their therapeutic potential. Full article
(This article belongs to the Special Issue Bioactive Specialized Metabolites from Marine Plants)
26 pages, 1824 KB  
Article
Characterization and Evaluation of Biomass Waste Biochar for Turfgrass Growing Medium Enhancement in a Pot Experiment
by Marija Koprivica, Jelena Petrović, Marija Simić, Jelena Dimitrijević, Marija Ercegović and Snežana Trifunović
Agriculture 2025, 15(21), 2206; https://doi.org/10.3390/agriculture15212206 - 23 Oct 2025
Abstract
The sustainable management of urban grasslands is crucial for resilient city ecosystems. With increasing urbanization, improving soil quality to support turfgrass growth has become a priority. This study evaluates biochar produced from Paulownia leaves (PLB), a low-cost byproduct of Paulownia cultivation, as a [...] Read more.
The sustainable management of urban grasslands is crucial for resilient city ecosystems. With increasing urbanization, improving soil quality to support turfgrass growth has become a priority. This study evaluates biochar produced from Paulownia leaves (PLB), a low-cost byproduct of Paulownia cultivation, as a growing medium amendment. Raw leaves (PL) and PLB were characterized by SEM, FTIR, and elemental analysis to assess physicochemical changes. A three-month pot experiment under outdoor conditions was conducted with turfgrass plots exposed to different irrigation and fertilization regimes. Growing medium pH, moisture, electrical conductivity, cation exchange capacity, nutrient availability, grass chlorophyll content, and uptake were monitored. The application of PLB improved the growing medium structure, raised the pH by up to one unit, and enhanced pigment accumulation in turfgrass samples. When combined with nitrogen fertilizer, PLB significantly increased turfgrass visual quality, whereas under limited irrigation, PLB alone improved seedling establishment compared to controls. Statistical analysis confirmed significant treatment effects by ANOVA, and PCA provided a precise classification of treatment groups. These findings indicate that PLB can improve nutrient efficiency, turfgrass resilience, and organic waste management. Full article
(This article belongs to the Section Agricultural Soils)
25 pages, 3411 KB  
Review
Retinal Laser Therapy Mechanisms, Innovations, and Clinical Applications
by Xinyi Xie, Luqman Munir and Yannis Mantas Paulus
Photonics 2025, 12(11), 1043; https://doi.org/10.3390/photonics12111043 - 22 Oct 2025
Abstract
Retinal laser therapy has been a mainstay for treating proliferative diabetic retinopathy, retinal vascular disease, and retinal breaks since 1961. However, conventional millisecond photocoagulation can cause permanent scarring and procedure discomfort, motivating the development of damage-sparing approaches that preserve the neurosensory retina. Clinically, [...] Read more.
Retinal laser therapy has been a mainstay for treating proliferative diabetic retinopathy, retinal vascular disease, and retinal breaks since 1961. However, conventional millisecond photocoagulation can cause permanent scarring and procedure discomfort, motivating the development of damage-sparing approaches that preserve the neurosensory retina. Clinically, panretinal photocoagulation remains effective for proliferative disease but trades off peripheral visual field and night vision. This review synthesizes development, mechanisms, and clinical evidence for laser modalities, including short-pulse selective retinal therapy (SRT), subthreshold diode micropulse (SDM), and pattern-scanning photocoagulation. We conducted a targeted narrative search of PubMed/MEDLINE, Embase, Web of Science, and trial registries (1960–September 2025), supplemented by reference list screening. We prioritized randomized/prospective studies, large cohorts, systematic reviews, mechanistic modeling, and relevant preclinical work. Pulse duration is the primary determinant of laser–tissue interaction. In the microsecond regime, SRT yields retinal pigment epithelium (RPE)-selective photodisruption via microcavitation and uses real-time optoacoustic or OCT feedback. SDM 100–300 µs delivers nondamaging thermal stress with low duty cycles and titration-based dosing. Pattern-scanning platforms improve throughput and tolerance yet remain destructive photocoagulation. Feedback-controlled SRT shows anatomic/functional benefit in chronic central serous chorioretinopathy and feasibility in diabetic macular edema. SDM can match threshold macular laser for selected DME and may reduce anti-VEGF injection burden. Sub-nanosecond “rejuvenation” lasers show no overall benefit in intermediate AMD and may be harmful in specific phenotypes. Advances in delivery, dosimetry, and closed-loop feedback aim to minimize collateral damage while retaining therapeutic effect. Key gaps include head-to-head trials (SRT vs. PDT/SDM), standardized feedback thresholds across pigmentation and devices, and long-term macular safety to guide broader clinical adoption. Full article
(This article belongs to the Special Issue Novel Techniques and Applications of Ophthalmic Optics)
Show Figures

