Biopolymer Materials for Wound Healing, 3rd Edition

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Nanomedicine and Nanotechnology".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 1371

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Pharmacy, University of the Basque Country (UPV /EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
Interests: drug delivery; biomaterials; regenerative medicine; cell therapy; biomarkers
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
2. Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande—FURG, Rio Grande 96203-900, RS, Brazil
Interests: biomaterials; nanomaterials; 3D printing; tissue engineering; bioinks
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Biopolymers have interesting physical and chemical properties, structures, and biological activity required to promote wound healing. In addition, they can be processed into a variety of shapes (i.e., films, fibers, gels, and particles). They are often associated with cells and/or therapeutic biomolecules to further improve wound healing. Moreover, the modification of biopolymers with different functional groups has led to the development of stimuli-responsive materials, in which it is possible to trigger the release of therapeutic molecules in biological environments with different characteristics. This Special Issue highlights some of the most promising approaches to biopolymer materials for wound healing applications. We invite articles on all aspects of research in this field, which may help to accelerate scientific knowledge and reach clinical applications.

Prof. Dr. Gorka Orive
Prof. Dr. Martin Federico Desimone
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biopolymer
  • wound healing
  • scaffolds
  • biomaterials
  • tissue engineering
  • regenerative medicine
  • drug delivery

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issues

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 9645 KiB  
Article
Fabrication of Bio-Composite of Piezoelectric/Myrrh Nanofiber Scaffolds for Wound Healing via Portable Gyrospun
by Enfal Eser Alenezi, Amalina Amir, Hussain Ali Alenezi and Timucin Ugurlu
Pharmaceutics 2025, 17(6), 717; https://doi.org/10.3390/pharmaceutics17060717 - 29 May 2025
Viewed by 455
Abstract
Background/Objectives: Polymeric monoaxial nanofibers are gaining prominence due to their numerous applications, particularly in functional scenarios such as wound management. The study successfully developed and built a special-purpose vessel and device for fabricating polymeric nanofibers. Fabrication of composite scaffolds from piezoelectric poly(vinylidenefluoride-trifluoroethylene) [...] Read more.
Background/Objectives: Polymeric monoaxial nanofibers are gaining prominence due to their numerous applications, particularly in functional scenarios such as wound management. The study successfully developed and built a special-purpose vessel and device for fabricating polymeric nanofibers. Fabrication of composite scaffolds from piezoelectric poly(vinylidenefluoride-trifluoroethylene) copolymer (PVDF-TrFE) nanofibers encapsulated with myrrh extract was investigated. Methods: The gyrospun nanofibers were characterized using SEM, EDX, FTIR, XRD, and TGA to assess the properties of the composite materials. The study also investigated the release profile of myrrh extract from the nanofibers, demonstrating its potential for sustained drug delivery. The composite’s antimicrobial properties were evaluated using the disc diffusion method against various pathogenic microbes, showcasing their effectiveness. Results: It was found that an 18% (w/v) PVDF-TrFE concentration produces the best fiber mats compared to 20% and 25%, resulting in an average fiber diameter of 411 nm. Myrrh extract was added in varying amounts (10%, 15%, and 20%), with the best average fiber diameter identified at 10%, measuring 436 nm. The results indicated that the composite nanofibers were uniform, bead-free, and aligned without myrrh. The study observed a cumulative release of 79.66% myrrh over 72 h. The release profile showed an initial burst release of 46.85% within the first six hours, followed by a sustained release phase. Encapsulation efficiency was 89.8%, with a drug loading efficiency of 30%. Antibacterial activity peaked at 20% myrrh extract. S. mutans was the most sensitive pathogen to myrrh extract. Conclusions: Due to the piezoelectric effect of PVDF-TrFE and the significant antibacterial activity of myrrh, the prepared biohybrid nanofibers will open new avenues toward tissue engineering and wound healing applications. Full article
(This article belongs to the Special Issue Biopolymer Materials for Wound Healing, 3rd Edition)
Show Figures

Graphical abstract

13 pages, 1919 KiB  
Article
Development of a Liposome Nanoformulation for the Delivery of Lipoic Acid as a Potential Neuroprotective Therapy in Glaucoma
by Pablo Edmundo Antezana, Ailen Gala Hvozda Arana, Sofia Municoy, Martín Federico Desimone, Pablo Evelson and Sandra Ferreira
Pharmaceutics 2025, 17(5), 664; https://doi.org/10.3390/pharmaceutics17050664 - 18 May 2025
Viewed by 494
Abstract
Background/Objectives: Glaucoma is the leading cause of irreversible blindness worldwide and oxidative stress is considered to play a key role in its development. While antioxidants offer a promising approach to mitigating oxidative stress, their clinical application is often hindered by bioavailability and [...] Read more.
Background/Objectives: Glaucoma is the leading cause of irreversible blindness worldwide and oxidative stress is considered to play a key role in its development. While antioxidants offer a promising approach to mitigating oxidative stress, their clinical application is often hindered by bioavailability and absorption challenges. Entrapment antioxidants within liposomes may overcome these issues, enhancing their stability and delivery. The aim of this study was to develop a novel composite liposomal formulation for glaucoma treatment, designed to enhance lipoic acid bioavailability and administration through its incorporation into the lipid bilayer. Methods: Liposomes were prepared via lipid film hydration and extrusion. To characterize them, the following analyses were performed: FTIR spectroscopy, liposomal bilayer melting temperature (Tm), TEM, DLS, Z-potential, antioxidant activity, and cytotoxicity assays. Results: The efficient incorporation of lipoic acid into the liposomes’ lipid bilayer was confirmed by FTIR. This incorporation resulted in an increase in the Tm, from 37.0 °C for liposomes to 40.0 °C for liposomes with lipoic acid (L-LA). TEM images confirmed that the spherical morphology of the lipid vesicles remained unchanged following LA incorporation. Dynamic Light Scattering analysis revealed effective diameters of 423 ± 36 nm for L liposomes and 404 ± 62 nm for L-LA liposomes. Notably, the Z-potential shifted from +4.7 ± 0.4 mV (L) to −0.4 ± 0.3 mV (L-LA). Furthermore, L-LA exhibited significant antioxidant activity (31.6 ± 0.4%) compared with L (5.3 ± 0.3%) and biocompatibility, suggesting its potential for therapeutic applications. Conclusions: In summary, biocompatible composite liposomes with antioxidant capacity were successfully developed, resulting in promising candidates for neuroprotective glaucoma therapy. Full article
(This article belongs to the Special Issue Biopolymer Materials for Wound Healing, 3rd Edition)
Show Figures

Figure 1

Back to TopTop