Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,738)

Search Parameters:
Keywords = physiology of bacteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3378 KB  
Article
Fungal Endophyte Comprehensively Orchestrates Nodulation and Nitrogen Utilization of Legume Crop (Arachis hypogaea L.)
by Xing-Guang Xie, Hui-Jun Jiang, Kai Sun, Yuan-Yuan Zhao, Xiao-Gang Li, Ting Han, Yan Chen and Chuan-Chao Dai
J. Fungi 2026, 12(1), 65; https://doi.org/10.3390/jof12010065 - 13 Jan 2026
Abstract
(1) Background: Improving nitrogen use efficiency in peanuts is essential for achieving a high yield with reduced nitrogen fertilizer input. This study investigates the role of the fungal endophyte Phomopsis liquidambaris in regulating nitrogen utilization throughout the entire growth cycle of peanuts. (2) [...] Read more.
(1) Background: Improving nitrogen use efficiency in peanuts is essential for achieving a high yield with reduced nitrogen fertilizer input. This study investigates the role of the fungal endophyte Phomopsis liquidambaris in regulating nitrogen utilization throughout the entire growth cycle of peanuts. (2) Methods: Field pot experiments and a two-year plot trial were conducted. The effects of Ph. liquidambaris colonization on the rhizosphere microbial community, soil nitrogen forms, and peanut physiology were analyzed. (3) Results: Colonization by Ph. liquidambaris significantly suppressed the abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in the rhizosphere at the seedling stage. This led to a transient decrease in nitrate and an increase in ammonium availability, which enhanced nodulation-related physiological responses. Concurrently, the peanut-specific rhizobium Bradyrhizobium sp. was enriched in the rhizosphere, and the root exudates induced by the fungus further stimulated nodulation activity. These early-stage effects promoted the establishment of peanut–Bradyrhizobium symbiosis. During the mid-to-late growth stages, the fungus positively reshaped the composition of key functional microbial groups (including diazotrophs, AOA, and AOB), thereby increasing rhizosphere nitrogen availability. (4) Conclusions: Under low nitrogen fertilization, inoculation with Ph. liquidambaris maintained yield stability in long-term monocropped peanuts by enhancing early nodulation and late-stage rhizosphere nitrogen availability. This study provides a promising microbe-based strategy to support sustainable legume production with reduced nitrogen fertilizer application. Full article
(This article belongs to the Special Issue Plant Symbiotic Fungi)
Show Figures

Figure 1

20 pages, 3991 KB  
Review
Review on Mining Robust Lactic Acid Bacteria for Next-Generation Silage Inoculants via Multi-Omics
by Yanyan Liu, Mingxuan Zhao, Shanyao Zhong, Guoxin Wu, Fulin Yang and Jing Zhou
Life 2026, 16(1), 108; https://doi.org/10.3390/life16010108 - 12 Jan 2026
Viewed by 43
Abstract
Lactic acid bacteria (LAB), as the core microorganisms in silage fermentation, play a crucial role in improving silage quality and ensuring feed safety, making the screening, identification, and functional characterization of LAB strains a significant research focus. Researchers initially isolate and purify LAB [...] Read more.
Lactic acid bacteria (LAB), as the core microorganisms in silage fermentation, play a crucial role in improving silage quality and ensuring feed safety, making the screening, identification, and functional characterization of LAB strains a significant research focus. Researchers initially isolate and purify LAB from various samples, followed by identification through a combination of morphological, physiological, biochemical, and molecular biological methods. Systematic screening has been conducted to identify LAB strains tolerant to extreme environments (e.g., low temperature, high temperature, high salinity) and those possessing functional traits such as antimicrobial activity, antioxidant capacity, production of feruloyl esterase and bacteriocins, as well as cellulose degradation, yielding a series of notable findings. Furthermore, modern technologies, including microbiomics, metabolomics, metagenomics, and transcriptomics, have been employed to analyze the structure and functional potential of microbial communities, as well as metabolic dynamics during the ensiling process. The addition of superior LAB inoculants not only facilitates rapid acidification to reduce nutrient loss, inhibit harmful microorganisms, and improve fermentation quality and palatability but also demonstrates potential functions such as degrading mycotoxins, adsorbing heavy metals, and reducing methane emissions. However, its application efficacy is directly constrained by factors such as strain-crop specific interactions, high dependence on raw material conditions, limited functionality of bacterial strains, and relatively high application costs. In summary, the integration of multi-omics technologies with traditional methods, along with in-depth exploration of novel resources like phyllosphere endophytic LAB, will provide new directions for developing efficient and targeted LAB inoculants for silage. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

