Functional Convergence and Taxonomic Divergence in the Anchoveta (Engraulis ringens) Microbiome
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Collection
2.2. Lab Workup
2.2.1. Stable Isotopes
2.2.2. DNA Extraction, 16S Amplicon-Based Sequencing, and Taxonomic Assignment
2.3. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clements, K.D.; Angert, E.R.; Montgomery, W.L.; Choat, J.H. Intestinal Microbiota in Fishes: What’s Known and What’s Not. Mol. Ecol. 2014, 23, 1891–1898. [Google Scholar] [CrossRef] [PubMed]
- Talwar, C.; Nagar, S.; Lal, R.; Negi, R.K. Fish Gut Microbiome: Current Approaches and Future Perspectives. Indian J. Microbiol. 2018, 58, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Gallo, B.D.; Farrell, J.M.; Leydet, B.F. Fish Gut Microbiome: A Primer to an Emerging Discipline in the Fisheries Sciences. Fisheries 2020, 45, 271–282. [Google Scholar] [CrossRef]
- Ingerslev, H.-C.; Strube, M.L.; von Gersdorff Jørgensen, L.; Dalsgaard, I.; Boye, M.; Madsen, L. Diet Type Dictates the Gut Microbiota and the Immune Response against Yersinia Ruckeri in Rainbow Trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2014, 40, 624–633. [Google Scholar]
- Li, J.; Ni, J.; Li, J.; Wang, C.; Li, X.; Wu, S.; Zhang, T.; Yu, Y.; Yan, Q. Comparative Study on Gastrointestinal Microbiota of Eight Fish Species with Different Feeding Habits. J. Appl. Microbiol. 2014, 117, 1750–1760. [Google Scholar] [CrossRef]
- Gallo, B.D.; Farrell, J.M.; Leydet, B.F. Initial Diet Influences Future Development Paths of Gut Microbiota in Larval Northern Pike (Esox lucius). Hydrobiologia 2023, 850, 3743–3762. [Google Scholar] [CrossRef]
- Dulski, T.; Kozłowski, K.; Ciesielski, S. Habitat and Seasonality Shape the Structure of Tench (Tinca tinca L.) Gut Microbiome. Sci. Rep. 2020, 10, 4460. [Google Scholar] [CrossRef]
- Wu, P.; Liu, Y.; Li, C.; Xiao, Y.; Wang, T.; Lin, L.; Xie, Y. The Composition of Intestinal Microbiota from Collichthys Lucidus and Its Interaction with Microbiota from Waters along the Pearl River Estuary in China. Front. Environ. Sci. 2021, 9, 675856. [Google Scholar] [CrossRef]
- Gallo, B.D.; Farrell, J.M.; Leydet, B.F. Northern Pike (Esox lucius) Young-of-year Gut Microbiota and Associations with Wetland Nursery Water Microbial Communities in the St. Lawrence River. Aquac. Fish Fish. 2022, 2, 384–401. [Google Scholar] [CrossRef]
- Huang, Q.; Sham, R.C.; Deng, Y.; Mao, Y.; Wang, C.; Zhang, T.; Leung, K.M.Y. Diversity of Gut Microbiomes in Marine Fishes Is Shaped by Host-Related Factors. Mol. Ecol. 2020, 29, 5019–5034. [Google Scholar] [CrossRef]
- Li, J.J.; Ni, J.J.; Wang, C.; Yu, Y.H.; Zhang, T.L. Different Response Patterns of Fish Foregut and Hindgut Microbiota to Host Habitats and Genotypes. Appl. Ecol. Environ. Res. 2020, 18, 7369–7378. [Google Scholar] [CrossRef]
