Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (309)

Search Parameters:
Keywords = piezoelectric fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3479 KiB  
Article
Assessment of Low-Cost Sensors in Early-Age Concrete: Laboratory Testing and Industrial Applications
by Rocío Porras, Behnam Mobaraki, Zhenquan Liu, Thayré Muñoz, Fidel Lozano and José A. Lozano
Appl. Sci. 2025, 15(15), 8701; https://doi.org/10.3390/app15158701 - 6 Aug 2025
Abstract
Concrete is an essential material in the construction industry due to its strength and versatility. However, its quality can be compromised by environmental factors during its fresh and early-age states. To address this vulnerability, various sensors have been implemented to monitor critical parameters. [...] Read more.
Concrete is an essential material in the construction industry due to its strength and versatility. However, its quality can be compromised by environmental factors during its fresh and early-age states. To address this vulnerability, various sensors have been implemented to monitor critical parameters. While high-precision sensors (e.g., piezoelectric and fiber optic) offer accurate measurements, their cost and fragility limit their widespread use in construction environments. In response, this study proposes a cost-effective, Arduino-based wireless monitoring system to track temperature and humidity in fresh and early-age concrete elements. The system was validated through laboratory tests on cylindrical specimens and industrial applications on self-compacting concrete New Jersey barriers. The sensors recorded temperature variations between 15 °C and 35 °C and relative humidity from 100% down to 45%, depending on environmental exposure. In situ monitoring confirmed the system’s ability to detect thermal gradients and evaporation dynamics during curing. Additionally, the presence of embedded sensors caused a tensile strength reduction of up to 37.5% in small specimens, highlighting the importance of sensor placement. The proposed solution demonstrates potential for improving quality control and curing management in precast concrete production with low-cost devices. Full article
Show Figures

Figure 1

27 pages, 5832 KiB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 - 1 Aug 2025
Viewed by 337
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

14 pages, 4052 KiB  
Article
ZnO/PVDF Nanogenerators with Hemisphere-Patterned PDMS for Enhanced Piezoelectric Performance
by Kibum Song and Keun-Young Shin
Polymers 2025, 17(15), 2041; https://doi.org/10.3390/polym17152041 - 26 Jul 2025
Viewed by 403
Abstract
In this study, we present a flexible piezoelectric nanogenerator based on a zinc oxide (ZnO)/polyvinylidene fluoride (PVDF) nanocomposite electrospun onto a hemisphere-patterned PDMS substrate. The nanogenerator was fabricated by replicating a silicon mold with inverted hemispheres into PDMS, followed by direct electrospinning of [...] Read more.
In this study, we present a flexible piezoelectric nanogenerator based on a zinc oxide (ZnO)/polyvinylidene fluoride (PVDF) nanocomposite electrospun onto a hemisphere-patterned PDMS substrate. The nanogenerator was fabricated by replicating a silicon mold with inverted hemispheres into PDMS, followed by direct electrospinning of ZnO-dispersed PVDF nanofibers. Varying the ZnO concentration from 0.6 to 1.4 wt% allowed us to evaluate its effect on structural, dielectric, and piezoelectric properties. The nanogenerator containing 0.8 wt% ZnO exhibited the thinnest fibers (371 nm), the highest β-phase fraction (85.6%), and the highest dielectric constant (35.8). As a result, it achieved the maximum output voltage of 7.30 V, with excellent signal consistency under an applied pressure of 5 N. Comparisons with pristine PVDF- and ZnO/PVDF-only devices demonstrated the synergistic effect of ZnO loading and patterned PDMS on the enhancement of piezoelectric output. The hemisphere-patterned PDMS substrate improved the mechanical strain distribution, interfacial contact, and charge collection efficiency. These results highlight the potential of ZnO/PVDF/PDMS hybrid nanogenerators for use in wearable electronics and self-powered sensor systems. Full article
(This article belongs to the Special Issue Recent Advances in Applied Polymers in Renewable Energy)
Show Figures