44 pages, 1670 KB  
Review
Synergistic Interactions Between Bacteria-Derived Metabolites and Emerging Technologies for Meat Preservation
by Carlos Alberto Guerra, André Fioravante Guerra and Marcelo Cristianini
Fermentation 2026, 12(1), 43; https://doi.org/10.3390/fermentation12010043 - 10 Jan 2026
Viewed by 264
Abstract
Considering the challenges associated with implementing emerging technologies and bacterial-derived antimicrobial metabolites at an industrial scale in the meat industry, this comprehensive review investigates the interactions between lactic acid bacteria-producing antimicrobial metabolites and emerging food preservation technologies applied to meat systems. By integrating [...] Read more.
Considering the challenges associated with implementing emerging technologies and bacterial-derived antimicrobial metabolites at an industrial scale in the meat industry, this comprehensive review investigates the interactions between lactic acid bacteria-producing antimicrobial metabolites and emerging food preservation technologies applied to meat systems. By integrating evidence from microbiology, food engineering, and molecular physiology, the review characterizes how metabolites-derived compounds exert inhibitory activity through pH modulation, membrane permeabilization, disruption of proton motive force, and interference with cell wall biosynthesis. These biochemical actions are evaluated in parallel with the mechanistic effects of high-pressure processing, pulsed electric fields, cold plasma, irradiation, pulsed light, ultrasound, ohmic heating and nanotechnology. Across the literature, consistent patterns of synergy emerge: many emerging technologies induce structural and metabolic vulnerabilities in microbial cells, thereby amplifying the efficacy of antimicrobial metabolites while enabling reductions in process intensity. The review consolidates these findings to elucidate multi-hurdle strategies capable of improving microbial safety, extending shelf life, and preserving the physicochemical integrity of meat products. Remaining challenges include optimizing combinational parameters, ensuring metabolite stability within complex matrices, and aligning integrated preservation strategies with regulatory and industrial constraints. Full article
(This article belongs to the Special Issue Microbial Fermentation: A Sustainable Approach to Food Production)
Show Figures

Figure 1

12 pages, 1034 KB  
Brief Report
Functional Convergence and Taxonomic Divergence in the Anchoveta (Engraulis ringens) Microbiome
by Sebastian A. Klarian, Carolina Cárcamo, Francisco Leiva, Francisco Fernandoy and Héctor A. Levipan
Fishes 2026, 11(1), 35; https://doi.org/10.3390/fishes11010035 - 8 Jan 2026
Viewed by 160
Abstract
Gut microbial community assembly involves a critical bioenergetic trade-off, yet the gut microbes with roles in influencing intestinal metabolic homeostasis remain poorly understood in pelagic ecosystems. A central unresolved question is whether microbiome structure is primarily governed by stochastic geographic drift or by [...] Read more.
Gut microbial community assembly involves a critical bioenergetic trade-off, yet the gut microbes with roles in influencing intestinal metabolic homeostasis remain poorly understood in pelagic ecosystems. A central unresolved question is whether microbiome structure is primarily governed by stochastic geographic drift or by deterministic metabolic filters imposed by diet. Here, we test the metabolic release hypothesis, which posits that access to high-quality prey physiologically “releases” the host from obligate dependence on diverse fermentative symbionts. By integrating δ15N analysis with 16S rRNA metabarcoding in the anchoveta from the South Pacific waters (Engraulis ringens), we reveal a profound, diet-induced restructuring of the gut ecosystem. We demonstrate that trophic ascent triggers a deterministic collapse in microbial alpha diversity (rs = −0.683), driven by the near-complete competitive exclusion of fermentative bacteria (rs = −0.874) and the resulting dominance of a specialized proteolytic core. Mechanistically, the bioavailability of zooplankton-derived protein favors efficient endogenous hydrolysis over costly microbial fermentation, rendering functional redundancy obsolete. Crucially, we find that while metabolic function converges, taxonomic identity remains geographically structured (r = 0.532), suggesting that local environments supply the specific taxa to fulfill universal metabolic roles. These findings establish a link between δ15N as a nutritional physiology proxy of anchoveta and its gut for microbial functional state, bridging the gap between nutritional physiology and ecosystem modeling to better inform the management of global forage fish stocks. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

