Synergistic Interactions Between Bacteria-Derived Metabolites and Emerging Technologies for Meat Preservation
Abstract
1. Introduction
2. Microbial-Derived Natural Preservatives
2.1. Organic Acids
2.2. Bacteriocin-Producing Lactic Acid Bacteria (LAB)
2.2.1. Class I (Lantibiotics)
2.2.2. Class II (Small, Heat-Stable Peptides)
2.2.3. Class III
2.2.4. Class IV
2.2.5. Class V
3. Emerging Technologies
3.1. High Pressure Processing (HPP)
3.2. Pulsed Light (PL)
3.3. Irradiation
3.4. Ohmic Heating
3.5. Ultrasound
3.6. Cold Plasma
3.7. Nanotechnology
3.8. Modified Atmosphere Packaging (MAP)
4. Synergistic Integration of Bacterial Antimicrobial Metabolites and Emerging Technologies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leroy, F.; Smith, N.W.; Adesogan, A.T.; Beal, T.; Iannotti, L.; Moughan, P.J.; Mann, N. The role of meat in the human diet: Evolutionary aspects and nutritional value. Anim. Front. 2023, 13, 11–18. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. Meat Market Review, Overview of Global Meat Market Developments in 2020; FAO: Rome, Italy, 2021; Volume 15, Available online: https://openknowledge.fao.org/items/d6ae59bc-08fd-40ec-a33f-c9ee32bdc7d0 (accessed on 19 November 2025).
- Cocolin, L. Microbial bioprotection: An opportunity to improve safety and quality of meat products in a sustainable way. Meat Sci. 2025, 219, 109576. [Google Scholar] [CrossRef]
- Cedillo-Olivos, A.E.; Juárez-Chairez, M.F.; Cid-Gallegos, M.S.; Sánchez-Chino, X.; Jiménez-Martínez, C. Natural preservatives used in foods: A review. Crit. Rev. Food Sci. Nutr. 2024, 65, 5049–5065. [Google Scholar] [CrossRef]
- Gómez-García, M.; Sol, C.; de Nova, P.J.G.; Puyalto, M.; Mesas, L.; Puente, H.; Mencía-Ares, Ó.; Miranda, R.; Argüello, H.; Rubio, P.; et al. Antimicrobial activity of a selection of organic acids, their salts and essential oils against swine enteropathogenic bacteria. Porc. Health Manag. 2019, 5, 32. [Google Scholar] [CrossRef]
- Molloy, E.M.; Hill, C.; Cotter, P.D.; Ross, R.P. Bacteriocins: Structure and Function. In Encyclopedia of Dairy Sciences, 3rd ed.; McSweeney, P.L.H., McNamara, J.P.B., Eds.; Academic Press: Oxford, MS, USA, 2022; pp. 55–64. ISBN 978-0-12-818767-8. [Google Scholar]
- Chauhan, K.; Rao, A. Clean-label alternatives for food preservation: An emerging trend. Heliyon 2024, 10, e35815. [Google Scholar] [CrossRef] [PubMed]
- Parada Fabián, J.C.; Álvarez Contreras, A.K.; Natividad Bonifacio, I.; Hernández Robles, M.F.; Vázquez Quiñones, C.R.; Quiñones Ramírez, E.I.; Vázquez Salinas, C. Toward safer and sustainable food preservation: A comprehensive review of bacteriocins in the food industry. Biosci. Rep. 2025, 45, 277–302. [Google Scholar] [CrossRef] [PubMed]
- Ağagündüz, D.; Ayakdaş, G.; Katırcıoğlu, B.; Ozogul, F. Advances in Non-Thermal Food Processing: A comprehensive approach to nutrient retention, food quality, and safety. Sustain. Food Technol. 2025, 3, 1284–1308. [Google Scholar] [CrossRef]
- Elbehiry, A.; Marzouk, E.; Alzaben, F.; Almuaither, A.; Abead, B.; Alamri, M.; Almuzaini, A.M.; Abu-Okail, A. Emerging technologies and integrated strategies for microbial detection and control in fresh produce. Microorganisms 2025, 13, 1447. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Das, S.; Ali, S.; Jaiswal, S.G.; Rabbani, A.; Rahman, S.M.E.; Chelliah, R.; Oh, D.-H.; Liu, S.; Wei, S. Mechanisms, applications and challenges of natural antimicrobials in food system. Food Biosci. 2025, 74, 107864. [Google Scholar] [CrossRef]
- Obafemi, Y.D.; Obiukwu, A.C.; Oranusi, S.U. Revisiting the application, current trends, and prospect of bacteriocins in food preservation. Discov. Food 2025, 5, 165. [Google Scholar] [CrossRef]
- Garriga, M.; Aymerich, M.T.; Costa, S.; Monfort, J.M.; Hugas, M. Bactericidal synergism through bacteriocins and high pressure in a meat model system during storage. Food Microbiol. 2002, 19, 509–518. [Google Scholar] [CrossRef]
- Adamcova, M.; van Andel, V.; Strohalm, J.; Houska, M.; Sevcik, R. Effect of high-pressure processing and natural antimicrobials on the shelf-life of cooked ham. Czech J. Food Sci. 2019, 37, 57–61. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhuang, J.; von Woedtke, T.; Kolb, J.; Zhang, J.; Fang, J.; Weltmann, K.-D. Synergistic antibacterial effects of treatments with low temperature plasma jet and pulsed electric fields. Appl. Phys. Lett. 2014, 105, 104103. [Google Scholar] [CrossRef]
- Eghbal, N.; Viton, C.; Gharsallaoui, A. Nano and microencapsulation of bacteriocins for food applications: A review. Food Biosci. 2022, 50, 102173. [Google Scholar] [CrossRef]
- Yuan, H.; Chen, F.; Zhang, J.; Guo, X.; Zhang, J.; Yan, W. Investigating the synergistic bactericidal effects of cold plasma and ultraviolet radiation on Pseudomonas fragi. Foods 2025, 14, 550. [Google Scholar] [CrossRef]
- Abbasiliasi, S.; Tan, J.S.; Tengku Ibrahim, T.A.; Bashokouh, F.; Ramakrishnan, N.R.; Mustafa, S.; Ariff, A.B. Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: A review. RSC Adv. 2017, 7, 29395–29420. [Google Scholar] [CrossRef]
- Vermelho, A.B.; Cardoso, V.S.; Domingos, L.T.S.; Akamine, I.T.; Amenu, B.; Osei, B.K.; Neves Junior, A. Advancements in microbial applications for sustainable food production. Foods 2025, 14, 3427. [Google Scholar] [CrossRef]
- Mesa-Pereira, B.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. Heterologous expression of biopreservative bacteriocins with a view to low cost production. Front. Microbiol. 2018, 9, 1654. [Google Scholar] [CrossRef]
- Schwaminger, S.P.; Zimmermann, I.; Berensmeier, S. Current Research Approaches in downstream processing of pharmaceutically relevant proteins. Curr. Opin. Biotechnol. 2022, 77, 102768. [Google Scholar] [CrossRef]
- Forestier, A.; Belguesmia, Y.; Krier, F.; Drider, D.; Dhulster, P.; Firdaous, L. Recovery of nisin from culture supernatants of Lactococcus lactis by ultrafiltration: Flux properties and separation efficiency. Food Bioprod. Process. 2022, 136, 196–210. [Google Scholar] [CrossRef]
- Tchabou Tientcheu, M.L.; Kaktcham, P.M.; Foko Kouam, E.M.; Tchamani Piame, L.; Djodjeu Kamega, L.C.; Aarzoo; Shekhar, A.; Pratap, S.B.; Zambou Ngoufack, F. Development of a low-cost culture medium from industrial and environmental by-products for sustainable cultivation of lactic acid bacteria. PLoS ONE 2025, 20, e0337684. [Google Scholar] [CrossRef]
- Guerra, A.F.; Paula, B.P.; Gomes, E.L.S.; Guerra, C.A.; Costa, L.M.; Coelho, M.A.Z.; Luchese, R.H.; Giacomini, A.; Corich, V. Optimization of culture medium for Lacticaseibacillus paracasei DTA-83 to produce biopreservatives enhancing meat product durability. Biocatal. Agric. Biotechnol. 2025, 67, 103684. [Google Scholar] [CrossRef]
- Guerra, C.A.; Barboza Júnior, E.P.; Alves, L.G.O.; Guerra, A.F. Biosafe control of staphylococcal enterotoxins production in shelf-stable bacon. Fermentation 2025, 11, 566. [Google Scholar] [CrossRef]
- Abedi, E.; Hashemi, S.M.B. Lactic acid production—Producing microorganisms and substrates sources-state of art. Heliyon 2020, 6, e04974. [Google Scholar] [CrossRef]
- Almohammadi, A.-R.; Abdel-Shafi, S.; Tartour, E.; Enan, G. Inhibitory action of three lactic acid bacteria cultures on some food-borne pathogens during pickling of green olive fruits. Heliyon 2022, 8, e11693. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Daliri, E.B.-M.; Wang, J.; Liu, D.; Chen, S.; Ye, X.; Ding, T. Inhibitory effect of lactic acid bacteria on foodborne pathogens: A review. J. Food Prot. 2019, 82, 441–453. [Google Scholar] [CrossRef]
- Godoy, C.A.L.; Costa, L.M.; Guerra, C.A.; Oliveira, V.S.; de Paula, B.P.; Lemos Junior, W.J.; Silva Duarte, V.; Luchese, R.H.; Bautitz, I.R.; Guerra, A.F. Potentially postbiotic-containing preservative to extend the use-by date of raw chicken sausages and semifinished chicken products. Sustainability 2022, 14, 2646. [Google Scholar] [CrossRef]
- Lima, A.L.; Guerra, C.A.; Costa, L.M.; Oliveira, V.S.; Lemos Junior, W.J.; Luchese, R.H.; Guerra, A.F. A natural technology for vacuum-packaged cooked sausage preservation with potentially postbiotic-containing preservative. Fermentation 2022, 8, 106. [Google Scholar] [CrossRef]
- Özdemir, H.; Yıldırım, Y.; Küplülü, Ö.; Koluman, A.; Göncüoğlu, M.; İnat, G. Effects of lactic acid and hot water treatments on Salmonella Typhimurium and Listeria monocytogenes on beef. Food Control 2006, 17, 299–303. [Google Scholar] [CrossRef]
- Hwang, C.-A.; Huang, L.; Sheen, S.; Juneja, V. Effects of lactic acid on the growth characteristics of Listeria monocytogenes on cooked ham surfaces. J. Food Prot. 2012, 75, 1404–1410. [Google Scholar] [CrossRef]
- Haldar, D.; Shabbirahmed, A.M.; Singhania, R.R.; Chen, C.-W.; Dong, C.-D.; Ponnusamy, V.K.; Patel, A.K. Understanding the management of household food waste and its engineering for sustainable valorization—A state-of-the-art review. Bioresour. Technol. 2022, 358, 127390. [Google Scholar] [CrossRef]
- Andrés-Barrao, C.; Benagli, C.; Chappuis, M.; Ortega Pérez, R.; Tonolla, M.; Barja, F. Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting. Syst. Appl. Microbiol. 2013, 36, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Reyes Carranza, L.; Rubio Lozano, M.S.; Méndez Medina, R.D.; Rodarte, M.D.C.W.; Núñez Espinosa, J.F.; Velázquez Camacho, B.L.; Macedo, R.E.F. Acetic acid as an intervention strategy to decontaminate beef carcasses in mexican commercial slaughterhouse. Food Sci. Technol. 2013, 33, 446–450. [Google Scholar] [CrossRef]
- Gonzalez-Fandos, E.; Herrera, B. Efficacy of acetic acid against Listeria monocytogenes attached to poultry skin during refrigerated storage. Foods 2014, 3, 527–540. [Google Scholar] [CrossRef]
- Hardin, M.D.; Acuff, G.R.; Lucia, L.M.; Oman, J.S.; Savell, J.W. Comparison of methods for decontamination from beef carcass surfaces. J. Food Prot. 1995, 58, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Guan, N.; Liu, L. Microbial response to acid stress: Mechanisms and applications. Appl. Microbiol. Biotechnol. 2020, 104, 51–65. [Google Scholar] [CrossRef]
- Collograi, K.C.; da Costa, A.C.; Ienczak, J.L. Fermentation strategies to improve propionic acid production with Propionibacterium ssp.: A review. Crit. Rev. Biotechnol. 2022, 42, 1157–1179. [Google Scholar] [CrossRef]
- Yun, J.; Lee, D.G. A novel fungal killing mechanism of propionic acid. FEMS Yeast Res. 2016, 16, fow089. [Google Scholar] [CrossRef]
- Glass, K.A.; Mcdonnell, L.M.; Vontayson, R.; Wanless, B.; Badvela, M. Inhibition of Listeria monocytogenes by propionic acid–based ingredients in cured deli-style turkey. J. Food Prot. 2013, 76, 2074–2078. [Google Scholar] [CrossRef]
- Surve, A.N.; Sherikar, A.T.; Bhilegaonkar, K.N.; Karkare, U.D. Preservative effect of combinations of acetic acid with lactic or propionic acid on buffalo meat stored at refrigeration temperature. Meat Sci. 1991, 29, 309–322. [Google Scholar] [CrossRef]