- Song, D.; Wang, T.; Cheng, Q.; Liu, B.; Peng, D.; Lou, Z. Spatial Dietary Differentiation and Trophic Variation in Gymnocypris Chilianensis across Three Watersheds of the Hexi Corridor. J. Freshw. Ecol. 2025, 40, 2564999. [Google Scholar] [CrossRef]
- Liu, H.; Guo, X.; Gooneratne, R.; Lai, R.; Zeng, C.; Zhan, F.; Wang, W. The Gut Microbiome and Degradation Enzyme Activity of Wild Freshwater Fishes Influenced by Their Trophic Levels. Sci. Rep. 2016, 6, 24340. [Google Scholar] [CrossRef] [PubMed]
- Cárcamo, C.; Schultz, E.T.; Leiva, F.; Saavedra, A.; Klarian, S.A. A Deep Dive into the Trophic Ecology of Engraulis Ringens: Assessing Diet through Stomach Content and Stable Isotope Analysis. Fishes 2024, 9, 475. [Google Scholar] [CrossRef]
- Panteli, N.; Mastoraki, M.; Nikouli, E.; Lazarina, M.; Antonopoulou, E.; Kormas, K.A. Imprinting Statistically Sound Conclusions for Gut Microbiota in Comparative Animal Studies: A Case Study with Diet and Teleost Fishes. Comp. Biochem. Physiol. Part D Genom. Proteom. 2020, 36, 100738. [Google Scholar] [CrossRef]
- Bachiller, E.; Albo-Puigserver, M.; Giménez, J.; Pennino, M.G.; Marí-Mena, N.; Esteban, A.; Lloret-Lloret, E.; Jadaud, A.; Carro, B.; Bellido, J.M.; et al. A Trophic Latitudinal Gradient Revealed in Anchovy and Sardine from the Western Mediterranean Sea Using a Multi-Proxy Approach. Sci. Rep. 2020, 10, 17598. [Google Scholar] [CrossRef]
- Nielsen, J.M.; Clare, E.L.; Hayden, B.; Brett, M.T.; Kratina, P. Diet Tracing in Ecology: Method Comparison and Selection. Methods Ecol. Evol. 2018, 9, 278–291. [Google Scholar] [CrossRef]
- Campioni, L.; Ventura, F.; Granadeiro, J.P.; Madeiros, J.; Gjerdrum, C.; Silva, M.C. Combining Bio-Logging, Stable Isotopes and DNA Metabarcoding to Reveal the Foraging Ecology and Diet of the Endangered Bermuda Petrel Pterodroma Cahow. Mar. Ecol. Prog. Ser. 2023, 723, 151–170. [Google Scholar] [CrossRef]
- Marcuk, V.; Piña-Ortiz, A.; Castillo-Guerrero, J.A.; Masello, J.F.; Bustamante, P.; Griep, S.; Quillfeldt, P. Trophic Plasticity of a Tropical Seabird Revealed through DNA Metabarcoding and Stable Isotope Analyses. Mar. Environ. Res. 2024, 199, 106627. [Google Scholar] [CrossRef]
- Huyghe, C.E.T.; Aerts, D.N.; Heindler, F.M.; Kmentová, N.; Mushagalusa Cirhuza, D.; Hellemans, B.; Chocha Manda, A.; Vanhove, M.P.M.; Mulimbwa N’Sibula, T.; Volckaert, F.A.M.; et al. Opportunistic Feeding Habits of Two African Freshwater Clupeid Fishes: DNA Metabarcoding Unravels Spatial Differences in Diet and Microbiome, and Identifies New Prey Taxa. Hydrobiologia 2023, 850, 3777–3796. [Google Scholar] [CrossRef]
- Wei, D.; Guo, Z.; Chen, F.; Su, H.; Wang, Y.; Deng, L.; Huang, J.; Huang, L.; Ling, F.; Wang, G.; et al. Gut Microbiota of Largemouth Bass in Response to Temperature Stress. Aquac. Rep. 2025, 43, 102912. [Google Scholar] [CrossRef]