Figure 1

22 pages, 6621 KB  
Article
Differential Induction of Resistance Mechanisms by Methyl Jasmonate in Two Vaccinium corymbosum L. Cultivars Under Combined Water Deficit and Aluminum Toxicity
by Cristina Cáceres, Crystal Cazor-Curilef, Patricio Delgado-Santibañez, Jorge González-Villagra, Paz Cárcamo-Fincheira, Mabel Delgado, Alejandra Ribera-Fonseca, Claudio Inostroza-Blancheteau, Leon A. Bravo, Adriano Nunes-Nesi and Marjorie Reyes-Díaz
Plants 2025, 14(20), 3202; https://doi.org/10.3390/plants14203202 - 18 Oct 2025
Viewed by 114
Abstract
This study aimed to determine the stress mechanisms induced by foliar methyl jasmonate (MeJA) application in Vaccinium corymbosum cultivars subjected to water deficit (WD) and aluminum toxicity (Al). Two V. corymbosum cultivars, Star and Legacy, were subjected to different treatments in an Andisol: [...] Read more.
This study aimed to determine the stress mechanisms induced by foliar methyl jasmonate (MeJA) application in Vaccinium corymbosum cultivars subjected to water deficit (WD) and aluminum toxicity (Al). Two V. corymbosum cultivars, Star and Legacy, were subjected to different treatments in an Andisol: control (80% field capacity and low Al saturation), combined WD + Al (50% field capacity and 85% Al saturation), and different concentrations of foliar MeJA application (10 μM, 50 μM, and 100 μM) under WD + Al conditions. The determination of photosynthetic pigments, osmolytes, and organic acids, as well as the auxin levels and the expression of Aluminium-Activated Malate Transporter (ALMT) and Multidrug and Toxic Compound Extrusion (MATE) genes, was analyzed at 7 and 21 days. Foliar MeJA application increased chlorophyll a, b, and carotenoid levels, mainly at 50 µM, exhibiting early Star responses with up to 1.5-fold higher pigment accumulation, and a later increase in Legacy with up to 1.4-fold higher accumulation. Proline increases up to 2.2-fold in roots and sugar by 1.4-fold in leaves of both cultivars. The MeJA application increases the auxin levels by up to 2.3-fold in Star roots at 7 days and by up to 1.4-fold in Legacy leaves at 21 days. MeJA-induced upregulation of ALMT and MATE gene expression facilitated Al detoxification, with malate and citrate levels increasing up to 2-fold. Hierarchical clustering confirmed that the Star cultivar activated resistance mechanisms early, while the Legacy cultivar exhibited delayed but sustained resistance mechanisms. MeJA improves V. corymbosum resistance to combined WD + Al stress by modulating photosynthetic pigments, osmolytes, organic acids, and hormone regulation. This finding underscores the biotechnological potential of MeJA application to improve stress resilience and optimize crop performance under adverse environmental conditions. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