- Nkosi, D.V.; Bekker, J.L.; Hoffman, L.C. The Use of organic acids (lactic and acetic) as a microbial decontaminant during the slaughter of meat animal species: A review. Foods 2021, 10, 2293. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.M.; Robbins, K.L.; Ryan, K.J.; Homco-Ryan, C.; McKeith, F.K.; Brewer, M.S. Effects of lactic and acetic acid salts on quality characteristics of enhanced pork during retail display. Meat Sci. 2003, 63, 501–508. [Google Scholar] [CrossRef]
- Ogden, S.K.; Taylor, A.J.; Dodd, C.E.R.; Guerrero, I.; Buendia, H.; Gallardo, F. Preservative effect of combined propionic and ascorbic acids on pork meat stored at 25 °C. J. Food Prot. 1997, 60, 935–942. [Google Scholar] [CrossRef]
- Ajingi, Y.S.; Rodpan, S.; Usman, J.N.; Koga, Y.; Jongruja, N. Synergistic effect of nisin with acetic and propionic acids inactivates Bacillus subtilis on meat and potato. Biocatal. Agric. Biotechnol. 2022, 41, 102317. [Google Scholar] [CrossRef]
- Aljohani, A.B.; AL-Hejin, A.M.; Shori, A.B. Bacteriocins as promising antimicrobial peptides, definition, classification, and their potential applications in cheeses. Food Sci. Technol. 2023, 43, e118021. [Google Scholar] [CrossRef]
- Chen, X.; Bai, H.; Mo, W.; Zheng, X.; Chen, H.; Yin, Y.; Liao, Y.; Chen, Z.; Shi, Q.; Zuo, Z.; et al. Lactic acid bacteria bacteriocins: Safe and effective antimicrobial agents. Int. J. Mol. Sci. 2025, 26, 4124. [Google Scholar] [CrossRef]
- Bahrami, S.; Andishmand, H.; Pilevar, Z.; Hashempour-Baltork, F.; Torbati, M.; Dadgarnejad, M.; Azadmard-Damirchi, S. Bacteriocins: A review of their sources, structures, mechanisms, and applications in food systems. J. Appl. Microbiol. 2024, 135, lxae274. [Google Scholar] [CrossRef]
- Cleveland, J.; Montville, T.J.; Nes, I.F.; Chikindas, M.L. Bacteriocins: Safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 2001, 71, 1–20. [Google Scholar] [CrossRef]
- Woraprayote, W.; Malila, Y.; Sorapukdee, S.; Swetwiwathana, A.; Benjakul, S.; Visessanguan, W. Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci. 2016, 120, 118–132. [Google Scholar] [CrossRef]
- Lahiri, D.; Nag, M.; Dutta, B.; Sarkar, T.; Pati, S.; Basu, D.; Abdul Kari, Z.; Wei, L.S.; Smaoui, S.; Wen Goh, K.; et al. Bacteriocin: A natural approach for food safety and food security. Front. Bioeng. Biotechnol. 2022, 10, 1005918. [Google Scholar] [CrossRef]
- Liang, Q.; Liu, Z.; Liang, Z.; Fu, X.; Li, D.; Zhu, C.; Kong, Q.; Mou, H. Current challenges and development strategies of bacteriocins produced by lactic acid bacteria applied in the food industry. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70038. [Google Scholar] [CrossRef]
- Todorov, S.D. Bacteriocins from Lactobacillus plantarum production, genetic organization and mode of action. Braz. J. Microbiol. 2009, 40, 209–221. [Google Scholar] [CrossRef]
- Settanni, L.; Corsetti, A. Application of bacteriocins in vegetable food biopreservation. Int. J. Food Microbiol. 2008, 121, 123–138. [Google Scholar] [CrossRef] [PubMed]
- McAuliffe, O.; Ross, R.P.; Hill, C. Lantibiotics: Structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 2001, 25, 285–308. [Google Scholar] [CrossRef] [PubMed]
- Dufour, A.; Hindré, T.; Haras, D.; Le Pennec, J.-P. The Biology of lantibiotics from the lacticin 481 group is coming of age. FEMS Microbiol. Rev. 2007, 31, 134–167. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, P.K.; Nehra, K. Bacteriocin-nanoconjugates as emerging compounds for enhancing antimicrobial activity of bacteriocins. J. King Saud. Univ. Sci. 2017, 31, 758–767. [Google Scholar] [CrossRef]
- Fell, E.L.; Brum, L.M.; Nicoletti, E.; Sartoreto, L.; Hoelscher, H.; Colet, R.; Steffens, J.; Zeni, J.; Valduga, E.; Cansian, R.L.; et al. Nisin or organic acid salt mixtures for the calabrese-type sausages in industrial-scale production. Braz. J. Food Technol. 2024, 27, e2023061. [Google Scholar] [CrossRef]
- Yu, H.H.; Chin, Y.-W.; Paik, H.-D. Application of natural preservatives for meat and meat products against food-borne pathogens and spoilage bacteria: A review. Foods 2021, 10, 2418. [Google Scholar] [CrossRef]
- Kapolos, J.; Giannopoulou, D.; Papadimitriou, K.; Koliadima, A. A comprehensive review of emulsion-based nisin delivery systems for food safety. Foods 2025, 14, 1338. [Google Scholar] [CrossRef]
- Elbanna, A.M.; Sabala, R.F.; Abd-Elghany, S.M.; Imre, K.; Morar, A.; Herman, V.; Sallam, K.I. Nisin and organic acid salts improved the microbial quality, extended the shelf life, and maintained the sensory attributes of semidry beef luncheon marketed at adverse (35–40 °C) ambient summer temperatures. Foods 2023, 12, 4283. [Google Scholar] [CrossRef]
- McAuliffe, O.; Ryan, M.P.; Ross, R.P.; Hill, C.; Breeuwer, P.; Abee, T. Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl. Environ. Microbiol. 1998, 64, 439–445. [Google Scholar] [CrossRef]
- Soriano, A.; Ulmer, H.M.; Scannell, A.G.M.; Ross, R.P.; Hill, C.; García-Ruiz, A.; Arendt, E.K. Control of food spoiling bacteria in cooked meat products with nisin, lacticin 3147, and a lacticin 3147-producing starter culture. Eur. Food Res. Technol. 2004, 219, 6–13. [Google Scholar] [CrossRef]
- Darbandi, A.; Asadi, A.; Mahdizade Ari, M.; Ohadi, E.; Talebi, M.; Halaj Zadeh, M.; Darb Emamie, A.; Ghanavati, R.; Kakanj, M. Bacteriocins: Properties and potential use as antimicrobials. J. Clin. Lab. Anal. 2022, 36, e24093. [Google Scholar] [CrossRef] [PubMed]
- Drider, D.; Fimland, G.; HécHard, Y.; McMullen, L.M.; PrévOst, H. The Continuing story of class IIa bacteriocins. Microbiol. Mol. Biol. Rev. 2006, 70, 564–582. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.; Li, L.; Jiang, X.; Chen, Z.; Zhao, F.; Yi, Y. Biosynthesis and production of class II bacteriocins of food-associated lactic acid bacteria. Fermentation 2022, 8, 217. [Google Scholar] [CrossRef]
- Yi, Y.; Li, P.; Zhao, F.; Zhang, T.; Shan, Y.; Wang, X.; Liu, B.; Chen, Y.; Zhao, X.; Lü, X. Current status and potentiality of class II bacteriocins from lactic acid bacteria: Structure, mode of action and applications in the food industry. Trends Food Sci. Technol. 2022, 120, 387–401. [Google Scholar] [CrossRef]
- Alvarez-Sieiro, P.; Montalbán-López, M.; Mu, D.; Kuipers, O.P. Bacteriocins of lactic acid bacteria: Extending the family. Appl. Microbiol. Biotechnol. 2016, 100, 2939–2951. [Google Scholar] [CrossRef]
- Hammi, I.; Delalande, F.; Belkhou, R.; Marchioni, E.; Cianferani, S.; Ennahar, S. Maltaricin CPN a new class IIa bacteriocin produced by Carnobacterium maltaromaticum CPN isolated from mould-ripened cheese. J. Appl. Microbiol. 2016, 121, 1268–1274. [Google Scholar] [CrossRef]
- Simons, A.; Alhanout, K.; Duval, R.E. Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms 2020, 8, 639. [Google Scholar] [CrossRef]
- Nissen-Meyer, J.; Oppegård, C.; Rogne, P.; Haugen, H.S.; Kristiansen, P.E. Structure and mode-of-action of the two-peptide (class-IIb) bacteriocins. Probiotics Antimicrob. Proteins 2010, 2, 52–60. [Google Scholar] [CrossRef]
- Grande Burgos, M.J.; Pulido, R.P.; Del Carmen López Aguayo, M.; Gálvez, A.; Lucas, R. The cyclic antibacterial peptide enterocin AS-48: Isolation, mode of action, and possible food applications. Int. J. Mol. Sci. 2014, 15, 22706–22727. [Google Scholar] [CrossRef]
- Solis-Balandra, M.A.; Sanchez-Salas, J.L. Classification and multi-functional use of bacteriocins in health, biotechnology, and food industry. Antibiotics 2024, 13, 666. [Google Scholar] [CrossRef] [PubMed]
- Ruilian, L.; Jinsong, D.; Yicheng, Z.; Jiawei, W. Structural basis of the mechanisms of action and immunity of lactococcin a, a class IId bacteriocin. Appl. Environ. Microbiol. 2023, 89, e00066-23. [Google Scholar] [CrossRef]
- Wang, Y.; Shang, N.; Huang, Y.; Gao, B.; Li, P. The progress of the biotechnological production of class IIa bacteriocins in various cell factories and its future challenges. Int. J. Mol. Sci. 2024, 25, 5791. [Google Scholar] [CrossRef]
- Maldonado-Barragán, A.; Alegría-Carrasco, E.; Blanco, M.d.M.; Vela, A.I.; Fernández-Garayzábal, J.F.; Rodríguez, J.M.; Gibello, A. Garvicins AG1 and AG2: Two novel class IId bacteriocins of Lactococcus garvieae LG-granada. Int. J. Mol. Sci. 2022, 23, 4685. [Google Scholar] [CrossRef]
- Khorshidian, N.; Khanniri, E.; Mohammadi, M.; Mortazavian, A.M.; Yousefi, M. Antibacterial activity of pediocin and pediocin-producing bacteria against Listeria monocytogenes in meat products. Front. Microbiol. 2021, 12, 709959. [Google Scholar] [CrossRef]
- De Martinis, E.C.P.; Franco, B.D.G.M. Inhibition of Listeria monocytogenes in a pork product by a Lactobacillus sake strain. Int. J. Food Microbiol. 1998, 42, 119–126. [Google Scholar] [CrossRef]
- Hastings, J.W.; Stiles, M.E.; von Holy, A. Bacteriocins of Leuconostocs isolated from meat. Int. J. Food Microbiol. 1994, 24, 75–81. [Google Scholar] [CrossRef]
- Abriouel, H.; Franz, C.M.A.P.; Omar, N.B.; Gálvez, A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 2011, 35, 201–232. [Google Scholar] [CrossRef] [PubMed]
- Trine, N.; Nes, I.F.; Helge, H. Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl. Environ. Microbiol. 2003, 69, 2975–2984. [Google Scholar] [CrossRef] [PubMed]
- Montiel, R.; Quesille-Villalobos, A.; Alessandria, V.; Medina, M.; Cocolin, L.S.; Rantsiou, K. Antilisterial effect and influence on Listeria monocytogenes gene expression of enterocin or Enterococcus faecalis in sliced dry-cured ham stored at 7 °C. J. Food Prot. 2019, 82, 1598–1606. [Google Scholar] [CrossRef]
- Cavadini, C.; Hertel, C.; Hammes, W.P. Application of lysostaphin-producing lactobacilli to control staphylococcal food poisoning in meat products. J. Food Prot. 1998, 61, 419–424. [Google Scholar] [CrossRef]
- Negash, A.W.; Tsehai, B.A. Current applications of bacteriocin. Int. J. Microbiol. 2020, 2020, 4374891. [Google Scholar] [CrossRef]
- Mierau, I.; Olieman, K.; Mond, J.; Smid, E.J. Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications. Microb. Cell Factories 2005, 4, 16. [Google Scholar] [CrossRef]
- Collins, F.W.J.; O’Connor, P.M.; O’Sullivan, O.; Gómez-Sala, B.; Rea, M.C.; Hill, C.; Ross, R.P. Bacteriocin gene-trait matching across the complete Lactobacillus pan-genome. Sci. Rep. 2017, 7, 3481. [Google Scholar] [CrossRef] [PubMed]
- Kumariya, R.; Garsa, A.K.; Rajput, Y.S.; Sood, S.K.; Akhtar, N.; Patel, S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing microorganisms. Microb. Pathog. 2019, 128, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 2005, 3, 777–788. [Google Scholar] [CrossRef]
- Reuben, R.C.; Torres, C. Bacteriocins: Potentials and prospects in food preservation and antimicrobial therapy. Arch. Microbiol. 2024, 206, 3948. [Google Scholar] [CrossRef]
- Xiraphi, N.; Georgalaki, M.; Rantsiou, K.; Cocolin, L.; Tsakalidou, E.; Drosinos, E.H. Purification and characterization of a bacteriocin produced by Leuconostoc mesenteroides E131 isolated from fermented sausage. Meat Sci. 2008, 80, 194–203. [Google Scholar] [CrossRef]
- Malanovic, N.; Lohner, K. Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals 2016, 9, 59. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Nanda, P.K.; Pateiro, M.; Lorenzo, J.M.; Dhar, P.; Das, A.K. Lactic acid bacteria and bacteriocins: Novel biotechnological approach for biopreservation of meat and meat products. Microorganisms 2022, 10, 2058. [Google Scholar] [CrossRef]