22 pages, 2173 KB  
Review
Stress-Induced Plant Specialized Metabolism: Signaling, Multi-Omics Integration, and Plant-Derived Antimicrobial Metabolites to Combat Antimicrobial Resistance
by Luis Enrique Pérez-Sánchez, Luis Mario Ayala-Guerrero, Aarón Mendieta-Moctezuma, Miguel Angel Villalobos-López and Selma Ríos-Meléndez
Plants 2026, 15(2), 193; https://doi.org/10.3390/plants15020193 - 8 Jan 2026
Viewed by 258
Abstract
Antimicrobial resistance (AMR) is one of the major health threats of the 21st century and demands innovative sources of bioactive compounds. In 2019, infections caused by resistant bacteria directly accounted for 1.27 million deaths and contributed to an additional 4.95 million associated deaths, [...] Read more.
Antimicrobial resistance (AMR) is one of the major health threats of the 21st century and demands innovative sources of bioactive compounds. In 2019, infections caused by resistant bacteria directly accounted for 1.27 million deaths and contributed to an additional 4.95 million associated deaths, underscoring the urgency of exploring new strategies. Among emerging alternatives, specialized plant metabolites stand out, as their biosynthesis is enhanced under biotic or abiotic stress. These stimuli increase reactive oxygen species (ROS), activate cascades regulated by mitogen-activated protein kinases (MAPKs), and trigger defense-related hormonal pathways involving salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA), which in turn regulate transcription factors and biosynthetic modules, promoting the accumulation of compounds with antimicrobial activity. In this review, we synthesize recent literature (2020–2025) with emphasis on studies that report quantitative activity metrics. We integrate evidence linking stress physiology and metabolite production, summarize mechanisms of action, and propose a conceptual multi-omics pipeline, synthesized from current best practices, that combines RNA sequencing and LC/GC-MS-based metabolomics with bioinformatic tools to prioritize candidates with antimicrobial potential. We discuss elicitation strategies and green extraction, highlight bryophytes (e.g., Pseudocrossidium replicatum) as a differentiated chemical source, and explore citrus Huanglongbing (HLB) as a translational case study. We conclude that integrating stress physiology, multi-omics, and functional validation can accelerate the transition of stress-induced metabolites toward more sustainable and scalable medical and agricultural applications. Full article
(This article belongs to the Special Issue Insights and Regulation of Plant Growth and Metabolism)
Show Figures

Figure 1

21 pages, 3755 KB  
Article
Effects of Diet and Altitude on the Microbiota of the First Compartment of the Stomach in Peruvian Alpacas in Highland Puna Regions and Their Correlations with Blood Parameters
by Nils H. Flores-Huarco, Richard Estrada, Yolanda Romero, Pedro Coila, Diana Sanchez, Jorge L. Maicelo, Wigoberto C. Alvarado, Carlos Quilcate, Mery Aliaga, Walter Galindo, Jorge Saavedra-Ramírez, Henry Apaza and Carlos I. Arbizu
Microorganisms 2026, 14(1), 138; https://doi.org/10.3390/microorganisms14010138 - 8 Jan 2026
Viewed by 234
Abstract
This study explores the intestinal microbiota of eight 18-month-old male alpacas from two distinct high-altitude regions in Peru: the Wet Puna (4200 m above sea level) and the Dry Puna (4900 m above sea level). Using 16S rRNA and 18S rRNA metabarcoding, microbial [...] Read more.
This study explores the intestinal microbiota of eight 18-month-old male alpacas from two distinct high-altitude regions in Peru: the Wet Puna (4200 m above sea level) and the Dry Puna (4900 m above sea level). Using 16S rRNA and 18S rRNA metabarcoding, microbial communities of bacteria, archaea, fungi, and protists were analyzed from the first compartment of the stomach (C1) to investigate the diversity, taxonomic composition, and correlations with hematological parameters. Significant differences in microbial diversity and composition were observed between regions, driven by dietary and environmental factors. The Wet Puna exhibited greater alpha diversity in bacterial and fungal communities, while beta diversity highlighted distinct microbial compositions. Key taxa, such as Prevotella ruminicola and Acetitomaculum, were associated with energy metabolism and host adaptation, whereas methanogenic archaea (Methanobrevibacter, Methanosphaera) dominated in the Dry Puna, reflecting adaptations to arid conditions. Correlations between microbial taxa and hematological variables, such as Acetitomaculum with red blood cell count and Eremoplastron with neutrophil percentage, emphasize the complex interplay between microbiota and host physiology. These findings contribute to understanding microbial adaptations in high-altitude livestock and provide practical insights for enhancing alpaca management and conservation strategies through tailored nutritional approaches and sustainable grazing practices. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