16 pages, 1828 KB  
Article
Influence of Lead-Free Perovskite Panels on Indoor Growth of Solanum lycopersicum L. and Artemisia annua L. Plants
by Sofia Caretto, Angelo De Paolis, Annalisa Paradiso, Francesco Milano, Bruno Olivieri, Carlo Ottaviani, Paola Prete and Paola De Padova
Plants 2025, 14(20), 3195; https://doi.org/10.3390/plants14203195 - 17 Oct 2025
Viewed by 232
Abstract
This work focuses on research into innovative lead-free perovskite materials to be employed as a sensitive layer for a new generation of solar cells, exploiting their potential applications in covering greenhouses to move toward an eco-friendly environment. Two types of lead-free perovskites—yellow and [...] Read more.
This work focuses on research into innovative lead-free perovskite materials to be employed as a sensitive layer for a new generation of solar cells, exploiting their potential applications in covering greenhouses to move toward an eco-friendly environment. Two types of lead-free perovskites—yellow and orange double-cation Cs2AgBiBr6, synthesized with an innovative method without chemical thinners—have been used, for the first time, as a cover for greenhouses in indoor experiments by analyzing the incident electromagnetic radiation. Two plant species, Solanum lycopersicum L. and Artemisia annua L., were cultivated indoors under controlled light, temperature, and humidity, covering the greenhouses with yellow (PY+) and orange (PO+) panels for comparison with control plants (P−) roofed by a glass panel. The growth and development parameters of all plants were investigated, referring to the aerial and root parts. Significant differences were found in terms of the plant growth parameters and photosynthetic pigments of both PY+ and PO+ compared to P− and also between them, with the yellow panel being less invasive. These results, dealing with two different plant species, confirm the feasibility of using perovskite-based panels for indoor cultivation and pave the way for outdoor application in greenhouses under sunlight. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

9 pages, 1262 KB  
Article
Effects of Chewing Gum on Plaque Index: A 3-Dimensional Colorimetric Analysis
by Luca Levrini, Piero Antonio Zecca, Virginia Bellora, Alessandro Deppieri, Stefano Saran, Nicola Giannotta and Andrea Carganico
Dent. J. 2025, 13(10), 474; https://doi.org/10.3390/dj13100474 - 17 Oct 2025
Viewed by 163
Abstract
Background: This study aimed to evaluate the effectiveness of xylitol- and fluoride-containing chewing gum in reducing dental plaque using a novel 3D colorimetric analysis, and to compare results with the Plaque Control Record (PCR). Methods: An acute intervention study was conducted on 34 [...] Read more.
Background: This study aimed to evaluate the effectiveness of xylitol- and fluoride-containing chewing gum in reducing dental plaque using a novel 3D colorimetric analysis, and to compare results with the Plaque Control Record (PCR). Methods: An acute intervention study was conducted on 34 healthy adults (18–45 years). A plaque-disclosing solution was applied, and intraoral scans were taken before and after 15 min of gum mastication. Plaque was quantified with PCR and the Placca Read software, which analyzes colorimetric patterns of scanned images. Statistical analyses (Shapiro–Wilk test, paired t-test) were performed with Jamovi Software version 1.6.14. Results: A significant reduction in plaque scores was observed after chewing gum (p < 0.05). Mean reduction reached −14.8% in the experimental group versus −3.9% in controls, where natural saliva flow and pigment washout may explain the modest decline. The 3D analysis provided precise measurements across all dental surfaces and showed strong correlation with PCR, supporting its validity. Conclusions: These findings indicate that functional chewing gum can significantly reduce plaque accumulation even after a single use, and that 3D colorimetric analysis offers a reliable, comprehensive alternative to conventional indices. Full article
Show Figures