- Grau, F.H. Inhibition of the anaerobic growth of Brochothrix thermosphacta by lactic acid. Appl. Environ. Microbiol. 1980, 40, 433–436. [Google Scholar] [CrossRef]
- Costa, R.J.; Voloski, F.L.S.; Mondadori, R.G.; Duval, E.H.; Fiorentini, Â.M. Preservation of meat products with bacteriocins produced by lactic acid bacteria isolated from meat. J. Food Qual. 2019, 2019, 4726510. [Google Scholar] [CrossRef]
- Demirgül, F.; Kaya, H.İ.; Ucar, R.A.; Mitaf, N.A.; Şimşek, Ö. Expanding layers of bacteriocin applications: From food preservation to human health interventions. Fermentation 2025, 11, 142. [Google Scholar] [CrossRef]
- Jensen, D.B.; Struck, L.T.; Pauli, M.; Nissen-Meyer, J. Optimized genetic tools allow the biosynthesis of glycocin F and analogues designed to test the roles of gcc cluster genes in bacteriocin production. J. Bacteriol. 2021, 203, e00529-20. [Google Scholar] [CrossRef]
- Ren, H.; Biswas, S.; Ho, S.; van der Donk, W.A.; Zhao, H. Rapid discovery of glycocins through pathway refactoring in Escherichia coli. ACS Chem. Biol. 2018, 13, 2966–2972. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-Q.; Ji, X.; Ba, F.; Zhang, Y.; Xu, H.; Huang, S.; Zheng, X.; Liu, Y.; Ling, S.; Jewett, M.C.; et al. Cell-free biosynthesis and engineering of ribosomally synthesized lanthipeptides. Nat. Commun. 2024, 15, 4336. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Jin, H.; Kim, D.; Lee, J. Cell-free systems: Ideal platforms for accelerating the discovery and production of peptide-based antibiotics. Int. J. Mol. Sci. 2024, 25, 9109. [Google Scholar] [CrossRef] [PubMed]
- Borges, F.; Briandet, R.; Callon, C.; Champomier-Vergès, M.-C.; Christieans, S.; Chuzeville, S.; Denis, C.; Desmasures, N.; Desmonts, M.-H.; Feurer, C.; et al. Contribution of omics to biopreservation: Toward food microbiome engineering. Front. Microbiol. 2022, 13. [Google Scholar] [CrossRef]
- Kiousi, D.E.; Efstathiou, C.; Tegopoulos, K.; Mantzourani, I.; Alexopoulos, A.; Plessas, S.; Kolovos, P.; Koffa, M.; Galanis, A. Genomic insight into Lacticaseibacillus paracasei SP5 reveals genes and gene clusters of probiotic interest and biotechnological potential. Front. Microbiol. 2022, 13. [Google Scholar] [CrossRef]
- Gumustop, I.; Ortakci, F. Comparative genomics of Leuconostoc lactis strains isolated from human gastrointestinal system and fermented foods microbiomes. BMC Genom. Data 2022, 23, 61. [Google Scholar] [CrossRef]
- Liang, Q.; Zhou, W.; Peng, S.; Liang, Z.; Liu, Z.; Zhu, C.; Mou, H. Current status and potential of bacteriocin-producing lactic acid bacteria applied in the food industry. Curr. Res. Food Sci. 2025, 10, 100997. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, K.; Liu, Q.; Chen, Q.; Xia, X.; Sun, F.; Kong, B. Mechanism, application, and prospect of bioprotective cultures in meat and meat products. Food Chem. 2025, 476, 143474. [Google Scholar] [CrossRef]
- Zhao, X.; Kuipers, O.P. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales Species. BMC Genom. 2016, 17, 882. [Google Scholar] [CrossRef]
- Theobald, S.; Vesth, T.C.; Andersen, M.R. Genus level analysis of PKS-NRPS and NRPS-PKS hybrids reveals their origin in Aspergilli. BMC Genom. 2019, 20, 847. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.; Yousef, A.E. The lipopeptide antibiotic Paenibacterin binds to the bacterial outer membrane and exerts bactericidal activity through cytoplasmic membrane damage. Appl. Environ. Microbiol. 2014, 80, 2700–2704. [Google Scholar] [CrossRef]
- Markelova, N.; Chumak, A. Antimicrobial activity of Bacillus cyclic lipopeptides and their role in the host adaptive response to changes in environmental conditions. Int. J. Mol. Sci. 2025, 26, 336. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, S.; Yu, X.; Wan, C.; Wang, Y.; Peng, L.; Li, Q. Sources of lipopeptides and their applications in food and human health: A review. Foods 2025, 14, 207. [Google Scholar] [CrossRef] [PubMed]
- Wahab, Z.H.A.; Al-Sahlany, S.T.G. Bacterial biosurfactants as bioactive ingredients: Surfactin’s role in food preservation, functional foods, and human health. Bacteria 2025, 4, 49. [Google Scholar] [CrossRef]
- Sword, T.T.; Abbas, G.S.K.; Bailey, C.B. Cell-free protein synthesis for nonribosomal peptide synthetic biology. Front. Nat. Prod. 2024, 3. [Google Scholar] [CrossRef]
- Folger, I.B.; Frota, N.F.; Pistofidis, A.; Niquille, D.L.; Hansen, D.A.; Schmeing, T.M.; Hilvert, D. High-throughput reprogramming of an nrps condensation domain. Nat. Chem. Biol. 2024, 20, 761–769. [Google Scholar] [CrossRef]
- Götz, F.; Perconti, S.; Popella, P.; Werner, R.; Schlag, M. Epidermin and gallidermin: Staphylococcal lantibiotics. Int. J. Med. Microbiol. 2014, 304, 63–71. [Google Scholar] [CrossRef]
- Jerome, E.; Byron, S.; Jacob, B.; Monica, B.; Leif, S. Biosynthesis and transport of the lantibiotic mutacin 1140 produced by Streptococcus mutans. J. Bacteriol. 2015, 197, 1173–1184. [Google Scholar] [CrossRef] [PubMed]
- Oman, T.J.; van der Donk, W.A. Insights into the mode of action of the two-peptide lantibiotic haloduracin. ACS Chem. Biol. 2009, 4, 865–874. [Google Scholar] [CrossRef]
- Brötz, H.; Bierbaum, G.; Markus, A.; Molitor, E.; Sahl, H.G. Mode of action of the lantibiotic mersacidin: Inhibition of peptidoglycan biosynthesis via a novel mechanism? Antimicrob. Agents Chemother. 1995, 39, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Willey, J.M.; van der Donk, W.A. Lantibiotics: Peptides of diverse structure and function. Annu. Rev. Microbiol. 2007, 61, 477–501. [Google Scholar] [CrossRef] [PubMed]
- Fuminori, Y.; Yuichi, I.; Kanako, O.; Takeshi, Z.; Jiro, N.; Katsumi, M.; Kenji, S. Peptide-lipid huge toroidal pore, a new antimicrobial mechanism mediated by a lactococcal bacteriocin, lacticin Q. Antimicrob. Agents Chemother. 2009, 53, 3211–3217. [Google Scholar] [CrossRef]
- Iwatani, S.; Zendo, T.; Yoneyama, F.; Nakayama, J.; Sonomoto, K. Characterization and structure analysis of a novel bacteriocin, lacticin Z, produced by Lactococcus lactis QU 14. Biosci. Biotechnol. Biochem. 2007, 71, 1984–1992. [Google Scholar] [CrossRef]
- Jack, R.W.; Wan, J.; Gordon, J.; Harmark, K.; Davidson, B.E.; Hillier, A.J.; Wettenhall, R.E.; Hickey, M.W.; Coventry, M.J. Characterization of the chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by Carnobacterium piscicola JG126. Appl. Environ. Microbiol. 1996, 62, 2897–2903. [Google Scholar] [CrossRef]
- Powell, J.E.; Witthuhn, R.C.; Todorov, S.D.; Dicks, L.M.T. Characterization of bacteriocin st8kf produced by a kefir isolate Lactobacillus plantarum ST8KF. Int. Dairy. J. 2007, 17, 190–198. [Google Scholar] [CrossRef]
- Heath, L.S.; Heath, H.E.; LeBlanc, P.A.; Smithberg, S.R.; Dufour, M.; Simmonds, R.S.; Sloan, G.L. The streptococcolytic enzyme zoocin A Is a Penicillin-binding protein. FEMS Microbiol. Lett. 2004, 236, 205–211. [Google Scholar] [CrossRef]
- Joerger, M.C.; Klaenhammer, T.R. Characterization and purification of helveticin j and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J. Bacteriol. 1986, 167, 439–446. [Google Scholar] [CrossRef]
- Leer, R.J.; van der Vossen, J.M.B.M.; van Giezen, M.; van Noort Johannes, M.; Pouwels, P.H. Genetic analysis of acidocin b, a novel bacteriocin produced by Lactobacillus acidophilus. Microbiology 1995, 141, 1629–1635. [Google Scholar] [CrossRef]
- Héchard, Y.; Dérijard, B.; Letellier, F.; Cenatiempo, Y. Characterization and purification of mesentericin Y105, an anti-listeria bacteriocin from Leuconostoc mesenteroides. Microbiology 1992, 138, 2725–2731. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-W.; Wu, S.-J.; Lu, J.-K.; Shyu, Y.-T.; Wang, C.-Y. Current status and future trends of high-pressure processing in food industry. Food Control 2017, 72, 1–8. [Google Scholar] [CrossRef]
- Abera W/giorgis, G. Review on high-pressure processing of foods. Cogent Food Agric. 2019, 5, 1568725. [Google Scholar] [CrossRef]
- Sehrawat, R.; Kaur, B.P.; Nema, P.K.; Tewari, S.; Kumar, L. Microbial inactivation by high pressure processing: Principle, mechanism and factors responsible. Food Sci. Biotechnol. 2021, 30, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniam, V.M.; Martínez-Monteagudo, S.I.; Gupta, R. Principles and application of high pressure–based technologies in the food industry. Annu. Rev. Food Sci. Technol. 2015, 6, 435–462. [Google Scholar] [CrossRef]
- Siddiqui, S.; Khan, S.; Bahmid, N.; Nagdalian, A.; Jafari, S.; Castro-Muñoz, R. Impact of high-pressure processing on the bioactive compounds of milk—A comprehensive review. J. Food Sci. Technol. 2024, 61, 1632–1651. [Google Scholar] [CrossRef]
- Aubourg, S.P. Impact of high-pressure processing on chemical constituents and nutritional properties in aquatic foods: A review. Int. J. Food Sci. Technol. 2018, 53, 873–891. [Google Scholar] [CrossRef]
- Fauzi, N.; Farid, M.; Silva, F. An insight on the relationship between food compressibility and microbial inactivation during high pressure processing. J. Food Sci. Technol. 2017, 54, 802–809. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis, K.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; et al. The efficacy and safety of high-pressure processing of food. EFSA J. 2022, 20, e07128. [Google Scholar] [CrossRef] [PubMed]
- Rovere, P. Industrial-Scale High Pressure Processing of Foods. In Ultra High Pressure Treatments of Foods; Hendrickx, M.E.G., Knorr, D., Ludikhuyze, L., Van Loey, A., Heinz, V., Eds.; Springer: Boston, MA, USA, 2001; pp. 251–268. [Google Scholar] [CrossRef]
- Majzinger, K.; Kovács-Bányász, B.; Horváth-Mezőfi, Z.; Pósa, E.; Csehi, B.; Hitka, G.; Alpár, B.; Nyulas-Zeke, I.C. The Effects of high hydrostatic pressure treatment on the quality characteristics and the protein structure of vacuum-packed fresh pork and wild boar meats. Appl. Sci. 2025, 15, 1766. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, C.; Yang, Y.; Wang, B.; Liu, X.; Wang, Y.; Bian, X.; Zhang, G.; Zhang, N. Effect of high hydrostatic pressure treatment on food composition and applications in food industry: A review. Food Res. Int. 2024, 195, 114991. [Google Scholar] [CrossRef]
- Nabi, B.G.; Mukhtar, K.; Arshad, R.N.; Radicetti, E.; Tedeschi, P.; Shahbaz, M.U.; Walayat, N.; Nawaz, A.; Inam-Ur-Raheem, M.; Aadil, R.M. High-pressure processing for sustainable food supply. Sustainability 2021, 13, 13908. [Google Scholar] [CrossRef]
- Bolumar, T.; Orlien, V.; Sikes, A.; Aganovic, K.; Bak, K.H.; Guyon, C.; Stübler, A.-S.; de Lamballerie, M.; Hertel, C.; Brüggemann, D.A. High-pressure processing of meat: Molecular impacts and industrial applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 332–368. [Google Scholar] [CrossRef] [PubMed]
- Dennis, R.H.; Frank, F.B. Kinetics of microbial inactivation for alternative food processing technologies. J. Food Sci. Suppl. 2000, 1–108. Available online: https://www.fda.gov/files/food/published/Kinetics-of-Microbial-Inactivation-for-Alternative-Food-Processing-Technologies.pdf?utm_source=chatgpt.com (accessed on 19 December 2025).