28 pages, 4469 KB  
Article
Soil Carbon Storage in Forest and Grassland Ecosystems Along the Soil-Geographic Transect of the East European Plain: Relation to Soil Biological and Physico-Chemical Properties
by Anna Zavarzina, Natalia Kulikova, Andrey Belov, Vladimir Demin, Marina Rozanova, Pavel Pogozhev and Igor Danilin
Forests 2026, 17(1), 69; https://doi.org/10.3390/f17010069 - 5 Jan 2026
Viewed by 147
Abstract
Soils represent the largest reservoir of organic carbon (OC) in terrestrial ecosystems, storing approximately 1500 Gt C. Forest and grassland ecosystems contribute 39% and 34% to global terrestrial carbon stocks, with soils holding about 44% and 89% of forest and grassland carbon, respectively. [...] Read more.
Soils represent the largest reservoir of organic carbon (OC) in terrestrial ecosystems, storing approximately 1500 Gt C. Forest and grassland ecosystems contribute 39% and 34% to global terrestrial carbon stocks, with soils holding about 44% and 89% of forest and grassland carbon, respectively. Land-use changes, such as the conversions between forest and grassland ecosystems, can strongly influence soil carbon accumulation, though the direction and magnitude remain uncertain. Comparative data from paired-plot studies of forest and grassland soils are still limited. In this study, we conducted pairwise comparisons of total OC and total nitrogen (TN) stocks in mature forest and climax grassland soils along a climatic and pedogenic gradient encompassing Retisols, Luvisols, and Chernozems. Relationships between OC and TN stocks (0–10 cm) and soil physicochemical properties—OC and TN contents, bulk density, pH, clay content, and humus fractional composition, as well as biological indicators—the abundance of culturable fungi and bacteria, microbial biomass carbon, potential metabolic activity, and activities of laccase and dehydrogenase, were evaluated. Strong positive correlations were found between OC and TN stocks and OC and TN contents (r = 0.62–0.99), pH (r = 0.79–0.81), clay content (r = 0.70–0.87), and the fraction of humic acids bound with calcium (r = 0.73). OC stocks also correlated strongly with dehydrogenase activity (r = 0.85–0.95). At 0–10 cm depth, OC stocks were higher in grassland soils than in forest soils by factors of 1.6–1.7 in Retisols and 1.4–1.5 in Chernozems. Similarly, TN stocks were 1.6–2.0 times greater in grasslands across all soil types. Community-level physiological profiling revealed higher potential metabolic activity in forest soils compared with grasslands, with the strongest differences in Retisols and Luvisols, while contrasts were attenuated in Chernozems. Overall, the results highlight the fundamental role of organo-mineral interactions and calcium binding in OC stabilization, as well as the likely involvement of dehydrogenase activity in the biogenic formation of calcium carbonates that contribute to this process. Full article
(This article belongs to the Special Issue Soil Carbon Storage in Forests: Dynamics and Management)
Show Figures

Graphical abstract

24 pages, 7377 KB  
Article
Multi-Omics Analyses Unveil the Effects of a Long-Term High-Salt, High-Fat, and High-Fructose Diet on Rats
by Yue Yao, Xiao Wu, Hao Wu, Weiwei Su and Peibo Li
Foods 2026, 15(1), 171; https://doi.org/10.3390/foods15010171 - 4 Jan 2026
Viewed by 381
Abstract
Background: Unhealthy diets characterized by high salt, fat, and fructose content are established risk factors for metabolic and cardiovascular disorders and may have indirect effects on cognitive function. However, the combined impact of a high-salt, high-fat, and high-fructose diet (HSHFHFD) on systemic physiology [...] Read more.
Background: Unhealthy diets characterized by high salt, fat, and fructose content are established risk factors for metabolic and cardiovascular disorders and may have indirect effects on cognitive function. However, the combined impact of a high-salt, high-fat, and high-fructose diet (HSHFHFD) on systemic physiology and brain health remains to be fully elucidated. Methods: Sprague-Dawley (SD) rats received a customized high-salt, high-fat diet supplemented with 30% fructose water for 18 weeks. Physiological and brain parameters were assessed, in combination with multi-omics analyses including brain proteomics and metabolomics, serum metabolomics, and gut microbiota profiling. Results: HSHFHFD significantly elevated blood glucose, blood pressure, and serum levels of TG, TC, and LDL in rats. Serum metabolomic profiling identified over 100 differentially abundant metabolites in the Model group. Proteomics, metabolomics, and gut microbiome integration revealed pronounced alterations in both brain proteomic and metabolomic profiles, with 155 differentially expressed proteins associated with glial cell proliferation and 65 differential metabolites linked to fatty acid and amino acid metabolism, among others. Experimental validation confirmed marked upregulation of GFAP and Bax protein, concomitant with downregulation of ZO-1 and occludin. Furthermore, HSHFHFD perturbed the CREB signaling pathway, leading to diminished BDNF expression. The levels of inflammatory factors, including IL-6, IL-10, IL-1β and TNFα, were significantly elevated in the brain. Oxidative stress was evident, as indicated by elevated malondialdehyde (MDA) levels, increased superoxide dismutase (SOD) activity, and altered NAD+/NADH ratio. Additionally, HSHFHFD significantly reduced the abundance of beneficial gut bacteria, including Lactobacillus, Romboutsia, and Monoglobus. Conclusions: HSHFHFD-induced depletion of gut Lactobacillus spp. may disrupt the linoleic acid metabolic pathway and gut–brain axis homeostasis, leading to the impairment of neuroprotective function, blood–brain barrier dysfunction, and exacerbated neuroinflammation and oxidative stress in the brain. These effects potentially increase the susceptibility of rats to neurodegenerative disorders. Full article
(This article belongs to the Section Foodomics)
Show Figures