Graphical abstract

24 pages, 12784 KiB  
Article
A Fiber-Optic Six-Axis Force Sensor Based on a 3-UPU-Compliant Parallel Mechanism
by Jiachen Ma, Siyi Chen, Haiting Di and Ke Liu
Appl. Sci. 2025, 15(13), 7548; https://doi.org/10.3390/app15137548 - 4 Jul 2025
Viewed by 239
Abstract
Traditional six-axis force sensors are mostly based on resistance strain, piezoelectricity and capacitors, which have poor resistance to electromagnetic interference. In this paper, a six-axis force sensor based on bending-sensitive optical fibers is proposed. A 3-UPU-(universal joint–prismatic joint–universal joint) compliant parallel mechanism is [...] Read more.
Traditional six-axis force sensors are mostly based on resistance strain, piezoelectricity and capacitors, which have poor resistance to electromagnetic interference. In this paper, a six-axis force sensor based on bending-sensitive optical fibers is proposed. A 3-UPU-(universal joint–prismatic joint–universal joint) compliant parallel mechanism is adopted in the sensor. The bending-sensitive optical fiber is encapsulated to form a fiber encapsulation module (FEM). The configuration of the FEMs within the six-axis force sensor is investigated. Static and stiffness analyses of the sensor are conducted and a force mapping matrix for the sensor is established. Simulation experiments are performed to verify the correctness of the established force mapping matrix. The detection system of the sensor is fabricated and the experiments are carried out to evaluate the performance of the sensor. The experiment results show that the maximum values of type-I errors and type-II errors are 4.52%FS and 3.26%FS, respectively. The maximum hysteresis and repeatability errors are 2.78% and 3.27%. These results verify the effectiveness of the proposed sensor. Full article
Show Figures

Figure 1

16 pages, 2714 KiB  
Article
On the Implementation of a Micromachining Compatible MOEMS Tri-Axial Accelerometer
by Ahmed Hamouda Elsayed, Samir Abozyd, Abdelrahman Toraya, Mohamed Abdelsalam Mansour and Noha Gaber
Chips 2025, 4(2), 28; https://doi.org/10.3390/chips4020028 - 13 Jun 2025
Viewed by 2450
Abstract
On-chip optical accelerometers can be a promising alternative to capacitive, piezo-resistive, and piezo-electric accelerometers in some applications due to their immunity to electromagnetic interference and high sensitivity, which allow for robust operation in electromagnetically noisy environments. This paper focuses on the characterization of [...] Read more.
On-chip optical accelerometers can be a promising alternative to capacitive, piezo-resistive, and piezo-electric accelerometers in some applications due to their immunity to electromagnetic interference and high sensitivity, which allow for robust operation in electromagnetically noisy environments. This paper focuses on the characterization of an easy-to-fabricate tri-axial fiber-free optical MEMS accelerometer, which employs a simple assembly consisting of a light emitting diode (LED), a quadrant photodetector (QPD), and a suspended proof mass, measuring acceleration through light power modulation. This configuration enables simple readout circuitry without the need for complex digital signal processing (DSP). Performance modeling was conducted to simulate the LED’s irradiance profile and its interaction with the proof mass and QPD. Additionally, experimental tests were performed to measure the device’s mechanical sensitivity and validate the mechanical model. Lateral mechanical sensitivity is obtained with acceptable discrepancy from that obtained from FEA simulations. This work consolidates the performance of the design adapted and demonstrates the accelerometer’s feasibility for practical applications. Full article
Show Figures