- Knoerzer, K.; Sevenich, R. From concept to commercialization: Unlocking the potential of high-pressure thermal processing. Food Eng. Rev. 2025, 17, 627–644. [Google Scholar] [CrossRef]
- Patazca, E.; Koutchma, T.; Balasubramaniam, V.M. Quasi-adiabatic temperature increase during high pressure processing of selected foods. J. Food Eng. 2007, 80, 199–205. [Google Scholar] [CrossRef]
- Houška, M.; Silva, F.V.M.; Evelyn; Buckow, R.; Terefe, N.S.; Tonello, C. High pressure processing applications in plant foods. Foods 2022, 11, 223. [Google Scholar] [CrossRef]
- Braspaiboon, S.; Laokuldilok, T. High Hydrostatic pressure: Influences on allergenicity, bioactivities, and structural and functional properties of proteins from diverse food sources. Foods 2024, 13, 922. [Google Scholar] [CrossRef]
- Sun, X.D.; Holley, R.A. High Hydrostatic pressure effects on the texture of meat and meat products. J. Food Sci. 2010, 75, R17–R23. [Google Scholar] [CrossRef]
- Janowicz, M.; Lenart, A. The Impact of high pressure and drying processing on internal structure and quality of fruit. Eur. Food Res. Technol. 2018, 244, 1329–1340. [Google Scholar] [CrossRef]
- Gómez, I.; Janardhanan, R.; Ibañez, F.C.; Beriain, M.J. The effects of processing and preservation technologies on meat quality: Sensory and nutritional aspects. Foods 2020, 9, 1416. [Google Scholar] [CrossRef] [PubMed]
- Adisurya, I.P.K.; Sari, A.R. Effects of high-pressure processing on milk, meat, fruit, and vegetable: A review. In Proceedings of the 2nd International Conference on Smart and Innovative Agriculture (ICoSIA 2021), Yogyakarta, Indonesia, 3–4 November 2021; Atlantis Press: Dordrecht, The Netherlands, 2022; pp. 302–308. [Google Scholar]
- Oliveira, T.L.C.; Junior, B.R.C.L.; Ramos, A.L.S.; Ramos, E.M.; Piccoli, R.H.; Cristianini, M. Phenolic carvacrol as a natural additive to improve the preservative effects of high pressure processing of low-sodium sliced vacuum-packed turkey breast ham. LWT—Food Sci. Technol. 2015, 64, 1297–1308. [Google Scholar] [CrossRef]
- Meloni, D. High-hydrostatic-pressure (HHP) processing technology as a novel control method for Listeria monocytogenes occurrence in mediterranean-style dry-fermented sausages. Foods 2019, 8, 672. [Google Scholar] [CrossRef]
- Bull, M.K.; Olivier, S.A.; van Diepenbeek, R.J.; Kormelink, F.; Chapman, B. Synergistic inactivation of spores of proteolytic Clostridium botulinum strains by high pressure and heat is strain and product dependent. Appl. Environ. Microbiol. 2009, 75, 434–445. [Google Scholar] [CrossRef]
- Ribeiro, L.R.; Cristianini, M. Effect of high pressure processing combined with temperature on the inactivation and germination of Alicyclobacillus acidoterrestris spores: Influence of heat-shock on the counting of survivors. LWT—Food Sci. Technol. 2020, 118, 108781. [Google Scholar] [CrossRef]
- Kateh, S.; Purnomo, E.H.; Hasanah, U. Meta-analysis: Microbial inactivation in milk using high-pressure processing (HPP). Int. J. Food Sci. Technol. 2024, 59, 4185–4193. [Google Scholar] [CrossRef]
- Doona, C.J.; Feeherry, F.E.; Setlow, B.; Wang, S.; Li, W.; Nichols, F.C.; Talukdar, P.K.; Sarker, M.R.; Li, Y.; Shen, A.; et al. Effects of high-pressure treatment on spores of Clostridium species. Appl. Environ. Microbiol. 2016, 82, 5287–5297. [Google Scholar] [CrossRef]
- Yang, P.; Rao, L.; Zhao, L.; Wu, X.; Wang, Y.; Liao, X. High pressure processing combined with selected hurdles: Enhancement in the inactivation of vegetative microorganisms. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1800–1828. [Google Scholar] [CrossRef]
- Roobab, U.; Afzal, R.; Ranjha, M.M.A.N.; Zeng, X.-A.; Ahmed, Z.; Aadil, R.M. High pressure-based hurdle interventions for raw and processed meat: A clean-label prospective. Int. J. Food Sci. Technol. 2022, 57, 816–826. [Google Scholar] [CrossRef]
- Serra-Castelló, C.; Jofré, A.; Bover-Cid, S. Enhancing high-pressure bacterial inactivation by modified atmosphere packaging: Effect of exposure time and cooked ham formulation. Food Bioprocess Technol. 2025, 18, 1273–1282. [Google Scholar] [CrossRef]
- Zhang, S.; Meenu, M.; Hu, L.; Ren, J.; Ramaswamy, H.S.; Yu, Y. Recent progress in the synergistic bactericidal effect of high pressure and temperature processing in fruits and vegetables and related kinetics. Foods 2022, 11, 3698. [Google Scholar] [CrossRef] [PubMed]
- Brooks, N.J. Pressure effects on lipids and bio-membrane assemblies. IUCrJ 2014, 1, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Dao, U.H.; Lamphun, J.N.; Tongdonyod, S.; Taya, S.; Phongthai, S.; Klangpetch, W. Optimization of high-pressure processing for microbial inactivation in pigmented rice grass juice and quality impact assessment during refrigerated storage. Foods 2024, 13, 2995. [Google Scholar] [CrossRef]
- Wouters, P.C.; Glaasker, E.; Smelt, J.P.P.M. Effects of high pressure on inactivation kinetics and events related to proton efflux in Lactobacillus plantarum. Appl. Environ. Microbiol. 1998, 64, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Aertsen, A.; Meersman, F.; Hendrickx, M.E.G.; Vogel, R.F.; Michiels, C.W. Biotechnology under high pressure: Applications and implications. Trends Biotechnol. 2009, 27, 434–441. [Google Scholar] [CrossRef]
- Ritz, M.; Pilet, M.F.; Jugiau, F.; Rama, F.; Federighi, M. Inactivation of Salmonella Typhimurium and Listeria monocytogenes using high-pressure treatments: Destruction or sublethal stress? Lett. Appl. Microbiol. 2006, 42, 357–362. [Google Scholar] [CrossRef]
- Considine, K.M.; Kelly, A.L.; Fitzgerald, G.F.; Hill, C.; Sleator, R.D. High-pressure processing—Effects on microbial food safety and food quality. FEMS Microbiol. Lett. 2008, 281, 1–9. [Google Scholar] [CrossRef]
- Liang, D.; Zhang, L.; Wang, X.; Wang, P.; Liao, X.; Wu, X.; Chen, F.; Hu, X. Building of pressure-assisted ultra-high temperature system and its inactivation of bacterial spores. Front. Microbiol. 2019, 10, 1275. [Google Scholar] [CrossRef]
- Scepankova, H.; Pinto, C.A.; Estevinho, L.M.; Saraiva, J.A. High-pressure-based strategies for the inactivation of Bacillus subtilis endospores in honey. Molecules 2022, 27, 5918. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghamdi, S.; Sonar, C.R.; Patel, J.; Albahr, Z.; Sablani, S.S. High pressure-assisted thermal sterilization of low-acid fruit and vegetable purees: Microbial safety, nutrient, quality, and packaging evaluation. Food Control 2020, 114, 107233. [Google Scholar] [CrossRef]
- Osaili, T.; Waseem, Z.; Hasan, F.; Al-Nabulsi, A.A.; Olaimat, A.N.; Al-Momani, M.; Hornikova, T.; Ayyash, M.; Obaid, R.; Holley, R. Unleashing the antimicrobial potential of high-pressure processing on beverages, sauces, purées, and milk: A predictive modelling approach. Appl. Food Res. 2025, 5, 100676. [Google Scholar] [CrossRef]
- Han, Y.; Jiang, Y.; Xu, X.; Sun, X.; Xu, B.; Zhou, G. Effect of high pressure treatment on microbial populations of sliced vacuum-packed cooked ham. Meat Sci. 2011, 88, 682–688. [Google Scholar] [CrossRef]
- Balamurugan, S.; Inmanee, P.; Souza, J.D.; Strange, P.; Pirak, T.; Barbut, S. Effects of high pressure processing and hot water pasteurization of cooked sausages on inactivation of inoculated Listeria monocytogenes, natural populations of lactic acid bacteria, Pseudomonas spp., and coliforms and their recovery during storage at 4 and 10 °C. J. Food Prot. 2018, 81, 1245–1251. [Google Scholar] [CrossRef]
- Tintchev, F.; Wackerbarth, H.; Kuhlmann, U.; Toepfl, S.; Knorr, D.; Hildebrandt, P.; Heinz, V. Molecular effects of high-pressure processing on food studied by Resonance Raman. Ann. N. Y. Acad. Sci. 2010, 1189, 34–42. [Google Scholar] [CrossRef]
- Bak, K.H.; Bolumar, T.; Karlsson, A.H.; Lindahl, G.; Orlien, V. Effect of high pressure treatment on the color of fresh and processed meats: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 228–252. [Google Scholar] [CrossRef] [PubMed]
- Campus, M. High Pressure processing of meat, meat products and seafood. Food Eng. Rev. 2010, 2, 256–273. [Google Scholar] [CrossRef]
- Guerra, A.F. Update on the use and abuse of preservatives in meat products. Food Control 2024, 166, 110775. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Y.; Zu, S.; Wu, X.; Shi, A.; Zhang, J.; Wang, Q.; He, N. Effects of high hydrostatic pressure on the conformational structure and gel properties of myofibrillar protein and meat quality: A review. Foods 2021, 10, 1872. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Z.; Liu, Y.; Zhao, Y.; Yuan, X.; Kang, Z.; Zhu, M.; Ma, H. High-pressure processing influences the conformation, water distribution, and gel properties of pork myofibrillar proteins containing Artemisia sphaerocephala Krasch gum. Food Chem. X 2022, 14, 100320. [Google Scholar] [CrossRef] [PubMed]
- Reesman, C.; Sullivan, G.; Danao, M.-G.; Mafi, G.G.; Pfeiffer, M.; Ramanathan, R. Effects of high-pressure processing on cooked color and eating qualities of dark-cutting beef. Appl. Food Res. 2023, 3, 100260. [Google Scholar] [CrossRef]
- Pinto, C.A.; Moreira, S.A.; Fidalgo, L.G.; Inácio, R.S.; Barba, F.J.; Saraiva, J.A. Effects of high-pressure processing on fungi spores: Factors affecting spore germination and inactivation and impact on ultrastructure. Compr. Rev. Food Sci. Food Saf. 2020, 19, 553–573. [Google Scholar] [CrossRef]
- Nielsen, H.B.; Sonne, A.-M.; Grunert, K.G.; Banati, D.; Pollák-Tóth, A.; Lakner, Z.; Olsen, N.V.; Žontar, T.P.; Peterman, M. Consumer perception of the use of high-pressure processing and pulsed electric field technologies in food production. Appetite 2009, 52, 115–126. [Google Scholar] [CrossRef]
- Aganovic, K.; Hertel, C.; Vogel, R.F.; Johne, R.; Schlüter, O.; Schwarzenbolz, U.; Jäger, H.; Holzhauser, T.; Bergmair, J.; Roth, A.; et al. Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3225–3266. [Google Scholar] [CrossRef]
- Mandal, R.; Mohammadi, X.; Wiktor, A.; Singh, A.; Pratap Singh, A. Applications of pulsed light decontamination technology in food processing: An overview. Appl. Sci. 2020, 10, 3606. [Google Scholar] [CrossRef]
- Rowan, N.J. Pulsed light as an emerging technology to cause disruption for food and adjacent industries—Quo vadis? Trends Food Sci. Technol. 2019, 88, 316–332. [Google Scholar] [CrossRef]
- Mahendran, R.; Ramanan, K.R.; Barba, F.J.; Lorenzo, J.M.; López-Fernández, O.; Munekata, P.E.S.; Roohinejad, S.; Sant’Ana, A.S.; Tiwari, B.K. Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends Food Sci. Technol. 2019, 88, 67–79. [Google Scholar] [CrossRef]
- John, D.; Ramaswamy, H.S. Pulsed light technology to enhance food safety and quality: A mini-review. Curr. Opin. Food Sci. 2018, 23, 70–79. [Google Scholar] [CrossRef]
- Santamera, A.; Escott, C.; Loira, I.; del Fresno, J.M.; González, C.; Morata, A. Pulsed Light: Challenges of a non-thermal sanitation technology in the winemaking industry. Beverages 2020, 6, 45. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). Title 21—Food and Drugs, Code of Federal Regulations, Part 179.41: Radiation Sources for Use in Processing Food; updated 1 October 2025; U.S. Government Publishing Office: Washington, DC, USA, 2025. [Google Scholar]
- Armagan, H.S.; Demirci, A. Current status of pulsed uv light technology for food, water, and food processing surface decontamination. Food Eng. Rev. 2025, 17, 966–993. [Google Scholar] [CrossRef]