Graphical abstract

20 pages, 1525 KB  
Article
Antibiotic-Mediated Microbiota Depletion of Aedes aegypti Gut Bacteria Modulates Susceptibility to Entomopathogenic Fungal Infection and Modifies Developmental Factors
by Josiane Pessanha Ribeiro, Adriano Rodrigues de Paula, Leila Eid Imad Silva, Gerson Adriano Silva, Carlos Peres Silva, Tariq M. Butt and Richard Ian Samuels
Parasitologia 2026, 6(1), 4; https://doi.org/10.3390/parasitologia6010004 - 4 Jan 2026
Viewed by 182
Abstract
Entomopathogenic fungi are promising alternatives to synthetic insecticides for the control of vector species, notably the arbovirus vector, Aedes aegypti. The influence of intrinsic mosquito midgut microbiota on host susceptibility to fungal infection and subsequent physiological processes remains poorly understood. Here we [...] Read more.
Entomopathogenic fungi are promising alternatives to synthetic insecticides for the control of vector species, notably the arbovirus vector, Aedes aegypti. The influence of intrinsic mosquito midgut microbiota on host susceptibility to fungal infection and subsequent physiological processes remains poorly understood. Here we treated female Ae. aegypti with the broad-spectrum antibiotic carbenicillin to reduce gut bacterial populations, then exposed them to Metarhizium anisopliae conidia. Female Ae. aegypti offered carbenicillin and then sprayed with fungi had significantly lower survival rates (38.9% ± 1.15) compared to non-antibiotic-treated mosquitoes sprayed with fungus (68.9% ± 0.58). To monitor the kinetics of microbial community recovery, mosquitoes were challenged with conidia at 0, 3, 6, and 9 days following antibiotic removal from the diet. Reduced survival persisted through the 6-day period (survival rates 37.8% to 45.6%), with a significant increase in survival observed 9 days post-antibiotic removal (58.9% vs. control 63.3%), which coincided with recovery of gut bacterial populations. Additionally, antibiotic and fungal treatments reduced egg production, larval eclosion, and pupal formation. These results demonstrate that gut bacteria contribute to mosquito defense against fungal pathogens and support normal reproductive and developmental functions. Understanding the interplay between gut microbiota and entomopathogenic fungi may enhance biological control approaches. Full article
Show Figures