Figure 1

21 pages, 1543 KB  
Article
Green Manuring Reduces Agronomic Indicators of Fodder Winter Barley Regardless of Fertilization Type
by Stefan Shilev, Mariyan Yanev, Slaveya Petrova, Nikolay Minev, Vanya Popova, Ivelina Neykova, Anyo Mitkov, Wiesław Szulc and Yordan Yordanov
Agriculture 2025, 15(20), 2145; https://doi.org/10.3390/agriculture15202145 - 15 Oct 2025
Viewed by 203
Abstract
Due to the intensive cultivation of various crops, the surface soil layer is depleted. This leads to a decrease in fertility, losses of organic matter and nutrients, and an overall decrease in soil health. We aimed to investigate the role of green manure [...] Read more.
Due to the intensive cultivation of various crops, the surface soil layer is depleted. This leads to a decrease in fertility, losses of organic matter and nutrients, and an overall decrease in soil health. We aimed to investigate the role of green manure application and organic fertilization on winter fodder barley (Hordeum vulgare L., Zemela cult.) in terms of agronomic and soil parameters. The cultivation was carried out in two fields, the predecessors of which were oats–vetch green manure (field 1) or fallow (field 2). In each field, five treatments were prepared: a control without fertilization, mineral fertilization, vermicompost, mineral fertilizer + vermicompost, and biochar. The green manure incorporation led to a decrease in grain yield of barley by 10.8–20.0% depending on the treatment. A similar tendency was observed for the rest of the studied agronomic parameters (thousand-grain mass, hectolitre weight, ear number, plants per hectare). Additionally, the vermicompost application had the most substantial effect, accounting for a 20.1% increase compared to the control, while the smallest was expressed by biochar—1.6%. Nevertheless, the photosynthesis intensity was higher in treatments after green manure. The microbiome’s activity was boosted in the vermicompost treatments, while amino acids, carboxylic acids, and polymers were the most fully metabolised compounds by the soil communities. In conclusion, the type of predecessor influenced mainly grain protein, carotenoids, and chlorophyll contents, as well as microbial activities, respiration, and dehydrogenase, while the fertilization impacted primarily on soil water and organic content, total soil N, and photosynthetic pigments of barley plants. Full article
Show Figures

Figure 1

18 pages, 4921 KB  
Article
Nano-Encapsulated Spicule System Enhances Delivery of Wharton’s Jelly MSC Secretome and Promotes Skin Rejuvenation: Preclinical and Clinical Evaluation
by Na Eun Lee, Ji Eun Kim, Chi Young Bang and Oh Young Bang
Int. J. Mol. Sci. 2025, 26(20), 10024; https://doi.org/10.3390/ijms262010024 - 15 Oct 2025
Viewed by 349
Abstract
Wharton’s Jelly-derived mesenchymal stem cell (WJ-MSC) secretome contains diverse bioactive factors with potential for skin regeneration, but its clinical efficacy is limited by poor transdermal delivery. In this study, we developed a dual-delivery system by nanoencapsulating WJ-MSC secretome and coating it onto marine [...] Read more.
Wharton’s Jelly-derived mesenchymal stem cell (WJ-MSC) secretome contains diverse bioactive factors with potential for skin regeneration, but its clinical efficacy is limited by poor transdermal delivery. In this study, we developed a dual-delivery system by nanoencapsulating WJ-MSC secretome and coating it onto marine sponge-derived spicules. Physicochemical characterization, in vitro assays (fibroblast and keratinocyte proliferation, keratinocyte migration, type I procollagen secretion, and antioxidant activity), and in vivo penetration studies were conducted. A single-arm clinical trial evaluated dermal absorption, pore characteristics, skin texture, wrinkles, and pigmentation following topical application. Transdermal penetration efficiency was significantly higher in the nano-coated spicule group than in the uncoated secretome control. In vitro, secretome treatment promoted fibroblast and keratinocyte activity, accelerated wound closure, and increased collagen synthesis. Clinically, a single application enhanced dermal absorption and significantly reduced pore number, while two weeks of treatment decreased wrinkles and pigmentation. Spicule-based nanoencapsulation effectively overcomes the skin barrier, enhances the regenerative activity of WJ-MSC secretome, and induces measurable clinical improvements in skin rejuvenation. This platform represents a promising cosmetic and therapeutic strategy in dermatology. Full article
(This article belongs to the Special Issue Roles and Function of Extracellular Vesicles in Diseases: 3rd Edition)
Show Figures