- Obileke, K.; Onyeaka, H.; Miri, T.; Nwabor, O.F.; Hart, A.; Al-Sharify, Z.T.; Al-Najjar, S.; Anumudu, C. Recent advances in radio frequency, pulsed light, and cold plasma technologies for food safety. J. Food Process Eng. 2022, 45, e14138. [Google Scholar] [CrossRef]
- Filaire, E.; Georgeault, A.; Riedel, C.; Poinsot, C. Everything you need to know before trying pulsed light treatment for your applications. Preprints 2024. [Google Scholar]
- Heinrich, V.; Zunabovic, M.; Varzakas, T.; Bergmair, J.; Kneifel, W. Pulsed light treatment of different food types with a special focus on meat: A critical review. Crit. Rev. Food Sci. Nutr. 2016, 56, 591–613. [Google Scholar] [CrossRef]
- Duma-Kocan, P.; Rudy, M.; Gil, M.; Stanisławczyk, R.; Żurek, J.; Zaguła, G. The impact of a pulsed light stream on the quality and durability of the cold-stored Longissimus dorsal muscle of pigs. Int. J. Environ. Res. Public Health 2023, 20, 4063. [Google Scholar] [CrossRef]
- White, S.; Jackson-Davis, A.; Gordon, K.; Morris, K.; Dudley, A.; Abdallah-Ruiz, A.; Allgaier, K.; Sharpe, K.; Yenduri, A.K.; Green, K.; et al. A review of non-thermal interventions in food processing technologies. J. Food Prot. 2025, 88, 100508. [Google Scholar] [CrossRef] [PubMed]
- Ganan, M.; Hierro, E.; Hospital, X.F.; Barroso, E.; Fernández, M. Use of pulsed light to increase the safety of ready-to-eat cured meat products. Food Control 2013, 32, 512–517. [Google Scholar] [CrossRef]
- Fracari, P.R.; Massia, A.G.; Laroque, D.A.; dos Santos, B.A.; Cichoski, A.J.; Carciofi, B.A.M.; Campagnol, P.C.B. Pulsed light treatment effect on color, oxidative stability, and Listeria monocytogenes population of sliced mortadella. Foods 2024, 13, 2976. [Google Scholar] [CrossRef]
- Borges, A.; Baptista, E.; Aymerich, T.; Alves, S.P.; Gama, L.T.; Fraqueza, M.J. Inactivation of Listeria monocytogenes by pulsed light in packaged and sliced salpicão, a ready-to-eat traditional cured smoked meat sausage. LWT—Food Sci. Technol. 2023, 179, 114641. [Google Scholar] [CrossRef]
- Hierro, E.; Barroso, E.; de la Hoz, L.; Ordóñez, J.A.; Manzano, S.; Fernández, M. Efficacy of pulsed light for shelf-life extension and inactivation of Listeria monocytogenes on ready-to-eat cooked meat products. Innov. Food Sci. Emerg. Technol. 2011, 12, 275–281. [Google Scholar] [CrossRef]
- Indiarto, R.; Irawan, A.N.; Subroto, E. Meat Irradiation: A Comprehensive review of its impact on food quality and safety. Foods 2023, 12, 1845. [Google Scholar] [CrossRef]
- Orynbekov, D.; Amirkhanov, K.; Kalibekkyzy, Z.; Muslimova, N.; Nurymkhan, G.; Nurgazezova, A.; Kassymov, S.; Kassenov, A.; Maizhanova, A.; Kulushtayeva, B.; et al. Effect of electron-beam irradiation on microbiological safety, nutritional quality, and structural characteristics of meat. Foods 2025, 14, 1460. [Google Scholar] [CrossRef]
- Farkas, J. Irradiation for better foods. Trends Food Sci. Technol. 2006, 17, 148–152. [Google Scholar] [CrossRef]
- Jan, K.; Bashir, K.; Jan, S.; Khan, A.L. Principles and sources of gamma irradiation. In Innovative Food Processing Technologies; Knoerzer, K., Muthukumarappan, K., Eds.; Elsevier: Oxford, UK, 2021; pp. 61–70. ISBN 978-0-12-815782-4. [Google Scholar]
- Kim, Y.-J.; Cha, J.Y.; Kim, T.-K.; Lee, J.H.; Jung, S.; Choi, Y.-S. The Effect of irradiation on meat products. Food Sci. Anim. Resour. 2024, 44, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Mantilla, S.P.S.; Santos, É.B.; Vital, H.d.C.; Mano, S.B.; Freitas, M.Q.d.; Franco, R.M. Microbiology, sensory evaluation and shelf life of irradiated chicken breast fillets stored in air or vacuum. Braz. Arch. Biol. Technol. 2011, 54, 569–576. [Google Scholar] [CrossRef]
- Hashim, M.S.; Yusop, S.M.; Rahman, I.A. The impact of gamma irradiation on the quality of meat and poultry: A review on its immediate and storage effects. Appl. Food Res. 2024, 4, 100444. [Google Scholar] [CrossRef]
- Thayer, D.W. Extending shelf life of poultry and red meat by irradiation processing. J. Food Prot. 1993, 56, 831–834. [Google Scholar] [CrossRef] [PubMed]
- Uazhanova, R.; Tungyshbayeva, U.; Nurdaulet, S.; Zhanbolat, A.; Yusof, Y.A.; Seksenbay, S.; Danko, I.; Moldakhmetova, Z. Effect of electron beam irradiation on microbiological safety and quality of chilled poultry meat from Kazakhstan. Processes 2025, 13, 2267. [Google Scholar] [CrossRef]
- Kizhekkedath, J.; Sultana, K. Irradiation preservation of meat and meat products and its effect—A review. J. Meat Sci. 2018, 13, 1–17. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, L.; Gupta, T.B.; Singh, J.; Bronlund, J. Multitarget preservation technologies for chemical-free sustainable meat processing. J. Food Sci. 2022, 87, 4312–4328. [Google Scholar] [CrossRef]
- Asmarani, R.R.; Wahyono, T.; Dewi, P.S.; Prasetyo, L.B. Meta-analysis of the effects of gamma irradiation on chicken meat and meat product quality. Vet. World 2024, 17, 1084–1097. [Google Scholar] [CrossRef]
- Salari, M.; Khatami, M. Simultaneous application of electron beam irradiation and freezing for microbial safety and quality of minced turkey meat. Food Sci. Nutr. 2025, 13, 4752. [Google Scholar] [CrossRef] [PubMed]
- Farkas, J.; Mohácsi-Farkas, C. History and future of food irradiation. Trends Food Sci. Technol. 2011, 22, 121–126. [Google Scholar] [CrossRef]
- Astráin-Redín, L.; Ospina, S.; Cebrián, G.; Álvarez-Lanzarote, I. Ohmic heating technology for food applications, from ohmic systems to moderate electric fields and pulsed electric fields. Food Eng. Rev. 2024, 16, 225–251. [Google Scholar] [CrossRef]
- Alkanan, Z.T.; Altemimi, A.B.; Al-Hilphy, A.R.S.; Watson, D.G.; Pratap-Singh, A. Ohmic heating in the food industry: Developments in concepts and applications during 2013–2020. Appl. Sci. 2021, 11, 2507. [Google Scholar] [CrossRef]
- Il-Kyu, P.; Dong-Hyun, K. Effect of electropermeabilization by ohmic heating for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in buffered peptone water and apple juice. Appl. Environ. Microbiol. 2013, 79, 7122–7129. [Google Scholar] [CrossRef]
- Bozkurt, H.; Icier, F. Ohmic cooking of ground beef: Effects on quality. J. Food Eng. 2010, 96, 481–490. [Google Scholar] [CrossRef]
- Yildiz-Turp, G.; Sengun, I.Y.; Kendirci, P.; Icier, F. Effect of ohmic treatment on quality characteristic of meat: A review. Meat Sci. 2013, 93, 441–448. [Google Scholar] [CrossRef]
- Jafarpour, D.; Hashemi, S. Ohmic heating application in food processing: Recent achievements and perspectives. Foods Raw Mater. 2022, 10, 216–223. [Google Scholar] [CrossRef]
- Silva Rocha, R.; Barros, C.P.; Pimentel, T.C.; Mutti, P.; Cigarini, M.; Di Rocco, M.; Brutti, A.; Alamprese, C.; Silva, M.C.; Esmerino, E.A.; et al. Ohmic Heating. In Novel Technologies in Food Science; John Wiley & Sons: Hoboken, NJ, USA, 2023; pp. 551–609. ISBN 9781119776376. [Google Scholar]
- Balthazar, C.F.; Pimentel, T.C.; Silva, R.; Prudencio, E.S.; Cruz, A.G.; Mársico, E.T. Recent findings on the ohmic heating application in meat products. Curr. Opin. Food Sci. 2024, 58, 101180. [Google Scholar] [CrossRef]
- Knirsch, M.C.; Santos, C.A.; Vicente, M.O.S.A.; Vessoni Penna, T.C. Ohmic heating—A review. Trends Food Sci. Technol. 2010, 21, 436–441. [Google Scholar] [CrossRef]
- Darvishi, H.; Ghiasi, F.; Rostami, N.; Fadavi, A. Effect of ohmic heating on electrochemical-thermal parameters and inactivation of Escherichia coli of well water drinkable. Innov. Food Sci. Emerg. Technol. 2021, 73, 102786. [Google Scholar] [CrossRef]
- Varghese, K.S.; Pandey, M.C.; Radhakrishna, K.; Bawa, A.S. Technology, applications and modelling of ohmic heating: A review. J. Food Sci. Technol. 2014, 51, 2304–2317. [Google Scholar] [CrossRef]
- Silva, R.; Rocha, R.S.; Ramos, G.L.P.A.; Xavier-Santos, D.; Pimentel, T.C.; Lorenzo, J.M.; Henrique Campelo, P.; Cristina Silva, M.; Esmerino, E.A.; Freitas, M.Q.; et al. What are the challenges for ohmic heating in the food industry? Insights of a bibliometric analysis. Food Res. Int. 2022, 157, 111272. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Zill-e-Huma; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Taha, A.; Mehany, T.; Pandiselvam, R.; Anusha Siddiqui, S.; Mir, N.A.; Malik, M.A.; Sujayasree, O.J.; Alamuru, K.C.; Khanashyam, A.C.; Casanova, F.; et al. Sonoprocessing: Mechanisms and recent applications of power ultrasound in Food. Crit. Rev. Food Sci. Nutr. 2024, 64, 6016–6054. [Google Scholar] [CrossRef]
- Awad, T.S.; Moharram, H.A.; Shaltout, O.E.; Asker, D.; Youssef, M.M. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res. Int. 2012, 48, 410–427. [Google Scholar] [CrossRef]
- Majid, I.; Nayik, G.A.; Nanda, V. Ultrasonication and food technology: A review. Cogent Food Agric. 2015, 1, 1071022. [Google Scholar] [CrossRef]
- Prempeh, N.Y.A.; Nunekpeku, X.; Murugesan, A.; Li, H. Ultrasound in the food industry: Mechanisms and applications for non-invasive texture and quality analysis. Foods 2025, 14, 2057. [Google Scholar] [CrossRef]
- Bhargava, N.; Mor, R.S.; Kumar, K.; Sharanagat, V.S. Advances in application of ultrasound in food processing: A review. Ultrason. Sonochem. 2021, 70, 105293. [Google Scholar] [CrossRef]
- Alarcon-Rojo, A.D.; Carrillo-Lopez, L.M.; Reyes-Villagrana, R.; Huerta-Jiménez, M.; Garcia-Galicia, I.A. Ultrasound and meat quality: A review. Ultrason. Sonochem. 2019, 55, 369–382. [Google Scholar] [CrossRef]
- Chavan, P.; Sharma, P.; Sharma, S.R.; Mittal, T.C.; Jaiswal, A.K. Application of high-intensity ultrasound to improve food processing efficiency: A review. Foods 2022, 11, 122. [Google Scholar] [CrossRef]
- Toy, J.Y.H.; Chin, F.W.L.; Zhang, L.; Jing, L.; Yang, X.; Huang, D. Novel food processing technologies for retaining nutrition of horticultural food products. Future Postharvest Food 2024, 1, 198–212. [Google Scholar] [CrossRef]
- Jayasooriya, S.D.; Bhandari, B.R.; Torley, P.; D’Arcy, B.R. Effect of high power ultrasound waves on properties of meat: A review. Int. J. Food Prop. 2004, 7, 301–319. [Google Scholar] [CrossRef]
- Bariya, A.R.; Rathod, N.B.; Patel, A.S.; Nayak, J.K.B.; Ranveer, R.C.; Hashem, A.; Abd_Allah, E.F.; Ozogul, F.; Jambrak, A.R.; Rocha, J.M. Recent developments in ultrasound approach for preservation of animal origin foods. Ultrason. Sonochem. 2023, 101, 106676. [Google Scholar] [CrossRef] [PubMed]
- Al-Hilphy, A.R.; Al-Temimi, A.B.; Al Rubaiy, H.H.M.; Anand, U.; Delgado-Pando, G.; Lakhssassi, N. Ultrasound applications in poultry meat processing: A systematic review. J. Food Sci. 2020, 85, 1386–1396. [Google Scholar] [CrossRef]
- Alshehhi, M.; Wu, G.; Kangsadan, T.; Chew, K.W.; Show, P.L. Ultrasound-assisted food processing: A mini review of mechanisms, applications, and challenges. E3S Web Conf. 2023, 428, 02011. [Google Scholar] [CrossRef]
- Mason, T.J.; Chemat, F.; Ashokkumar, M. 27—Power Ultrasonics for Food Processing. In Power Ultrasonics; Gallego-Juárez, J.A., Graff, K.F., Eds.; Woodhead Publishing: Oxford, UK, 2015; pp. 815–843. ISBN 978-1-78242-028-6. [Google Scholar]
- Mustapha, A.T.; Wahia, H.; Ji, Q.; Fakayode, O.A.; Zhang, L.; Zhou, C. Multiple-frequency ultrasound for the inactivation of microorganisms on food: A review. J. Food Process Eng. 2024, 47, e14587. [Google Scholar] [CrossRef]
- Guerrero, S.N.; Ferrario, M.; Schenk, M.; Carrillo, M.G. Chapter 3—Hurdle Technology Using Ultrasound for Food Preservation. In Ultrasound: Advances for Food Processing and Preservation; Bermudez-Aguirre, D., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 39–99. ISBN 978-0-12-804581-7. [Google Scholar]