Figure 1

15 pages, 11557 KiB  
Article
Toward Versatile Transient Electronics: Electrospun Biocompatible Silk Fibroin/Carbon Quantum Dot-Based Green-Emission, Water-Soluble Piezoelectric Nanofibers
by Zhipei Xia, Chubao Liu, Juan Li, Biyao Huang, Chu Pan, Yu Lai, Zhu Liu, Dongling Wu, Sen Liang, Xuanlun Wang, Weiqing Yang and Jun Lu
Polymers 2025, 17(11), 1579; https://doi.org/10.3390/polym17111579 - 5 Jun 2025
Viewed by 587
Abstract
The rapid development of wearable electronics requires multifunctional, transient electronic devices to reduce the ecological footprint and ensure data security. Unfortunately, existing transient electronic materials need to be degraded in chemical solvents or body fluids. Here, we report green luminescent, water-soluble, and biocompatible [...] Read more.
The rapid development of wearable electronics requires multifunctional, transient electronic devices to reduce the ecological footprint and ensure data security. Unfortunately, existing transient electronic materials need to be degraded in chemical solvents or body fluids. Here, we report green luminescent, water-soluble, and biocompatible piezoelectric nanofibers developed by electrospinning green carbon quantum dots (G-CQDs), mulberry silk fibroin (SF), and polyvinyl alcohol (PVA). The introduction of G-CQDs significantly enhances the piezoelectric output of silk fibroin-based fiber materials. Meanwhile, the silk fibroin-based hybrid fibers maintain the photoluminescent response of G-CQDs without sacrificing valuable biocompatibility. Notably, the piezoelectric output of a G-CQD/PVA/SF fiber-based nanogenerator is more than three times higher than that of a PVA/SF fiber-based nanogenerator. This is one of the highest levels of state-of-the-art piezoelectric devices based on biological organic materials. As a proof of concept, in the actual scenario of a rope skipping exercise, the G-CQD/PVA/SF fiber-based nanogenerator is further employed as a self-powered wearable sensor for real-time sensing of athletic motions. It demonstrates high portability, good flexibility, and stable piezoresponse for smart sports applications. This class of water-disposable, piezo/photoactive biological materials could be compelling building blocks for applications in a new generation of versatile, transient, wearable/implantable devices. Full article
(This article belongs to the Special Issue Polymer-Based Wearable Electronics)
Show Figures

Figure 1

18 pages, 9645 KiB  
Article
Fabrication of Bio-Composite of Piezoelectric/Myrrh Nanofiber Scaffolds for Wound Healing via Portable Gyrospun
by Enfal Eser Alenezi, Amalina Amir, Hussain Ali Alenezi and Timucin Ugurlu
Pharmaceutics 2025, 17(6), 717; https://doi.org/10.3390/pharmaceutics17060717 - 29 May 2025
Viewed by 632
Abstract
Background/Objectives: Polymeric monoaxial nanofibers are gaining prominence due to their numerous applications, particularly in functional scenarios such as wound management. The study successfully developed and built a special-purpose vessel and device for fabricating polymeric nanofibers. Fabrication of composite scaffolds from piezoelectric poly(vinylidenefluoride-trifluoroethylene) [...] Read more.
Background/Objectives: Polymeric monoaxial nanofibers are gaining prominence due to their numerous applications, particularly in functional scenarios such as wound management. The study successfully developed and built a special-purpose vessel and device for fabricating polymeric nanofibers. Fabrication of composite scaffolds from piezoelectric poly(vinylidenefluoride-trifluoroethylene) copolymer (PVDF-TrFE) nanofibers encapsulated with myrrh extract was investigated. Methods: The gyrospun nanofibers were characterized using SEM, EDX, FTIR, XRD, and TGA to assess the properties of the composite materials. The study also investigated the release profile of myrrh extract from the nanofibers, demonstrating its potential for sustained drug delivery. The composite’s antimicrobial properties were evaluated using the disc diffusion method against various pathogenic microbes, showcasing their effectiveness. Results: It was found that an 18% (w/v) PVDF-TrFE concentration produces the best fiber mats compared to 20% and 25%, resulting in an average fiber diameter of 411 nm. Myrrh extract was added in varying amounts (10%, 15%, and 20%), with the best average fiber diameter identified at 10%, measuring 436 nm. The results indicated that the composite nanofibers were uniform, bead-free, and aligned without myrrh. The study observed a cumulative release of 79.66% myrrh over 72 h. The release profile showed an initial burst release of 46.85% within the first six hours, followed by a sustained release phase. Encapsulation efficiency was 89.8%, with a drug loading efficiency of 30%. Antibacterial activity peaked at 20% myrrh extract. S. mutans was the most sensitive pathogen to myrrh extract. Conclusions: Due to the piezoelectric effect of PVDF-TrFE and the significant antibacterial activity of myrrh, the prepared biohybrid nanofibers will open new avenues toward tissue engineering and wound healing applications. Full article
(This article belongs to the Special Issue Biopolymer Materials for Wound Healing, 3rd Edition)
Show Figures