Graphical abstract

17 pages, 3426 KB  
Article
Integrative Methylome and Transcriptome Analysis Reveals Epigenetic Regulation of Pigmentation in Oujiang Color Common Carp
by Wenqi Zhao, Xiaowen Chen, Ayesha Arif, Zhaoyang Guo, Nusrat Hasan Kanika, Yuehan Song, Jun Wang and Chenghui Wang
Int. J. Mol. Sci. 2025, 26(20), 10001; https://doi.org/10.3390/ijms262010001 - 14 Oct 2025
Viewed by 316
Abstract
Oujiang color common carp display four striking varieties of pigmentation, but their epigenetic basis is unclear. We integrated genome-wide DNA methylation (MBD-seq) and transcriptomes (RNA-seq) from dorsal skin of four Oujiang color common carp varieties with three biological replicates. Black-spotted groups (RB, WB) [...] Read more.
Oujiang color common carp display four striking varieties of pigmentation, but their epigenetic basis is unclear. We integrated genome-wide DNA methylation (MBD-seq) and transcriptomes (RNA-seq) from dorsal skin of four Oujiang color common carp varieties with three biological replicates. Black-spotted groups (RB, WB) showed approximately 6% higher global methylation than non-black-spotted groups (WR, WW), with differential methylation enriched in introns (>23%) and intergenic regions (>47%). Integrative analyses revealed a strong inverse association between promoter methylation and gene expression; 96 pigmentation-related genes were identified, spotlighting genes such as ASIP and frmA as key epigenetically silenced regulators in black-spotted carp. RT-qPCR confirmed directional concordance with RNA-seq for ASIP, frmA, DGAT2, SCARB1, and FOSB. Pathway enrichment implicated melanogenesis metabolism, tyrosine metabolism, lipid metabolism, and fatty acid metabolism, suggesting an interplay between pigment deposition and metabolic regulation. Collectively, the findings present an exploratory view of epigenetic control of coloration and underscore promoter methylation as a core layer influencing color diversity in Oujiang color common carp. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

16 pages, 4546 KB  
Article
Cultivation of Arthrospira platensis in Veterinary Hospital Wastewater Enhances Pigment Production and Reduces Antibiotic Resistance Genes
by Authen Promariya, Sekbunkorn Treenarat, Nattaphong Akrimajirachoote, Wanat Sricharern and Wuttinun Raksajit
Biology 2025, 14(10), 1396; https://doi.org/10.3390/biology14101396 - 12 Oct 2025
Viewed by 235
Abstract
Veterinary hospital wastewater (VHW) is a significant environmental concern due to its high nutrient content, organic pollutants, and antibiotic resistance genes (ARGs). This study evaluated the physicochemical properties of VHW, its potential to support Arthrospira platensis cultivation, and its effects on microbial and [...] Read more.
Veterinary hospital wastewater (VHW) is a significant environmental concern due to its high nutrient content, organic pollutants, and antibiotic resistance genes (ARGs). This study evaluated the physicochemical properties of VHW, its potential to support Arthrospira platensis cultivation, and its effects on microbial and resistome profiles. VHW contained high levels of ammonia nitrogen, total Kjeldahl nitrogen, biological oxygen demand (BOD), and chemical oxygen demand (COD), indicating substantial contamination. A. platensis was cultivated for 8 days in Zarrouk medium supplemented with 0–100% VHW. Biomass production peaked in 25% VHW (0.78 ± 0.05 g/L), while growth was strongly suppressed at concentrations ≥75%. Pigment levels in 25% VHW increased significantly compared to the control: 1.3-fold for chlorophyll-a (12.0 μg/mL), 1.5-fold for carotenoids (4.4 μg/mL), 1.7-fold for phycocyanin (120 μg/mL), and 2.3-fold for allophycocyanin (54 μg/mL). Shotgun metagenomic analysis revealed that A. platensis cultivation markedly altered the microbial community and reduced the prevalence of ARGs. In 25% VHW, Proteobacteria dominated the community (97.0%), but their abundance declined to 11.6% when co-cultivated with A. platensis. Likewise, Acinetobacter sp. carrying high levels of the aph gene, along with Methylophaga sp. and Pseudomonas_E sp. harboring oqxB, decreased substantially, suggesting that A. platensis effectively suppressed ARG-rich genera. These findings highlight the dual potential of A. platensis for sustainable pigment-rich biomass production and efficient wastewater treatment. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