- Dharini, M.; Jaspin, S.; Mahendran, R. Cold plasma reactive species: Generation, properties, and interaction with food biomolecules. Food Chem. 2023, 405, 134746. [Google Scholar] [CrossRef]
- Sasikumar, R.; Kumar, S.T.; Mangang, I.B.; Kaviarasu, G.; Kaushik, R.; Mansingh, P.; Tomer, V.; Jaiswal, A.K. A comprehensive review on cold plasma applications in the food industry. Sustain. Food Technol. 2025, 3, 1251–1274. [Google Scholar] [CrossRef]
- Radhakrishnan, M.; Abirami, C.V.K.; Alagusundaram, K. Cold Plasma Technology: An Emerging Non-Thermal Processing of Foods-a Review. In Engineering Interventions in Agricultural Processing; Apple Academic Press: Palm Bay, FL, USA, 2017; pp. 33–56. ISBN 9781315207377. [Google Scholar]
- Niemira, B.A. Cold plasma decontamination of foods. Annu. Rev. Food Sci. Technol. 2012, 3, 125–142. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Kang, T.; Wijayasekara, K.N.; Jo, C. Innovative application of cold plasma technology in meat and its products. Food Sci. Anim. Resour. 2023, 43, 1087–1110. [Google Scholar] [CrossRef]
- Ghazali, M.H.; Saleem, F.; Bashir, L. Cold plasma and high-pressure processing in sustainable meat preservation: A review. Food Nutr. Health 2025, 2, 22. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Wang, Z.; Yan, W.; Zhuang, H.; Zhang, J. Impact of dielectric barrier discharge cold plasma on the lipid oxidation, color stability, and protein structures of myoglobin-added washed pork muscle. Front. Nutr. 2023, 10. [Google Scholar] [CrossRef]
- Thirumdas, R.; Sarangapani, C.; Annapure, U.S. Cold plasma: A novel nonthermal technology for food processing. Food Biophys. 2015, 10, 1–11. [Google Scholar] [CrossRef]
- Figueroa-Pinochet, M.F.; Castro-Alija, M.J.; Tiwari, B.K.; Jiménez, J.M.; López-Vallecillo, M.; Cao, M.J.; Albertos, I. Dielectric barrier discharge for solid food applications. Nutrients 2022, 14, 4653. [Google Scholar] [CrossRef]
- Akhtar, J.; Abrha, M.G.; Teklehaimanot, K.; Gebrekirstos, G. Cold plasma technology: Fundamentals and effect on quality of meat and its products. Food Agric. Immunol. 2022, 33, 451–478. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Wan, Z.; Keener, K.M. Effects of cold plasma on food quality: A review. Foods 2018, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, Y.A.-G.; Elkaliny, N.E.; Elshikh, F.M.; Ashraf, Y.; Metwally, K.; Yahya, G.; Sherif, S. Cold plasma as a revolutionary antimicrobial modality: A multifaceted weapon against antibiotic resistance. Antibiotics 2025, 14, 930. [Google Scholar] [CrossRef] [PubMed]
- Dragoev, S.G. Lipid peroxidation in muscle foods: Impact on quality, safety and human health. Foods 2024, 13, 797. [Google Scholar] [CrossRef]
- Oliinychenko, Y.K.; Saad, S.; Zymvrakaki, E.; Mourtzinos, I.; Tiwari, B.; Stratakos, A.C. Effects of cold atmospheric plasma on oxidative stability, microstructure, and volatile profile of pork meat. J. Agric. Food Res. 2025, 21, 101893. [Google Scholar] [CrossRef]
- Ke, Z.; Bai, Y.; Zhu, H.; Xiang, X.; Liu, S.; Zhou, X.; Ding, Y. Characteristics of myoglobin degradation by cold plasma and its pro-oxidative activity on lipid in washed fish muscle. Food Chem. 2022, 389, 132972. [Google Scholar] [CrossRef] [PubMed]
- Baron, C.P.; Andersen, H.J. Myoglobin-Induced Lipid Oxidation: A Review. J. Agric. Food Chem. 2002, 50, 3887–3897. [Google Scholar] [CrossRef] [PubMed]
- Vedaei, S.; Dara, A. Surveying the utilization of cold plasma and plasma-activated water on food pigments, bioactive compounds, enzymes, vitamins, fatty acid, and essential oils: Considerations, mechanisms, and future trends. Food Chem. X 2025, 28, 102509. [Google Scholar] [CrossRef]
- Rout, S.; Panda, P.K.; Dash, P.; Srivastav, P.P.; Hsieh, C.-T. Cold plasma-induced modulation of protein and lipid macromolecules: A review. Int. J. Mol. Sci. 2025, 26, 1564. [Google Scholar] [CrossRef]
- Yan, Z.; Lin, S.; Li, F.; Qiang, J.; Zhang, S. Food nanotechnology: Opportunities and challenges. Food Funct. 2024, 15, 9690–9706. [Google Scholar] [CrossRef]
- Biswas, R.; Alam, M.; Sarkar, A.; Haque, M.I.; Hasan, M.d.M.; Hoque, M. Application of nanotechnology in food: Processing, preservation, packaging and safety assessment. Heliyon 2022, 8, e11795. [Google Scholar] [CrossRef]
- Han, K.; Yang, H.; Fan, D.; Deng, J. Advances in nanotechnology research in food production, nutrition, and health. Nutrients 2025, 17, 2443. [Google Scholar] [CrossRef]
- Zhou, Y.-H.; Mujumdar, A.S.; Vidyarthi, S.K.; Zielinska, M.; Liu, H.; Deng, L.-Z.; Xiao, H.-W. Nanotechnology for food safety and security: A comprehensive review. Food Rev. Int. 2023, 39, 3858–3878. [Google Scholar] [CrossRef]
- Mohammad, Z.H.; Ahmad, F.; Ibrahim, S.A.; Zaidi, S. Application of nanotechnology in different aspects of the food industry. Discov. Food 2022, 2, 12. [Google Scholar] [CrossRef]
- Islam, F.; Imran, A.; Afzaal, M.; Zahoor, T.; Amjad, N.; Wei, C.R.; Biswas, S.; Fatima, M.; Arshad, M.U.; Azmat, F.; et al. Nanotechnology for the improvement of the quality, properties, and safety of food and agriculture: Recent and future trends. Cogent Food Agric. 2024, 10, 2398857. [Google Scholar] [CrossRef]
- Mahato, D.K.; Mishra, A.K.; Kumar, P. Nanoencapsulation for agri-food applications and associated health and environmental concerns. Front. Nutr. 2021, 8, 663229. [Google Scholar] [CrossRef]
- Pugazhendhi, A.; Alshehri, M.A.; Kandasamy, S.; Sarangi, P.K.; Sharma, A. Deciphering the importance of nanoencapsulation to improve the availability of bioactive molecules in food sources to the human body. Food Chem. 2025, 464, 141762. [Google Scholar] [CrossRef]
- Kamble, M.G.; Singh, A.; Singh, S.V.; Kamble, M.G.; Sagar, N.A.; Rani, N. Nanotechnology for encapsulation of bioactive components: A review. Discov. Food 2025, 5, 116. [Google Scholar] [CrossRef]
- Ahmad, K.; Ahmad, R.; Faizan, M.; Farah; Ali, F.; Yousaf, M.M.; Ali, F.; Niaz, W.; Khan, T.U.; Khan, S.; et al. A review of nanotechnology in food industry with implication for viable outlook and safety issues. Hybrid. Adv. 2025, 10, 100487. [Google Scholar] [CrossRef]
- Joshi, N.C.; Negi, P.B.; Gururani, P. A review on metal/metal oxide nanoparticles in food processing and packaging. Food Sci. Biotechnol. 2024, 33, 1307–1322. [Google Scholar] [CrossRef]
- Cacciatore, F.A.; Brandelli, A.; Malheiros, P.d.S. Combining natural antimicrobials and nanotechnology for disinfecting food surfaces and control microbial biofilm formation. Crit. Rev. Food Sci. Nutr. 2021, 61, 3771–3782. [Google Scholar] [CrossRef]
- Wyser, Y.; Adams, M.; Avella, M.; Carlander, D.; Garcia, L.; Pieper, G.; Rennen, M.; Schuermans, J.; Weiss, J. Outlook and challenges of nanotechnologies for food packaging. Packag. Technol. Sci. 2016, 29, 615–648. [Google Scholar] [CrossRef]
- Weiss, J.; Takhistov, P.; McClements, D.J. Functional materials in food nanotechnology. J. Food Sci. 2006, 71, R107–R116. [Google Scholar] [CrossRef]
- Gurunathan, K.; Tahseen, A. Modified atmosphere packaging (MAP) of meat and meat products: A review. J. Packag. Technol. Res. 2022, 6, 137–148. [Google Scholar] [CrossRef]
- Ameer, A.; Seleshe, S.; Kang, S.N. Effect of modified atmosphere packaging varying in CO2 and N2 composition on quality characteristics of dry fermented sausage during refrigeration storage. Food Sci. Anim. Resour. 2022, 42, 639–654. [Google Scholar] [CrossRef]
- Sai-Ut, S.; Indriani, S.; Srisakultiew, N.; Kingwascharapong, P.; Suriyarak, S.; Issara, U.; Phongthai, S.; Rawdkuen, S.; Pongsetkul, J. The role of CO2 levels in high-oxygen modified atmosphere packaging on microbial communities of chilled goat meat during storage and their relationship with quality attributes. Foods 2025, 14, 1837. [Google Scholar] [CrossRef] [PubMed]
- McMillin, K.W. Where Is MAP Going? A review and future potential of modified atmosphere packaging for meat. Meat Sci. 2008, 80, 43–65. [Google Scholar] [CrossRef]
- Nethra, P.V.; Sunooj, K.V.; Aaliya, B.; Navaf, M.; Akhila, P.P.; Sudheesh, C.; Mir, S.A.; Shijin, A.; George, J. Critical factors affecting the shelf life of packaged fresh red meat—A review. Meas. Food 2023, 10, 100086. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, Y.; Fang, Z.; Wang, Z.-C.; Nan, Y.; Shi, H.; Zhang, H.; Song, W.; Gu, H. Modified atmosphere packaging and plant extracts synergistically enhance the preservation of meat: A review. Food Control 2024, 164, 110622. [Google Scholar] [CrossRef]
- Vasileiadi, N.; Tsironi, T.; Mandilara, G.D. Survival of Listeria monocytogenes in light and full-fat, modified atmosphere-packaged, sliced greek cheese over shelf life: Implications for ready-to-eat food safety. Appl. Sci. 2025, 15, 6109. [Google Scholar] [CrossRef]
- Cha, H.; Liang, S.; Shi, K.; Xu, Z.; Ge, C.; Zhao, P.; Xiao, Z. Effect of modified atmosphere packaging on the quality characteristics and bacterial community succession of super-chilled chicken meat in biopreservation. LWT—Food Sci. Technol. 2023, 189, 115547. [Google Scholar] [CrossRef]
- Onyeaka, H.N.; Nwabor, O.F. Chapter 8—Green Technology in Food Processing and Preservation. In Food Preservation and Safety of Natural Products; Onyeaka, H.N., Nwabor, O.F., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 87–118. ISBN 978-0-323-85700-0. [Google Scholar]
- Grigore-Gurgu, L.; Bucur, F.I.; Mihalache, O.A.; Nicolau, A.I. Comprehensive review on the biocontrol of Listeria monocytogenes in food products. Foods 2024, 13, 734. [Google Scholar] [CrossRef]
- Hugas, M.; Garriga, M.; Monfort, J.M. New mild technologies in meat processing: High pressure as a model technology. Meat Sci. 2002, 62, 359–371. [Google Scholar] [CrossRef]
- Rajendran, S.; Mallikarjunan, P.K.; O’Neill, E. High Pressure processing for raw meat in combination with other treatments: A review. J. Food Process. Preserv. 2022, 46, e16049. [Google Scholar] [CrossRef]
- Patterson, M.F. Microbiology of pressure-treated foods. J. Appl. Microbiol. 2005, 98, 1400–1409. [Google Scholar] [CrossRef] [PubMed]
- de Arauz, L.J.; Jozala, A.F.; Mazzola, P.G.; Penna, T.C.V. Nisin Biotechnological production and application: A review. Trends Food Sci. Technol. 2009, 20, 146–154. [Google Scholar] [CrossRef]
- Melhem, L.C.d.M.; Do Rosario, D.K.A.; Monteiro, M.L.G.; Conte-Junior, C.A. High-pressure processing and natural antimicrobials combined treatments on bacterial inactivation in cured meat. Sustainability 2022, 14, 10503. [Google Scholar] [CrossRef]
- Chung, H.-J.; Yousef, A.E. Synergistic effect of high pressure processing and Lactobacillus casei antimicrobial activity against pressure resistant Listeria monocytogenes. New Biotechnol. 2010, 27, 403–408. [Google Scholar] [CrossRef]
- Castro, S.M.; Kolomeytseva, M.; Casquete, R.; Silva, J.; Queirós, R.; Saraiva, J.A.; Teixeira, P. Biopreservation strategies in combination with mild high pressure treatments in traditional portuguese ready-to-eat meat sausage. Food Biosci. 2017, 19, 65–72. [Google Scholar] [CrossRef]
- Castro, S.M.; Silva, J.; Casquete, R.; Queirós, R.; Saraiva, J.; Teixeira, P. Combined effect of pediocin BacHA-6111-2 and high hydrostatic pressure to control Listeria innocua in fermented meat sausage. Int. Food Res. J. 2018, 25, 553–560. Available online: http://hdl.handle.net/10400.14/26477 (accessed on 19 November 2025).