Graphical abstract

21 pages, 1305 KiB  
Article
Sliding Mode Observer with Gain Tuning Method for Passive Interferometric Fiber-Optic Gyroscope
by Gabriel F. S. Nunes and João M. S. Sakamoto
Sensors 2025, 25(11), 3385; https://doi.org/10.3390/s25113385 - 28 May 2025
Viewed by 452
Abstract
The present work reports the evaluation of a sliding mode observer (SMO) for a passive interferometric fiber-optic gyroscope (IFOG). To achieve that, the experimental setup was designed and evaluated to provide two out-of-phase signals as required by the SMO system employed. This led [...] Read more.
The present work reports the evaluation of a sliding mode observer (SMO) for a passive interferometric fiber-optic gyroscope (IFOG). To achieve that, the experimental setup was designed and evaluated to provide two out-of-phase signals as required by the SMO system employed. This led to the operation of the IFOG-SMO implemented in a passive mode with a 3 × 3 optical fiber directional coupler, which dismissed the use of optical phase modulators, such as piezoelectric or electro-optic devices. Simulations were performed and provided a qualitative analysis of the dependence of the system gain as a function of the sigmoid factor and sample rate, which resulted in a method for tuning the gain value according to the expected input signal. The experimental results show proper working of the IFOG-SMO and the capability for measuring large and small amplitude angular velocities and the expansion of the full scale. This is, to the best of our knowledge, the first time a sliding mode control technique has been employed and evaluated for an interferometric fiber-optic gyroscope. Full article
(This article belongs to the Special Issue Fiber Optic Sensing and Applications)
Show Figures

Figure 1

18 pages, 10932 KiB  
Article
Detecting Partial Discharge in Cable Joints Based on Implanting Optical Fiber Using MZ–Sagnac Interferometry
by Weikai Zhang, Yuxuan Song, Xiaowei Wu, Hong Liu, Haoyuan Tian, Zijie Tang, Shaopeng Xu and Weigen Chen
Sensors 2025, 25(10), 3166; https://doi.org/10.3390/s25103166 - 17 May 2025
Cited by 1 | Viewed by 771
Abstract
Detecting partial discharges in cable joints is critical for timely defect identification and reliable transmission system operation. To improve the long-term reliability and sensitivity of the sensing system, a novel method for cable joint monitoring based on implanting optical fibers within the joint [...] Read more.
Detecting partial discharges in cable joints is critical for timely defect identification and reliable transmission system operation. To improve the long-term reliability and sensitivity of the sensing system, a novel method for cable joint monitoring based on implanting optical fibers within the joint structure is proposed. The electric field distribution of the optical fiber-implanted cable joint was simulated, followed by electrical performance tests, demonstrating that optical fiber implantation had a negligible effect on the electrical properties of the cable joint. A platform utilizing Mach–Zehnder–Sagnac (MZ–Sagnac) interferometry was developed to evaluate the frequency response of the implanted optical fiber sensor, with calibration performed on a non-standard curved surface. The results show that the average sensitivity of the sensor in the 10 kHz–80 kHz range is 71.6 dB, 2.0 dB higher than that of the piezoelectric transducer, with a maximum signal-to-noise ratio of 65.2 dB. To simulate common fault conditions in the actual operation of cable joints, four types of discharge defects were introduced. Partial discharge tests conducted on an optical fiber-implanted cable joint, supplemented by measurements using a partial discharge detector, demonstrate that the optical fiber sensors can detect a minimum discharge of 16.0 pC. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