16 pages, 5578 KB  
Article
Glucose-6-Phosphate Dehydrogenase Modulates Shiraia Hypocrellin A Biosynthesis Through ROS/NO Signaling in Response to Bamboo Polysaccharide Elicitation
by Xinping Li, Qunyan Huang, Yanjun Ma, Liping Zheng and Jianwen Wang
Molecules 2025, 30(20), 4060; https://doi.org/10.3390/molecules30204060 - 11 Oct 2025
Viewed by 289
Abstract
Hypocrellin A (HA), a photodynamic perylenequinone pigment from Shiraia fruiting bodies, functions as an efficient photosensitizer for clinical photodynamic therapy. Glucose-6-phosphate dehydrogenase (G6PDH), the rate-limiting enzyme of the pentose phosphate pathway (PPP), governs carbon flux into NADPH production. This study elucidates G6PDH’s regulatory [...] Read more.
Hypocrellin A (HA), a photodynamic perylenequinone pigment from Shiraia fruiting bodies, functions as an efficient photosensitizer for clinical photodynamic therapy. Glucose-6-phosphate dehydrogenase (G6PDH), the rate-limiting enzyme of the pentose phosphate pathway (PPP), governs carbon flux into NADPH production. This study elucidates G6PDH’s regulatory role in HA biosynthesis in Shiraia sp. S9. Bamboo polysaccharide (BPS) elicitation (100 mg/L) significantly enhanced HA production to 428.1 mg/L, 1.6-fold higher than controls after 5 days. We cloned the G6PDH gene and demonstrated that BPS upregulated its expression and activity, concomitant with increased reactive oxygen species (ROS; H2O2 and O2•−) and nitric oxide (NO) generation. ROS production was mediated by NADPH oxidase induction, while NO generation was attributed to elevated nitric oxide synthase and nitrate reductase activities. Critically, the G6PDH inhibitor glucosamine (1.0 mM) suppressed both H2O2 and NO production. These ROS/NO signals upregulated key HA biosynthetic (PKS, Omef) and transport (MFS) genes. Our findings establish G6PDH as a central regulator of BPS-induced HA biosynthesis via ROS/NO signaling, revealing novel metabolic crosstalk between the PPP and fungal perylenequinone biosynthesis. This work presents BPS elicitation as a biotechnological strategy for scalable HA production in Shiraia mycelium cultures. Full article
(This article belongs to the Special Issue Natural Products Biosynthesis: Present and Perspectives)
Show Figures

Graphical abstract

16 pages, 12939 KB  
Article
Strategic Carbon Source Selection Enhances Biomass and Paramylon Yields in Mixotrophic Euglena gracilis Cultivation
by Xue Xiao, Rui He, Xinyue Guo, Xinxin Zhao, Zhengfei Yang, Yongqi Yin, Minato Wakisaka and Jiangyu Zhu
Microorganisms 2025, 13(10), 2339; https://doi.org/10.3390/microorganisms13102339 - 11 Oct 2025
Viewed by 345
Abstract
Euglena gracilis’s mixotrophic metabolism offers biotechnological potential. This study investigated how glucose, sodium acetate, ethanol, and propanetriol regulate its growth, photosynthesis, and paramylon production. All carbon sources boosted paramylon yield versus photoautotrophic controls. Ethanol and glucose were both highly effective, supporting the [...] Read more.
Euglena gracilis’s mixotrophic metabolism offers biotechnological potential. This study investigated how glucose, sodium acetate, ethanol, and propanetriol regulate its growth, photosynthesis, and paramylon production. All carbon sources boosted paramylon yield versus photoautotrophic controls. Ethanol and glucose were both highly effective, supporting the highest biomass accumulation (5.71 and 4.42-fold increases, respectively) and paramylon content without a significant difference between them. Ethanol supplementation enhanced chlorophyll b via coupled TCA cycle/glyoxylate shunt activity, while glucose showed the strongest tendency for high paramylon and the highest carotenoid content (13.36-fold higher). Sodium acetate triggered alkaline stress (pH 8.5), suppressing pigments and inducing spherical cells. Propanetriol reduced biomass but enhanced PSII efficiency (Fv/Fm). These results demonstrate carbon source-driven metabolic partitioning: ethanol and glucose both excel in promoting growth and storage, while additionally directing carbon toward chlorophyll b or carotenoids, respectively. These findings enable targeted bioprocess optimization: selection between ethanol or glucose can be based on the value of co-products, advancing E. gracilis as a sustainable cell factory. Full article
Show Figures