- Li, H.; Sun, X.; Liao, X.; Gänzle, M. Control of pathogenic and spoilage bacteria in meat and meat products by high pressure: Challenges and future perspectives. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3476–3500. [Google Scholar] [CrossRef]
- Kalchayanand, N.; Dunne, C.P.; Sikes, A.; Ray, B. Inactivation of bacterial spores by combined action of hydrostatic pressure and bacteriocins in roast beef. J. Food Saf. 2003, 23, 219–231. [Google Scholar] [CrossRef]
- Liu, G.; Wang, Y.; Gui, M.; Zheng, H.; Dai, R.; Li, P. Combined effect of high hydrostatic pressure and enterocin LM-2 on the refrigerated shelf life of ready-to-eat sliced vacuum-packed cooked ham. Food Control 2012, 24, 64–71. [Google Scholar] [CrossRef]
- Simonin, H.; Duranton, F.; de Lamballerie, M. New insights into the high-pressure processing of meat and meat products. Compr. Rev. Food Sci. Food Saf. 2012, 11, 285–306. [Google Scholar] [CrossRef]
- Ananou, S.; Garriga, M.; Jofré, A.; Aymerich, T.; Gálvez, A.; Maqueda, M.; Martínez-Bueno, M.; Valdivia, E. Combined effect of enterocin AS-48 and high hydrostatic pressure to control food-borne pathogens inoculated in low acid fermented sausages. Meat Sci. 2010, 84, 594–600. [Google Scholar] [CrossRef]
- Gálvez, A.; López, R.L.; Abriouel, H.; Valdivia, E.; Omar, N.B. Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit. Rev. Biotechnol. 2008, 28, 125–152. [Google Scholar] [CrossRef]
- Lee, H.; Shahbaz, H.M.; Yang, J.; Jo, M.H.; Kim, J.U.; Yoo, S.; Kim, S.H.; Lee, D.-U.; Park, J. Effect of high pressure processing combined with lactic acid bacteria on the microbial counts and physicochemical properties of uncooked beef patties during refrigerated storage. J. Food Process. Preserv. 2021, 45, e15345. [Google Scholar] [CrossRef]
- Bover-Cid, S.; Belletti, N.; Garriga, M.; Aymerich, T. Modeling the protective effect of high pressure processing on the growth of Listeria monocytogenes in ready-to-eat meat products. Food Microbiol. 2011, 28, 653–660. [Google Scholar] [CrossRef]
- Cheftel, J.-C.; Culioli, J. Effects of high pressure on meat: A review. Meat Sci. 1997, 46, 211–236. [Google Scholar] [CrossRef]
- Pol, I.E.; Mastwijk, H.C.; Bartels, P.V.; Smid, E.J. Pulsed-electric field treatment enhances the bactericidal action of nisin against Bacillus cereus. Appl. Environ. Microbiol. 2000, 66, 428–430. [Google Scholar] [CrossRef]
- Terebiznik, M.R.; Jagus, R.J.; Cerrutti, P.; De Huergo, M.S.; Pilosof, A.M.R. Combined effect of nisin and pulsed electric fields on the inactivation of Escherichia coli. J. Food Prot. 2000, 63, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Novickij, V.; Deveikyte, I.; Naujokaityte, I.; Ruzgys, P.; Lukosevicius, S.; Novickij, J. Sub-microsecond pulsed electric field treatment enhances Escherichia coli inactivation in combination with nisin nanoparticles. Front. Microbiol. 2018, 9, 3006. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Heo, Y.; Kim, H.-J.; Baek, K.H.; Yim, D.-G.; Sethukali, A.K.; Park, D.; Jo, C. Bactericidal effect of combination of atmospheric pressure plasma and nisin on meat products inoculated with Escherichia coli O157:H7. Food Sci. Anim. Resour. 2023, 43, 402–411. [Google Scholar] [CrossRef]
- Ismail, A.; Lee, H.J.; Hong, S.-J.; Kim, G.; Choi, M.; Jo, C. Evaluation of plasma-activated lactic-gallic acid treated chicken meats on the freshness, volatile changes, and metabolites through multi-analytical techniques. Innov. Food Sci. Emerg. Technol. 2024, 91, 103544. [Google Scholar] [CrossRef]
- Misra, N.N.; Jo, C. Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci. Technol. 2017, 64, 74–86. [Google Scholar] [CrossRef]
- Qian, J.; Zhuang, H.; Nasiru, M.M.; Muhammad, U.; Zhang, J.; Yan, W. Action of plasma-activated lactic acid on the inactivation of inoculated Salmonella Enteritidis and quality of beef. Innov. Food Sci. Emerg. Technol. 2019, 57, 102196. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Sheng, X.; Zhao, L.; Qian, J.; Zhang, J.; Wang, J. Unraveling the antibacterial mechanism of plasma-activated lactic acid against Pseudomonas ludensis by untargeted metabolomics. Foods 2023, 12, 1605. [Google Scholar] [CrossRef]
- Mohamed, H.M.H.; Elnawawi, F.A.; Yousef, A.E. Nisin treatment to enhance the efficacy of gamma radiation against Listeria monocytogenes on meat. J. Food Prot. 2011, 74, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, R.; Sogore, T.; Feng, J.; Liao, X.; Wang, X.; Zhang, Z.; Ding, T. Electron beam irradiation in food processing: Current applications and strategies for commercial scale implementation. Sustain. Food Technol. 2025, 3, 875–893. [Google Scholar] [CrossRef]
- Yang, J.; Pan, M.; Han, R.; Yang, X.; Liu, X.; Yuan, S.; Wang, S. Food irradiation: An emerging processing technology to improve the quality and safety of foods. Food Rev. Int. 2024, 40, 2321–2343. [Google Scholar] [CrossRef]
- Anwar, M.M.; Aboul-Anean, H.E.; Elbaz, A.M. Effect of gamma irradiation and edible coating on microbiological and physicochemical of beef patties. Isot. Radiat. Res. 2025, 44, 981–987. [Google Scholar] [CrossRef]
- Li, S.; Kundu, D.; Holley, R.A. Use of lactic acid with electron beam irradiation for control of Escherichia coli O157:H7, non-O157 VTEC E. Coli, and Salmonella serovars on fresh and frozen beef. Food Microbiol. 2015, 46, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Zimet, P.; Mombrú, Á.W.; Faccio, R.; Brugnini, G.; Miraballes, I.; Rufo, C.; Pardo, H. Optimization and characterization of nisin-loaded alginate-chitosan nanoparticles with antimicrobial activity in lean beef. LWT—Food Sci. Technol. 2018, 91, 107–116. [Google Scholar] [CrossRef]
- Gedarawatte, S.T.G.; Ravensdale, J.T.; Al-Salami, H.; Dykes, G.A.; Coorey, R. Antimicrobial efficacy of nisin-loaded bacterial cellulose nanocrystals against selected meat spoilage lactic acid bacteria. Carbohydr. Polym. 2021, 251, 117096. [Google Scholar] [CrossRef]
- Tolba, A.; Hamdi, A.; Youssef, H.; Elsherif, W. Challenge of nisin and its nanoparticles in eliminating Listeria monocytogenes inoculated in chilled minced meat. J. Adv. Vet. Res. 2024, 14, 1136–1142. Available online: https://advetresearch.com/index.php/AVR/article/view/1985 (accessed on 19 November 2025).
- Elsherif, W.M.; Hassanien, A.A.; Zayed, G.M.; Kamal, S.M. Natural approach of using nisin and its nanoform as food bio-preservatives against methicillin resistant Staphylococcus aureus and E. coli O157:H7 in yoghurt. BMC Vet. Res. 2024, 20, 192. [Google Scholar] [CrossRef]
- Yaghoubi, M.; Alirezalu, K.; Mazloomi, S.M.; Marcinkowska-Lesiak, M.; Azadmard-Damirchi, S.; Peighambardoust, S.H.; Hesari, J.; Rastgoo, A.; Phimolsiripol, Y.; Mousavi Khaneghah, A. Enhancing beef sausage packaging with calcium alginate active film infused with nisin and ε-polylysine nanoparticles and beetroot extract. LWT—Food Sci. Technol. 2024, 191, 115665. [Google Scholar] [CrossRef]
- Kohli, D.; Mishra, R.; Kumar, S.; Bhatiya, S. Ohmic heating of foods: An emerging technology. Int. J. Agric. Sci. 2016, 8, 1877–1880. Available online: http://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000217 (accessed on 19 November 2025).