26 pages, 4583 KiB  
Article
Mathematical Modeling and Finite Element Simulation of the M8514-P2 Composite Piezoelectric Transducer for Energy Harvesting
by Demeke Girma Wakshume and Marek Łukasz Płaczek
Sensors 2025, 25(10), 3071; https://doi.org/10.3390/s25103071 - 13 May 2025
Viewed by 3434
Abstract
This paper focuses on the mathematical and numerical modeling of a non-classical macro fiber composite (MFC) piezoelectric transducer, MFC-P2, integrated with an aluminum cantilever beam for energy harvesting applications. It seeks to harness the transverse vibration energy in the environment to power small [...] Read more.
This paper focuses on the mathematical and numerical modeling of a non-classical macro fiber composite (MFC) piezoelectric transducer, MFC-P2, integrated with an aluminum cantilever beam for energy harvesting applications. It seeks to harness the transverse vibration energy in the environment to power small electronic devices, such as wireless sensors, where conventional power sources are inconvenient. The P2-type macro fiber composites (MFC-P2) are specifically designed for transverse energy harvesting applications. They offer high electric source capacitance and improved electric charge generation due to the strain developed perpendicularly to the voltage produced. The system is modeled analytically using Euler–Bernoulli beam theory and piezoelectric constitutive equations, capturing the electromechanical coupling in the d31 mode. Numerical simulations are conducted using COMSOL Multiphysics 6.29 to reduce the complexity of the mathematical model and analyze the effects of material properties, geometric configurations, and excitation conditions. The theoretical model is based on the transverse vibrations of a cantilevered beam using Euler–Bernoulli theory. The natural frequencies and mode shapes for the first four are determined. Depending on these, the resonance frequency, voltage, and power outputs are evaluated across a 12 kΩ resistive load. The results demonstrate that the energy harvester effectively operates near its fundamental resonant frequency of 10.78 Hz, achieving the highest output voltage of approximately 0.1952 V and a maximum power output of 0.0031 mW. The generated power is sufficient to drive ultra-low-power devices, validating the viability of MFC-based cantilever structures for autonomous energy harvesting systems. The application of piezoelectric phenomena and obtaining electrical energy from mechanical vibrations can be powerful solutions in such systems. The application of piezoelectric phenomena to convert mechanical vibrations into electrical energy presents a promising solution for self-powered mechatronic systems, enabling energy autonomy in embedded sensors, as well as being used for structural health monitoring applications. Full article
(This article belongs to the Special Issue Smart Sensors Based on Optoelectronic and Piezoelectric Materials)
Show Figures

Figure 1

12 pages, 4832 KiB  
Article
Dual Interferometric Interrogation for DFB Laser-Based Acoustic Sensing
by Mehmet Ziya Keskin, Abdulkadir Yentur and Ibrahim Ozdur
Sensors 2025, 25(9), 2873; https://doi.org/10.3390/s25092873 - 2 May 2025
Viewed by 550
Abstract
Acoustic sensing has many applications in engineering, one of which is fiber-optic hydrophones (FOHs). Conventional piezoelectric hydrophones face limitations related to size, electromagnetic interference, corrosion, and narrow operating bandwidth. Fiber-optic hydrophones, particularly those employing distributed feedback (DFB) lasers, offer a compelling alternative due [...] Read more.
Acoustic sensing has many applications in engineering, one of which is fiber-optic hydrophones (FOHs). Conventional piezoelectric hydrophones face limitations related to size, electromagnetic interference, corrosion, and narrow operating bandwidth. Fiber-optic hydrophones, particularly those employing distributed feedback (DFB) lasers, offer a compelling alternative due to their mechanical flexibility, resistance to harsh conditions, and broad detection range. DFB lasers are highly sensitive to external perturbations such as temperature and strain, enabling the precise detection of underwater acoustic signals by monitoring the resultant shifts in lasing wavelength. This paper presents an enhanced interrogation mechanism that leverages Mach–Zehnder interferometers to translate wavelength shifts into measurable phase deviations, thereby providing cost-effective and high-resolution phase-based measurements. A dual interferometric setup is integrated with a standard demodulation algorithm to extend the dynamic range of these sensing systems. The experimental results demonstrate a substantial improvement in performance, with the dynamic range increasing from 125 dB to 139 dB at 1 kHz without degrading the noise floor. This enhancement significantly expands the utility of FOH-based systems in underwater environments, supporting applications such as underwater surveillance, submarine communication, and marine ecosystem monitoring. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