Figure 1

55 pages, 3040 KB  
Review
Beetroot Juice and Exercise for Clinical Health and Athletic Performance: A Narrative Review
by Eunjoo Lee, Hun-Young Park, Yerin Sun, Jae-Ho Choi, Seungyeon Woo, Sohyang Cho, Suyoung Kim, Yuanning Zheng, Sung-Woo Kim and Kiwon Lim
Nutrients 2026, 18(1), 151; https://doi.org/10.3390/nu18010151 - 1 Jan 2026
Viewed by 1113
Abstract
Beetroot juice (BRJ), a concentrated dietary source of nitrate alongside betalains and polyphenols, influences physiology through enhanced nitrate–nitrite–NO bioavailability, antioxidant activity, and interactions with oral and gut nitrate-reducing microbiota. The efficiency of these mechanisms depends on dose, timing, and preservation of oral bacteria, [...] Read more.
Beetroot juice (BRJ), a concentrated dietary source of nitrate alongside betalains and polyphenols, influences physiology through enhanced nitrate–nitrite–NO bioavailability, antioxidant activity, and interactions with oral and gut nitrate-reducing microbiota. The efficiency of these mechanisms depends on dose, timing, and preservation of oral bacteria, with antibacterial mouthwash or thiocyanate-rich foods potentially blunting NO2 generation. Acute BRJ ingestion consistently elevates circulating nitrate and nitrite, yet its impact on glucose, insulin, and lipid regulation is modest; chronic intake may reinforce nitrate-reduction capacity, improve redox balance, and shift microbial composition, though long-term metabolic outcomes remain variable. Cardiovascular adaptations appear more coherent, with acute reductions in systolic blood pressure and improved endothelial function complemented in some cases by microvascular enhancements during multi-week supplementation. Neuromuscular and cognitive effects are less uniform; BRJ does not reliably increase maximal strength or global cognition but may support electrophysiological recovery after muscle-damaging exercise and improve executive performance under fatigue. In exercise settings, dose and timing are critical, as BRJ most consistently benefits endurance performance by reducing oxygen cost, improving exercise economy, and enhancing time-trial or time-to-exhaustion outcomes, whereas effects on sprint, power, and team-sport tasks are more sensitive to contraction duration, recovery intervals, and athlete training status. Overall, available evidence supports a role for NO-mediated vascular and metabolic pathways in the physiological effects of BRJ, although marked inter-individual variability highlights the need for responder-focused dosing strategies and further mechanistic investigation integrating metabolic, microbial, and performance-related outcomes. Full article
(This article belongs to the Special Issue Linking Fruit and Vegetable Bioactives to Human Health and Wellness)
Show Figures

Figure 1

14 pages, 1115 KB  
Communication
Characterization of the Bacteriome of Culicoides reevesi from Chihuahua, Northern Mexico: Symbiotic and Pathogenic Associations
by Rodolfo González-Peña, David Orlando Hidalgo-Martínez, Stephanie V. Laredo-Tiscareño, Herón Huerta, Erick de Jesús de Luna-Santillana, Jaime R. Adame-Gallegos, Carlos A. Rodríguez-Alarcón, Ezequiel Rubio-Tabares, Julián E. García-Rejón, Zilia Y. Muñoz-Ramírez, Chandra Tangudu and Javier A. Garza-Hernández
Insects 2026, 17(1), 52; https://doi.org/10.3390/insects17010052 - 1 Jan 2026
Viewed by 315
Abstract
Culicoides biting midges are vectors of veterinary and zoonotic pathogens, yet the bacteriome of several species remains unexplored. Culicoides reevesi, a poorly studied species in northern Mexico, represents an opportunity to investigate microbial associations that may influence vector biology. Adults of C. [...] Read more.
Culicoides biting midges are vectors of veterinary and zoonotic pathogens, yet the bacteriome of several species remains unexplored. Culicoides reevesi, a poorly studied species in northern Mexico, represents an opportunity to investigate microbial associations that may influence vector biology. Adults of C. reevesi were analyzed using 16S rRNA amplicon sequencing, followed by functional prediction with PICRUSt2. Heatmaps and pathway summaries were generated to highlight dominant taxa and functions. The bacteriome was dominated by Pseudomonadota, followed by Actinomycetota, Bacillota, and Bacteroidota. Symbiotic taxa such as Asaia and Cardinium were identified alongside potentially pathogenic bacteria, including Escherichia coli, Mycobacterium avium, Vibrio parahaemolyticus, and Enterococcus faecalis. Functional predictions indicated metabolic versatility, with abundant pathways related to aerobic respiration, the TCA cycle, amino acid biosynthesis, and quorum sensing. Despite all samples being collected from the same site and date, apparent differences in bacterial composition were observed across pools, suggesting microhabitat or host-related variability. This study provides the first taxonomic and functional baseline of the C. reevesi bacteriome. The detection of both symbiotic and pathogenic bacteria highlights the dual ecological role of the microbiome in host fitness and pathogen transmission potential. In conclusion, we suggest that these microbial associations influence vector physiology and competence, providing a basis for future microbiome-based control strategies. These findings emphasize the importance of integrating microbiome analyses into entomological surveillance and vector control strategies in endemic regions. Full article
(This article belongs to the Topic Diversity of Insect-Associated Microorganisms)
Show Figures