- Costello, K.M.; Velliou, E.; Gutierrez-Merino, J.; Smet, C.; Kadri, H.E.; Van Impe, J.F.; Bussemaker, M. The effect of ultrasound treatment in combination with nisin on the inactivation of Listeria innocua and Escherichia coli. Ultrason. Sonochem. 2021, 79, 105776. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, L.; Song, L.; Song, L.; Shi, S.; Liu, H.; Wu, J.; Si, K.; Gong, T.; Liu, H. Combined treatment of lactic acid-ultrasound-papain on yak meat and its tenderization mechanism. Meat Sci. 2023, 196, 109043. [Google Scholar] [CrossRef]
- Soria, A.C.; Villamiel, M. Effect of ultrasound on the technological properties and bioactivity of food: A review. Trends Food Sci. Technol. 2010, 21, 323–331. [Google Scholar] [CrossRef]
- Rathnayake, P.Y.; Yu, R.; Yeo, S.E.; Choi, Y.-S.; Hwangbo, S.; Yong, H.I. Application of ultrasound to animal-based food to improve microbial safety and processing efficiency. Food Sci. Anim. Resour. 2025, 45, 199–222. [Google Scholar] [CrossRef]
- Beitia, E.; Gkogka, E.; Chanos, P.; Hertel, C.; Heinz, V.; Valdramidis, V.; Aganovic, K. Microbial decontamination assisted by ultrasound-based processing technologies in food and model systems: A review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2802–2849. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.K.; Arruda, H.S.; Pastore, G.M.; Meireles, M.A.A.; Saldaña, M.D.A. Xylooligosaccharides Chemical stability after high-intensity ultrasound processing of prebiotic orange juice. Ultrason. Sonochem. 2020, 63, 104942. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Koch, E.H.W.; van Walree, C.A.; Sobota, A.; Sonnen, A.F.P.; Killian, J.A.; Breukink, E.; Lorent, J.H. Synergistic effects of oxidative and acid stress on bacterial membranes of Escherichia coli and Staphylococcus simulans. Commun. Biol. 2024, 7, 1161. [Google Scholar] [CrossRef]
- Kamau, P.; Cruz-Romero, M.; Alzate, P.; Morris, M.; Kerry, J. Active packaging containing natural antimicrobials as a potential and innovative technology to extend shelf-life of fish products—A review. Food Packag. Shelf Life 2025, 49, 101500. [Google Scholar] [CrossRef]
- Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins—A viable alternative to antibiotics? Nat. Rev. Microbiol. 2013, 11, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sui, Y.; Zhang, B.; Dong, Z.; Kong, B.; Liu, Q.; Chen, Q. The impact of O2 and CO2 concentrations of modified atmosphere packaging on the storage quality of the conditioned raw cut steak. Food Control 2026, 179, 111601. [Google Scholar] [CrossRef]
- Sorathiya, K.B.; Melo, A.; Hogg, M.C.; Pintado, M. Organic acids in food preservation: Exploring synergies, molecular insights, and sustainable applications. Sustainability 2025, 17, 3434. [Google Scholar] [CrossRef]
- Qian, Y.-F.; Shi, C.-J.; Liu, C.-C.; Zhang, J.-J.; Yang, S.-P. Effects of CO2 and O2 in modified atmosphere packaging on water retention, protein stability, and microbial growth in atlantic salmon fillets. Fishes 2025, 10, 141. [Google Scholar] [CrossRef]
- Sivertsvik, M.; Jeksrud, W.K.; Rosnes, J.T. A review of modified atmosphere packaging of fish and fishery products—Significance of microbial growth, activities and safety. Int. J. Food Sci. Technol. 2002, 37, 107–127. [Google Scholar] [CrossRef]
- Nychas, G.-J.E.; Skandamis, P.N.; Tassou, C.C.; Koutsoumanis, K.P. Meat spoilage during distribution. Meat Sci. 2008, 78, 77–89. [Google Scholar] [CrossRef]


| Class/Type/Subclass | Bacteriocin | Producing Organism/Strain | Structure/Components | Meat/Meat Product Studied | Target Microorganism(s) | Mechanism of Action | References |
|---|---|---|---|---|---|---|---|
| Class I—Type AI | Nisin A/Z/Q/U | Lactococcus lactis, Streptococcus uberis | Single lantibiotic peptide | Cooked ham, pork, beef, poultry, sausages, RTE meats | Listeria monocytogenes, Staphylococcus aureus, Clostridium spp. | Lipid II binding; pore formation | [58,59,60] |
| Subtilin | Bacillus subtilis | Single lantibiotic peptide | Minced beef, sausages | Listeria, Staphylococcus | Lipid II binding; pore formation | [54] | |
| Epidermin | Staphylococcus epidermidis | Single peptide | Cured meats (in vitro) | Gram-positive cocci | Membrane pore formation | [74] | |
| Gallidermin | Staphylococcus gallinarum | Gallidermin | Gallidermin | Gallidermin | Gallidermin | [114] | |
| Mutacin 1140 | Streptococcus mutans | Lantibiotic peptide | Gram-positive bacteria | Pore formation | [115] | ||
| Lacticin 481 | Lactococcus lactis | Single lantibiotic peptide | Gram-positive bacteria | Lipid II binding | [57] | ||
| Salivaricin A | Streptococcus salivarius | Lantibiotic peptide | Gram-positive bacteria | Pore formation | [57] | ||
| Class I—Type AII | Lacticin 3147 | Lactococcus lactis | Two peptides (Ltnα/Ltnβ) | Fermented pork, beef | Listeria, Staphylococcus | Lipid II binding + membrane permeabilization | [63,64] |
| Haloduracin | Bacillus halodurans | Two peptides | Listeria, Staphylococcus | Cell wall synthesis inhibition | [116] | ||
| Class I—Type B | Mersacidin | Bacillus spp. | Globular lantibiotic | Staphylococcus aureus | Cell wall synthesis inhibition | [117] | |
| Actagardine | Actinoplanes spp. | Globular lantibiotic | Gram-positive cocci | Inhibition of peptidoglycan synthesis | [118] | ||
| Class I—Type C | Lacticin Q | Lactococcus lactis | Circular peptide | Meat models | Gram-positive bacteria | Membrane disruption | [119] |
| Lacticin Z | Lactococcus lactis | Circular peptide | Gram-positive bacteria | Pore formation | [120] | ||
| Class II—IIa | Pediocin PA-1 | Pediococcus acidilactici | Single peptide | Pork, poultry, RTE meats | Listeria monocytogenes (strong effect) | Mannose-PTS pore formation | [78] |
| Sakacin P | Latilactobacillus sakei | Single peptide | Fermented sausages | Listeria monocytogenes | Pore formation | [79] | |
| Curvacin A | Latilactobacillus curvatus | Single peptide | Fermented sausages | Listeria monocytogenes | Pore formation | [79] | |
| Enterocin A | Enterococcus faecium | Single peptide | Pork, cooked ham | Listeria monocytogenes | Membrane permeabilization | [78] | |
| Leucocin A | Leuconostoc gelidum | Single peptide | Chilled meats | Listeria monocytogenes | Pore formation | [80] | |
| Piscicolin 126 | Carnobacterium piscicola | Single peptide | Meat and fish | Listeria monocytogenes | Membrane disruption | [121] | |
| Carnobacteriocin BM1 | Carnobacterium maltaromaticum | Single peptide | Vacuum-packed meats | Listeria monocytogenes | Pore formation | [70] | |
| Class II—IIb | Lactococcin G | Lactococcus lactis | Two peptides | Meat broths | Gram-positive bacteria | Two-peptide pore complex | [71] |
| Plantaricin EF | Lacticaseibacillus plantarum | Two peptides | Fermented meats | Gram-positive spoilage bacteria | Pore formation | [72] | |
| Plantaricin JK | L. plantarum | Two peptides | Sausages (in vitro) | LAB, spoilage bacteria | Membrane disruption | [73] | |
| Class II—IIc | Enterocin AS-48 | Enterococcus faecalis | Cyclic peptide | Pork, meat models | Gram-positive bacteria | Membrane disruption | [74,79] |
| Class II—IId | Enterocin B | Enterococcus faecium | Linear peptide | Meat broths | Listeria monocytogenes | Membrane permeabilization | [75,76] |
| BacST8KF | Streptococcus thermophilus | Linear peptide | Gram-positive bacteria | Membrane disruption | [122] | ||
| Class III—IIIa | Enterolisin A | Enterococcus faecalis | 34–35 kDa protein | Cooked ham, RTE meats | Listeria, Lactic acid bacteria | Muralytic activity | [83] |
| Lysostaphin | Staphylococcus simulans | ~27 kDa enzyme | Beef, pork | Staphylococcus aureus | Cleaves pentaglycine bonds | [84] | |
| Zoocin A | Streptococcus zooepidemicus | ~30 kDa enzyme | Pork models | Streptococcus spp. | Peptidoglycan hydrolysis | [123] | |
| Class III—IIIb | Helveticin J | Lactobacillus helveticus | ~37 kDa protein | Pork, beef | Gram-positive bacteria | Membrane disruption | [124] |
| Acidocin B | Lactobacillus acidophilus | Protein complex (~35–40 kDa) | Gram-positive bacteria | Membrane disruption | [125] | ||
| Class IV | Leuconocin S | Leuconostoc mesenteroides | Protein–carbohydrate–lipid complex | Fermented meats | Listeria monocytogenes | Membrane disruption | [91,95] |
| Mesentericin Y105 | Leuconostoc mesenteroides Y105 | Protein–carbohydrate complex | Fermented meats | Listeria monocytogenes | Membrane disruption | [126] | |
| Class V | Paenibacterin | Paenibacillus thiaminolyticus | NRPS cyclic lipopeptide | Meat models | Listeria, Staphylococcus | Membrane disruption; PMF collapse | [108,110] |
| Fusaricidins | Paenibacillus spp. | Cyclic lipopeptides | Gram-positive pathogens | Membrane disruption | [108] | ||
| Surfactins | Bacillus velezensis, B. subtilis | Cyclic lipopeptides | Cooked meat models | Spoilage and pathogens | Membrane permeabilization | [109] | |
| Fengycins | Bacillus spp. | NRPS–PKS lipopeptide | Meat models | Gram-positive bacteria | Membrane damage | [109] |
| Technology | Key Operating Conditions/Components | Meat Applications | Target Microorganisms | Mechanism of Action | References |
|---|---|---|---|---|---|
| High-pressure processing (HPP) | 100–600 MPa, slight adiabatic heating, batch systems | Cooked/read-to-eat (RTE) meats, fresh meat | Listeria, Salmonella, Escherichia coli | Membrane disruption, protein denaturation | [118,120,132,139,140,145,162,163] |
| Pulsed light (PL) | Fluence via pulse energy, limited penetration | Fresh meat, RTE, packaging | Listeria, Salmonella, Escherichia coli | UV-C DNA damage, membrane disruption | [171,172,173,174,179,181,183,187] |
| Irradiation | 1–7 kGy typical, vacuum/MAP | Fresh meat, poultry, RTE | Listeria, Salmonella, Escherichia coli O157:H7 | DNA, protein, membrane oxidative damage | [188,189,190,193,194,196] |
| Ohmic heating | Uniform heating, electrodes | RTE sausages, batters | Salmonella, Listeria, Escherichia coli | Thermal + electric-field membrane damage | [199,200,201,202,204,205,206] |
| Ultrasound (HPU) | 20–100 kHz cavitation systems | Fresh meat, marinated meats | Salmonella, Campylobacter, Listeria | Cavitation shock waves, ROS, membrane damage | [211,212,216,218,220,221,223,225,226] |
| Cold plasma | DBD, plasma jets, in-package | Fresh/RTE meats | Listeria, Salmonella, Escherichia coli, Staphylococcus aureus | RONS/UV membrane & DNA damage | [227,228,229,230,231,232,233,234,237] |
| Nanotechnology | 1–100 nm carriers, active packaging | Fresh/processed meats | Spoilage microbes, pathogens | Controlled release, ROS membrane damage | [238,239,241,244,245,247,249,251,253] |
| Modified atmosphere packaging (MAP) | CO2-enriched and O2-reduced atmospheres; strict refrigeration (≤4 °C); gas/product permeability balance | Fresh meat, cooked/RTE meats, vacuum- and MAP-packaged products | Aerobic spoilage microbiota (Pseudomonas spp.) | Bacteriostatic ecological modulation with temperature-dependent control and anaerobic risk under cold-chain abuse | [260,261] |
| Emerging Technology | Microbial Composite(s) | Meat System/Model | Target Microorganisms | Main Synergistic Mechanisms | Reference(s) |
|---|---|---|---|---|---|
| High-pressure processing (HPP) | Bacteriocins (nisin, pediocin, enterocins, sakacin) | Raw meat, cooked ham, fermented sausages | Listeria monocytogenes, E. coli, Salmonella, lactic acid bacteria (LAB) | Pressure-induced membrane permeabilization, protein denaturation, ribosomal dissociation facilitating bacteriocin access | [255,256,262] |
| HPP | LAB protective cultures (Pediococcus acidilactici, Lactobacillus acidophilus) | Raw sausages, uncooked beef patties | Listeria innocua, total aerobic microbiota | Sublethal pressure injury combined with metabolic acidification and competitive exclusion | [260,261,268] |
| HPP | Organic acids (potassium lactate, lactic acid) | Cooked ham, reformulated meats | Spoilage microbiota, pathogens | Pressure-facilitated diffusion of acids, intracellular pH disruption, enzyme inhibition | [269,270] |
| HPP (moderate) | Bacteriocins + lysozyme + ethylenediaminetetraacetic acid (EDTA) | Roast beef | Sporous-forming clostridia | Pressure-induced spore germination followed by bacteriocin-mediated inactivation | [267] |
| Pulsed electric field | Nisin | Meat model systems | Bacillus cereus, foodborne pathogens | Electric-field-induced electroporation enhancing nisin–lipid II interaction | [271,273] |
| Cold plasma | Nisin | Beef jerky, sliced ham | E. coli O157:H7 | Plasma-induced oxidative stress and membrane injury promoting peptide penetration | [274] |
| Cold plasma | LAB-derived organic acids (plasma-activated lactic acid) | Beef, poultry meat | Salmonella, Pseudomonas spp. | Combined reactive oxygen species and reactive oxygen and nitrogen species stress and low-pH effects causing membrane damage and leakage | [275,277,278] |
| Irradiation (γ-ray, e-beam) | Nisin | Raw and ready-to-eat meats | Listeria monocytogenes | DNA and oxidative damage combined with bacteriocin membrane destabilization | [279,280,281] |
| Irradiation | Lactic acid | Beef trimmings | Salmonella, E. coli | Acid-mediated membrane weakening combined with irreversible radiation injury | [283] |
| Nanotechnology | Nanonisin, bacteriocin-loaded nanoparticles, alginate films | Minced beef, sausages | L. monocytogenes, E. coli O157:H7, LAB | Protection from degradation, controlled release, increased local concentration | [284,285,286,287,288] |
| Ultrasound/thermosonication | Nisin | Model systems | L. innocua, E. coli | Cavitation-induced membrane destabilization enhancing peptide-mediated pore formation | [290] |
| Ultrasound | Organic acids (lactic, acetic, citric) | Beef cuts, poultry carcasses | Salmonella, total aerobic microbiota | Cavitation-enhanced permeability, intracellular acidification, ROS-mediated oxidative stress | [291,292,293,294,295,296] |
| Modified atmosphere packaging (MAP) | Bacteriocins, organic acids, fermentation-derived bioactive metabolites | Fresh meat, cooked ham, raw and fermented sausages | Aerobic spoilage microbiota (Pseudomonas spp.), L. monocytogenes, Salmonella, E. coli | Ecological modulation of microbiota via CO2-enriched/low-O2 atmospheres; suppression of fast-growing aerobes; induction of sublethal stress; reduced metabolic turnover and delayed exponential growth enhancing bacteriocin membrane access and organic acid-mediated intracellular acidification; stabilization of injured cells when combined with non-thermal hurdles | [306,307,308,309,310,311,312] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Guerra, C.A.; Guerra, A.F.; Cristianini, M. Synergistic Interactions Between Bacteria-Derived Metabolites and Emerging Technologies for Meat Preservation. Fermentation 2026, 12, 43. https://doi.org/10.3390/fermentation12010043
Guerra CA, Guerra AF, Cristianini M. Synergistic Interactions Between Bacteria-Derived Metabolites and Emerging Technologies for Meat Preservation. Fermentation. 2026; 12(1):43. https://doi.org/10.3390/fermentation12010043
Chicago/Turabian StyleGuerra, Carlos Alberto, André Fioravante Guerra, and Marcelo Cristianini. 2026. "Synergistic Interactions Between Bacteria-Derived Metabolites and Emerging Technologies for Meat Preservation" Fermentation 12, no. 1: 43. https://doi.org/10.3390/fermentation12010043
APA StyleGuerra, C. A., Guerra, A. F., & Cristianini, M. (2026). Synergistic Interactions Between Bacteria-Derived Metabolites and Emerging Technologies for Meat Preservation. Fermentation, 12(1), 43. https://doi.org/10.3390/fermentation12010043