18 pages, 9107 KiB  
Article
Study of an FBG-FP Cascaded Optical Fiber Current Transformer Based on Electrostrictive Material Coupling
by Cong Chen, Zhongyuan Li, Qichao Chen and Weichao Zhang
Sensors 2025, 25(8), 2492; https://doi.org/10.3390/s25082492 - 15 Apr 2025
Viewed by 445
Abstract
Aiming at the issues of low sensitivity and poor resistance to temperature and vibration interference in traditional optical fiber current transformers, as well as the structural complexity of magnetostrictive material-coupled sensors, this paper integrates a high-sensitivity electrostrictive piezoelectric ceramic sensor with an FBG-FP [...] Read more.
Aiming at the issues of low sensitivity and poor resistance to temperature and vibration interference in traditional optical fiber current transformers, as well as the structural complexity of magnetostrictive material-coupled sensors, this paper integrates a high-sensitivity electrostrictive piezoelectric ceramic sensor with an FBG-FP cascaded fiber-optic sensor. This coupling significantly optimizes the sensor structure. By employing orthogonal intensity demodulation to enhance detection sensitivity, and adopting a multi-cycle waveform-averaging method to calculate the DC output light intensity, temperature calibration and compensation are achieved through the correlation between the DC output light intensity and operating points. Experimental results demonstrate that the designed sensor exhibits a detection bandwidth of 0–7 kHz, fully meeting the requirements for power-frequency current detection. Its current measurement range spans 0.15–42 mA, with a minimum measurable current as low as 150 μA. This study provides a compact, high-precision, highly scalable, and adaptable current detection solution for power systems, demonstrating significant engineering application value. Full article
(This article belongs to the Special Issue Recent Advances in Optoelectronic Materials and Device Engineering)
Show Figures

Figure 1

14 pages, 4211 KiB  
Article
A Partial Discharge Detection Approach in Distribution Cabinets Using a Mach–Zehnder Interferometer
by Junliang Wang, Ying Zhang and Xiang Gu
Sensors 2025, 25(7), 2265; https://doi.org/10.3390/s25072265 - 3 Apr 2025
Viewed by 508
Abstract
Distribution cabinets are of paramount importance in power supply systems. Internal partial discharge may result in power interruption or even the outbreak of fire. This paper proposes a partial discharge (PD) detection approach based on a fiber-optic Mach–Zehnder interferometer (MZI). The MZI method [...] Read more.
Distribution cabinets are of paramount importance in power supply systems. Internal partial discharge may result in power interruption or even the outbreak of fire. This paper proposes a partial discharge (PD) detection approach based on a fiber-optic Mach–Zehnder interferometer (MZI). The MZI method utilizes a fiber wound with a certain size and number of turns as the sensing element, which is mounted on the wall of the low-voltage distribution cabinet to monitor the partial discharge within the cabinet in real time. A true-type distribution cabinet partial discharge experimental platform is developed to validate the proposed method. Three 10 m long fiber-optic sensors with diameters of 50 mm, 80 mm, and 100 mm are designed and compared with a traditional piezoelectric transducer (PZT) for analysis. The experimental results indicate that the fiber-optic MZI sensor can effectively capture PD acoustic pulses, and the pulse amplitude is consistent with that of the PZT sensor. Moreover, compared with the PZT sensor, the fiber-optic MZI system possesses a higher frequency response and a longer effective detection time for PD pulses, demonstrating superior PD detection performance. The fiber-optic coil sensor with a diameter of 8 cm performed optimally in the experiment. The fiber-optic sensing method based on the MZI has significant potential application value in the partial discharge detection of power distribution cabinets, providing a theoretical basis for its application in engineering practice. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