Figure 1

17 pages, 1357 KB  
Article
Effects of Alkaline Mineral Complex Supplementation on Growth Performance, Meat Quality, Serum Biochemical Parameters, and Digestive Function of Fattening Lambs
by Qing Mu, Jiawei Ai, Zhiqiang Gao, Shujun Tian and Xiaoyong Chen
Animals 2026, 16(1), 106; https://doi.org/10.3390/ani16010106 - 30 Dec 2025
Viewed by 231
Abstract
Serving as a mineral-derived dietary buffer, the alkaline mineral complex (AMC) has the potential to influence the physiological functions of animals. Nonetheless, there is a notable scarcity of research in the field of ruminant science regarding its effects on fattening lambs. Therefore, the [...] Read more.
Serving as a mineral-derived dietary buffer, the alkaline mineral complex (AMC) has the potential to influence the physiological functions of animals. Nonetheless, there is a notable scarcity of research in the field of ruminant science regarding its effects on fattening lambs. Therefore, the purpose of the present study was to investigate the effects of AMC supplementation on the growth performance, meat quality, serum biochemical parameters, and digestive function of fattening lambs. A total of 96 six-month-old male Small-Tailed Han lambs with an average body weight of 48 ± 3.85 kg were randomly assigned to four groups: the control group (CON, 0 g/d per lamb of AMC), test group 1 (LAMC, 2 g/d per lamb of AMC), test group 2 (MAMC, 3 g/d per lamb of AMC), and test group 3 (HAMC, 4 g/d per lamb of AMC). Each group contained 24 lambs, with 3 pens per group and 8 lambs per pen. The trial lasted for 45 days, and the results showed that, compared with the CON group, the MAMC group demonstrated a significantly enhanced average daily gain (ADG) with a reduced feed conversion ratio (FCR) (p < 0.05). The redness (a*) of the meat in the AMC-treated groups was significantly greater than that of the CON group (p < 0.05). The intramuscular fat (IMF) content in the longissimus dorsi (LD) of the MAMC group was significantly increased compared to the CON group (p < 0.05). The low-density lipoprotein (LDL) and total cholesterol (TC) levels in the HAMC group were greater than those of other groups (p < 0.01), and the superoxide dismutase (SOD) content was higher in the AMC-treated groups compared to the CON group (p < 0.05). In addition, the duodenum lipase content in the HAMC group was significantly lower than that in the CON group (p < 0.05), and the amylase content in the MAMC group was significantly higher than that of the CON group (p < 0.05). The HAMC group had a significantly lower jejunum lipase content than those in the other groups (p < 0.05). The LEfSe analysis showed that the MAMC group possessed significantly increased g_Prevotellaceae_Ga6A1_group levels. Furthermore, SOD and catalase (CAT) were both positively correlated with meat redness (a*) but were not significantly associated with ADG. In contrast, malondialdehyde (MDA) was negatively correlated with ADG, while no significant relationship was observed for meat redness (a*). In conclusion, an appropriate supplementation of AMC (3 g/d per lamb) can improve growth performance and meat quality by enhancing the antioxidant capacity and modulating the composition of beneficial rumen bacteria. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

14 pages, 1547 KB  
Article
Salivary Oral Microbiota in Patients with Prediabetes Undergoing Intragastric Balloon Surgery
by Rabab A. D. Meshan, Norah Ahmed AlOsaimi, Abdulmohsen Redha and Maribasappa Karched
Microbiol. Res. 2026, 17(1), 7; https://doi.org/10.3390/microbiolres17010007 - 30 Dec 2025
Viewed by 191
Abstract
Kuwait faces a significant public health challenge from obesity and Type 2 Diabetes Mellitus (T2DM), conditions known to disrupt the natural balance of oral bacteria. This imbalance, or dysbiosis, can promote gum disease and may worsen metabolic health. While the intragastric balloon (IGB) [...] Read more.
Kuwait faces a significant public health challenge from obesity and Type 2 Diabetes Mellitus (T2DM), conditions known to disrupt the natural balance of oral bacteria. This imbalance, or dysbiosis, can promote gum disease and may worsen metabolic health. While the intragastric balloon (IGB) is a common, less invasive weight-loss procedure, its specific effect on the community of bacteria in saliva remains unclear, especially for high-risk groups. The objective of this study was to investigate changes in the salivary microbiota of obese prediabetic patients following IGB placement. We recruited 20 obese patients (11 female, 9 male; average age 31.5) from a clinic in Kuwait. Saliva samples were collected just before IGB (Allurion™) insertion and again 6 weeks after that. Using 16S rRNA gene sequencing, we identified the bacterial species present and used bioinformatic tools to analyze diversity and abundance. Our analysis revealed that the overall diversity and structure of the salivary microbial community remained stable after the procedure. However, we detected notable changes in specific types of bacteria. The relative abundance of several genera, including Veillonella, Porphyromonas, and Fusobacterium, shifted significantly. At the species level, Porphyromonas pasteri and Haemophilus parainfluenzae became less abundant, while certain Veillonella and Streptococcus species increased in number after the IGB was placed. In conclusion, for obese prediabetic patients in Kuwait, the salivary microbiome demonstrates remarkable stability in the weeks following IGB surgery. The procedure did not drastically alter the overall ecosystem, but it did trigger specific, subtle changes in certain bacterial populations. This suggests the oral microbiota is resilient, adapting to the new physiological conditions without a major upheaval. Full article
Show Figures