- Feuchtmayr, H.; Grey, J. Effect of Preparation and Preservation Procedures on Carbon and Nitrogen Stable Isotope Determinations from Zooplankton. Rapid Commun. Mass Spectrom. 2003, 17, 2605–2610. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the Python in Science Conference, SciPy, Austin, TX, USA, 28 June–3 July 2010; pp. 56–61. [Google Scholar]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array Programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Givens, C.E.; Ransom, B.; Bano, N.; Hollibaugh, J.T. Comparison of the Gut Microbiomes of 12 Bony Fish and 3 Shark Species. Mar. Ecol. Prog. Ser. 2015, 518, 209–223. [Google Scholar] [CrossRef]
- Terova, G.; Rimoldi, S.; Ascione, C.; Gini, E.; Ceccotti, C.; Gasco, L. Rainbow Trout (Oncorhynchus mykiss) Gut Microbiota Is Modulated by Insect Meal from Hermetia Illucens Prepupae in the Diet. Rev. Fish Biol. Fish. 2019, 29, 465–486. [Google Scholar] [CrossRef]
- Burtseva, O.; Kublanovskaya, A.; Fedorenko, T.; Lobakova, E.; Chekanov, K. Gut Microbiome of the White Sea Fish Revealed by 16S rRNA Metabarcoding. Aquaculture 2021, 533, 736175. [Google Scholar] [CrossRef]




| Fish ID | Zone | δ13C | δ15N | C:N Ratio | ASV Richness | Shannon Index |
|---|---|---|---|---|---|---|
| Fish-1 | Pisagua | −17.58 | 11.30 | 6.81 | 289 | 5.14 |
| Fish-2 | Pisagua | −19.28 | 10.60 | 7.50 | 890 | 5.69 |
| Fish-3 | Pisagua | −19.66 | 10.60 | 4.91 | 1033 | 6.24 |
| Fish-9 | Pta Farellones | −17.74 | 12.70 | 5.79 | 158 | 3.54 |
| Fish-11 | Mejillones | −17.86 | 12.00 | 5.53 | 415 | 5.10 |
| Fish-12 | Mejillones | −18.05 | 11.60 | 4.58 | 228 | 4.82 |
| Fish-17 | Arica | −16.58 | 14.50 | 4.33 | 55 | 3.84 |
| Fish-18 | Arica | −15.76 | 11.90 | 3.61 | 87 | 3.67 |
| Fish ID | Proteolytic Abundance | Fermentative Abundance | Yscore |
|---|---|---|---|
| Fish-1 | 9821 | 6549 | 0.405 |
| Fish-2 | 16,278 | 11,141 | 0.379 |
| Fish-3 | 17,260 | 1988 | 2.161 |
| Fish-9 | 17,812 | 6433 | 3.291 |
| Fish-11 | 18,656 | 6354 | 1.077 |
| Fish-12 | 10,778 | 991 | 2.387 |
| Fish-17 | 1055 | 83 | 2.542 |
| Fish-18 | 9600 | 393 | 3.196 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Klarian, S.A.; Cárcamo, C.; Leiva, F.; Fernandoy, F.; Levipan, H.A. Functional Convergence and Taxonomic Divergence in the Anchoveta (Engraulis ringens) Microbiome. Fishes 2026, 11, 35. https://doi.org/10.3390/fishes11010035
Klarian SA, Cárcamo C, Leiva F, Fernandoy F, Levipan HA. Functional Convergence and Taxonomic Divergence in the Anchoveta (Engraulis ringens) Microbiome. Fishes. 2026; 11(1):35. https://doi.org/10.3390/fishes11010035
Chicago/Turabian StyleKlarian, Sebastian A., Carolina Cárcamo, Francisco Leiva, Francisco Fernandoy, and Héctor A. Levipan. 2026. "Functional Convergence and Taxonomic Divergence in the Anchoveta (Engraulis ringens) Microbiome" Fishes 11, no. 1: 35. https://doi.org/10.3390/fishes11010035
APA StyleKlarian, S. A., Cárcamo, C., Leiva, F., Fernandoy, F., & Levipan, H. A. (2026). Functional Convergence and Taxonomic Divergence in the Anchoveta (Engraulis ringens) Microbiome. Fishes, 11(1), 35. https://doi.org/10.3390/fishes11010035