13 pages, 4985 KiB  
Article
Kinetic Energy Harvesting with a Piezoelectric Patch Using a Bistable Laminate
by Sonia Bradai, Slim Naifar, Piotr Wolszczak, Jarosław Bieniaś, Patryk Jakubczak, Andrzej Rysak, Grzegorz Litak and Olfa Kanoun
Micromachines 2025, 16(4), 410; https://doi.org/10.3390/mi16040410 - 30 Mar 2025
Viewed by 429
Abstract
A bistable effect on a laminate structure with a piezoelectric patch was tested to harvest kinetic energy. The composite bistable plate was prepared in the autoclave with two different orientations of the glass fibers. The dynamic tests were performed on the universal testing [...] Read more.
A bistable effect on a laminate structure with a piezoelectric patch was tested to harvest kinetic energy. The composite bistable plate was prepared in the autoclave with two different orientations of the glass fibers. The dynamic tests were performed on the universal testing machine using cyclic vertical compression excitation. During the tests, the bottom edge of the plate was clamped firmly while its upper edge was attached with some clearance to enable sliding. In such a configuration, the friction force between the plate and upper clamp element is responsible for the plate excitation. Simultaneously, the plate has enough space to change the shape between the two equilibria. During the harmonic excitation of the testing machine operating mode, a piezoelectric element was placed on the bistable plate and its voltage and normalized power outputs were evaluated. The experiments were repeated with additional mass distribution, which influenced the natural frequency of the plate. Full article
(This article belongs to the Special Issue Linear and Nonlinear Vibrations for Sensing and Energy Harvesting)
Show Figures

Figure 1

16 pages, 17262 KiB  
Article
Electrospun Silver-Modified PZT/PVDF Composites for High-Performance Piezoelectric Energy Harvester
by Xiang Liu, Huiling Guo, Xinyue Yang, Fuling Wu, Yuanhui Li, Xiao Li, Qing Xu and Huajun Sun
Materials 2025, 18(7), 1425; https://doi.org/10.3390/ma18071425 - 24 Mar 2025
Cited by 1 | Viewed by 635
Abstract
Piezoelectric materials based on polyvinylidene fluoride (PVDF) are widely regarded as ideal candidates for the fabrication of piezoelectric energy harvesters (PEHs). However, the relatively low power output of PVDF limits its widespread application and poses a significant challenge to the advancement of PEHs. [...] Read more.
Piezoelectric materials based on polyvinylidene fluoride (PVDF) are widely regarded as ideal candidates for the fabrication of piezoelectric energy harvesters (PEHs). However, the relatively low power output of PVDF limits its widespread application and poses a significant challenge to the advancement of PEHs. To address this issue, we have designed a novel PEH using silver-modified lead zirconate titanate/PVDF (pPZT@Ag/PVDF), which achieves a remarkable balance between high output performance and long-term stability. The pPZT@60Ag/PVDF PEH generates a peak voltage of 14.33 V, which is about 2.6 times that of the pure lead zirconate titanate/PVDF (pPZT/PVDF) PEH. This enhancement is attributed to the confined structure within the PVDF fibers, as well as the enhancement in dipole orientation alignment and the local electric field induced by silver nanoparticle modification. Furthermore, the pPZT@60Ag/PVDF PEH demonstrates a peak power density of 0.58 μW/cm2, with negligible degradation in output voltage after 6000 bending cycles, and efficiently harvests mechanical energy from human movement. This study presents an effective method for fabricating high-performance PEHs, which is expected to advance the development of next-generation energy harvesting devices. Full article
Show Figures

Figure 1

Back to TopTop