Figure 1

35 pages, 2746 KB  
Review
Advances in Biotechnological GABA Production: Exploring Microbial Diversity, Novel Food Substrates, and Emerging Market Opportunities
by Fabian Hernandez-Tenorio, Mateo Mejía-Rúa, Luz Deisy Marín-Palacio, Bernadette Klotz-Ceberio, David Orrego and Catalina Giraldo-Estrada
Int. J. Mol. Sci. 2026, 27(1), 306; https://doi.org/10.3390/ijms27010306 - 27 Dec 2025
Viewed by 394
Abstract
Gamma-aminobutyric acid (GABA) is a non-protein amino acid distributed in nature by different types of organisms and microorganisms. GABA has been widely studied for its different physiological functions and industrial applications. Its production is mainly carried out through fermentation processes using lactic acid [...] Read more.
Gamma-aminobutyric acid (GABA) is a non-protein amino acid distributed in nature by different types of organisms and microorganisms. GABA has been widely studied for its different physiological functions and industrial applications. Its production is mainly carried out through fermentation processes using lactic acid bacteria (LAB), which are of particular interest because they are safe and possess high glutamate decarboxylase enzyme activity. However, GABA production can vary among different LAB species and is affected by culture conditions. Therefore, strain development and selection, as well as optimization of fermentation parameters, are essential to increase GABA yields and meet the needs of industrial demand. This review quantitatively analyzes recent advances in fermentative GABA production, showing a sustained increase in publications and a predominance of chromatography-based quantification methods (approximately 68%), mainly using pre-column derivatization. Optimized fermentation strategies, supported by statistical and artificial intelligence models, have achieved GABA concentrations of up to 90 mM. In parallel, in silico genomic and metabolic analyses revealed the widespread distribution of key GABA biosynthesis and transport genes among LAB, supporting their selection and engineering. Overall, the integration of advanced analytical methods, bioinformatics-guided strain selection, and computational process optimization emerges as a key strategy to enhance GABA productivity and support future industrial-scale applications. Full article
Show Figures

Graphical abstract

19 pages, 527 KB  
Review
The Role of Biofilm-Derived Compounds in Microbial and Protozoan Interactions
by Smruti Mahapatra and Serge Ankri
Microorganisms 2026, 14(1), 64; https://doi.org/10.3390/microorganisms14010064 - 27 Dec 2025
Viewed by 432
Abstract
Biofilms are more than just structural microbial communities. They are dynamic chemical ecosystems that synthesize a range of extracellular compounds involved in functions that extend beyond biofilm architecture. From quorum-sensing molecules like acyl-homoserine lactones (AHLs) to short-chain fatty acids (SCFAs), phenazines, indoles, and [...] Read more.
Biofilms are more than just structural microbial communities. They are dynamic chemical ecosystems that synthesize a range of extracellular compounds involved in functions that extend beyond biofilm architecture. From quorum-sensing molecules like acyl-homoserine lactones (AHLs) to short-chain fatty acids (SCFAs), phenazines, indoles, and reactive sulfur species (RSS), biofilm-derived metabolites can impact the physiology and behavior of microorganisms living in the same ecosystem, including other bacteria and protozoa. It has recently been demonstrated that such molecules may also modulate competition between microbes, promote cooperation, and impact motility, differentiation, or virulence of free-living and parasitic protozoa. This review aims to discuss biofilm compounds that mediate interspecies or interkingdom interactions and their involvement in regulating gut and environmental microbiomes functions, and host–pathogen relationships with special emphasis on protozoan activity and the infection outcome. This review will also address how this chemical dialog can be explored to identify new therapeutic interventions against microbial infections and parasitic diseases. Full article
(This article belongs to the Special Issue Advances in Molecular Biology of Entamoeba histolytica)
Show Figures

Figure 1

Back to TopTop