Graphical abstract

21 pages, 4298 KB  
Article
Growth and Photosynthetic Responses of Lactuca sativa L. to Different Zinc Fertilizer Sources and Applications
by Marina de-Francisco, Esther Hernández-Montes, Sarah DeSanto, Monica Montoya, Ana Obrador and Patricia Almendros
Horticulturae 2025, 11(10), 1221; https://doi.org/10.3390/horticulturae11101221 - 10 Oct 2025
Viewed by 369
Abstract
Zinc (Zn) is an essential micronutrient for plant growth, serving as a co-factor in enzymatic processes and pigment biosynthesis. In horticultural crops such as lettuce, Zn fertilization is increasingly relevant for optimizing yield and nutritional quality. In this study, a greenhouse pot experiment [...] Read more.
Zinc (Zn) is an essential micronutrient for plant growth, serving as a co-factor in enzymatic processes and pigment biosynthesis. In horticultural crops such as lettuce, Zn fertilization is increasingly relevant for optimizing yield and nutritional quality. In this study, a greenhouse pot experiment was conducted using Lactuca sativa L. cv. Romana Verano (Ramiro Arnedo) to evaluate the effects of four Zn sources with contrasting physio-chemical properties—ZnSO4, a synthetic chelate containing DTPA, EDTA, and HEDTA, a Zn–lignosulphonate complex, and ZnO nanoparticles—applied to soil at rates of 15, 30, 60, and 120 mg Zn·kg−1. Morphometric traits, photosynthetic pigmentation, and photosystem performance were assessed to determine differences in plant response. Results showed that low to moderate Zn supply (15–60 mg Zn·kg−1) maintained growth, leaf number, stem diameter, and biomass without significant changes compared to the control. In contrast, the highest dose (120 mg Zn·kg−1), particularly in chelated forms, led to reductions in growth and yield exceeding 80%, reflecting supra-optimal effects. Although lignosulphonate and nanoparticles sources lowered soil Zn availability, they did not affect lettuce growth or yield, indicating their potential as safer agricultural alternatives to conventional Zn fertilizers. Photosynthetic efficiency, measured through chlorophyll fluorescence and electron transport activity, was positively modulated by adequate Zn levels but declined at excessive concentrations. These findings highlight that Zn efficiency strongly depends on its chemical form and applied dose, providing practical insights for optimizing Zn fertilization strategies in lettuce and other horticultural crops. Full article
(This article belongs to the Special Issue 10th Anniversary of Horticulturae—Recent Outcomes and Perspectives)
Show Figures

Graphical abstract

17 pages, 2118 KB  
Article
Enhancing CO2 Fixation and Wastewater Treatment Performance by Assembling MgFe-LDH on Chlorella pyrenoidosa
by Huanan Xu, Hao Zhou, Yinfeng Hua, Weihua Chen, Jian Wu, Zhenwu Long, Liang Zhao, Lumei Wang, Guoqing Shen and Qincheng Chen
Sustainability 2025, 17(20), 8970; https://doi.org/10.3390/su17208970 - 10 Oct 2025
Viewed by 260
Abstract
Microalgae are considered to be a dual solution for CO2 fixation and biogas slurry purification due to their high photosynthetic efficiency and strong environmental adaptability. However, their application is constrained by the low solubility of CO2 in the solution environment, which [...] Read more.
Microalgae are considered to be a dual solution for CO2 fixation and biogas slurry purification due to their high photosynthetic efficiency and strong environmental adaptability. However, their application is constrained by the low solubility of CO2 in the solution environment, which restricts microalgal growth, resulting in low biomass production and poor slurry purification efficiency. In this study, we developed MgFe layered double hydroxide (LDH) that spontaneously combined with Chlorella pyrenoidosa to help it concentrate CO2, thereby increasing biomass yield and purification capacity for food waste biogas slurry. The prepared MgFe-LDH exhibited a typical layered structure with a CO2 adsorption capacity of 4.44 mmol/g. MgFe-LDH and C. pyrenoidosa carried opposite charges, enabling successful self-assembly via electrostatic interaction. Compared with the control, the addition of 200 ppm MgFe-LDH increased C. pyrenoidosa biomass and pigment content by 36.82% and 63.05%, respectively. The removal efficiencies of total nitrogen, total phosphorus, and ammonia nitrogen in the slurry were enhanced by 20.04%, 31.54% and 14.57%, respectively. The addition of LDH effectively alleviated oxidative stress in C. pyrenoidosa and stimulated the secretion of extracellular polymeric substances, thereby enhancing the stress resistance and pollutant adsorption capabilities. These findings provided a new strategy for the industrial application of microalgal technology in CO2 fixation and wastewater treatment. Full article
Show Figures

Figure 1

16 pages, 1694 KB  
Article
Dietary Inclusion of Micro-Algal Astaxanthin on Gut Health of Rainbow Trout Oncorhynchus mykiss: Insights from Gut Morphology, Physiological Indices and Microbiota Diversity
by Min Zhang, Xiaowen Long, Yaopeng Li, Yong Zhang, Weihong Sun and Xugan Wu
Fishes 2025, 10(10), 505; https://doi.org/10.3390/fishes10100505 - 8 Oct 2025
Viewed by 326
Abstract
The green alga Haematococcus pluvialis, rich in natural astaxanthin, is a key feed additive for salmonid pigmentation. This study evaluated dietary micro-algal astaxanthin effects on structure, antioxidative and immune response, as well as microbiota in different gut segments of rainbow trout Oncorhynchus [...] Read more.
The green alga Haematococcus pluvialis, rich in natural astaxanthin, is a key feed additive for salmonid pigmentation. This study evaluated dietary micro-algal astaxanthin effects on structure, antioxidative and immune response, as well as microbiota in different gut segments of rainbow trout Oncorhynchus mykiss (initial average weight: 0.67 ± 0.02 kg). Three diets contained 0 (Diet 1, control), 18.57 (Diet 2) and 31.25 mg/kg (Diet 3) micro-algal astaxanthin. After a 4-month feeding trial, dietary astaxanthin promoted the goblet cell proliferation of pyloric caeca and increased hindgut tunica muscularis thickness (p < 0.05). It also improved antioxidant capacity, characterized by the upregulation of gpx and cat expression in the midgut, accompanied by a significant decrease in MDA content (p < 0.05). Furthermore, dietary astaxanthin could upregulate tgf-β, tor1 and pcna levels in midgut and igm in hindgut, while il1β, il6, il8 and tnfα in hindgut were significantly downregulated in Diet 2 (p < 0.05). Additionally, dietary astaxanthin also enhanced the α-diversity of hindgut and altered the core microbiota (reduced Proteobacteria, increased Actinobacteria). Diet 2 increased microbic abundance associated with reducing gut inflammation and promoting nutrient absorption while decreasing that of pathogenic bacteria. Overall, dietary 18.57 mg/kg astaxanthin supplementation could promote gut structure, antioxidant and immune capacity, reduce inflammation and modulate microbiota. These findings indicate that natural astaxanthin from H. pluvialis has potential as an immunostimulant to promote gut health in salmonids. Full article
(This article belongs to the Section Nutrition and Feeding)
Show Figures

Figure 1

Back to TopTop