Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,638)

Search Parameters:
Keywords = physiological information

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6632 KiB  
Article
Metabolomic and Physiological Analysis of Blueberry (Vaccinium spp.) in Response to Ericoid Mycorrhizal Fungi (Oidiodendron maius H14)
by Haifeng Zhu, Yixiao Wang, Jing Jiang, Zhiyu Yang, Lili Li and Hongyi Yang
Horticulturae 2025, 11(8), 918; https://doi.org/10.3390/horticulturae11080918 (registering DOI) - 5 Aug 2025
Abstract
Ericoid mycorrhizal fungi (EMF) enhance plant fitness and metabolic regulations in nutrient-poor soils, though the mechanisms diving these interactions require further elucidation. This study investigated the physiological and metabolic responses of blueberry seedlings following 2- and 3-weeks inoculation with Oidiodendron maius H14. The [...] Read more.
Ericoid mycorrhizal fungi (EMF) enhance plant fitness and metabolic regulations in nutrient-poor soils, though the mechanisms diving these interactions require further elucidation. This study investigated the physiological and metabolic responses of blueberry seedlings following 2- and 3-weeks inoculation with Oidiodendron maius H14. The results indicated that EMF could significantly increases plant biomass, improve the accumulation of osmoregulatory substances in leaves. Additionally, the colonization rate of EMF are 26.18% and 30.22% after 2- and 3-weeks, respectively. The Metabolomics analysis identified 758 (593 up- and 165 down-regulated) and 805 (577 up- and 228 down-regulated) differential metabolites in roots at 2- and 3-weeks inoculation with O. maius H14, respectively. KEGG pathway annotation revealed that O. maius H14 triggered various amino acid metabolism pathways, including tryptophan metabolism and arginine and proline metabolism. These findings suggested that O. maius H14 stimulated root-specific biosynthesis of growth-promoting compounds and antimicrobial compounds. Concomitant downregulation of stress-associated genes and upregulation of glutamine synthetase suggest EMF modulates host defense responses to facilitate symbiosis. Thus, our results demonstrated that O. maius H14 orchestrates a metabolic reprogramming in blueberry roots, enhancing growth and stress tolerance through coordinated changes in primary and specialized metabolism, which could inform strategies for improving symbiosis and metabolic engineering in horticultural practices. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Graphical abstract

5 pages, 144 KiB  
Case Report
Multidisciplinary Care Approach to Asymptomatic Brugada Syndrome in Pregnancy: A Case Report
by Isabella Marechal-Ross and Kathryn Austin
Reports 2025, 8(3), 138; https://doi.org/10.3390/reports8030138 - 5 Aug 2025
Abstract
Background and Clinical Significance: Brugada syndrome (BrS) is a rare inherited cardiac channelopathy, often associated with SCN5A loss-of-function mutations. Clinical presentations range from asymptomatic to malignant arrhythmias and sudden cardiac death. Physiological and pharmacological stressors affecting sodium channel function—such as pyrexia, certain medications, [...] Read more.
Background and Clinical Significance: Brugada syndrome (BrS) is a rare inherited cardiac channelopathy, often associated with SCN5A loss-of-function mutations. Clinical presentations range from asymptomatic to malignant arrhythmias and sudden cardiac death. Physiological and pharmacological stressors affecting sodium channel function—such as pyrexia, certain medications, and possibly pregnancy—may unmask or exacerbate arrhythmic risk. However, there is limited information regarding pregnancy and obstetric outcomes. Obstetric management remains largely informed by isolated case reports and small case series. A literature review was conducted using OVID Medline and Embase, identifying case reports, case series, and one retrospective cohort study reporting clinical presentation, obstetric management, and outcomes in maternal BrS. A case is presented detailing coordinated multidisciplinary input, antenatal surveillance, and intrapartum and postpartum care to contribute to the growing evidence base guiding obstetric care in this complex setting. Case Presentation: A 30-year-old G2P0 woman with asymptomatic BrS (SCN5A-positive) was referred at 31 + 5 weeks’ gestation for multidisciplinary antenatal care. Regular review and collaborative planning involving cardiology, anaesthetics, maternal–fetal medicine, and obstetrics guided a plan for vaginal delivery with continuous cardiac and fetal monitoring. At 38 + 0 weeks, the woman presented with spontaneous rupture of membranes and underwent induction of labour. A normal vaginal delivery was achieved without arrhythmic events. Epidural block with ropivacaine and local anaesthesia with lignocaine were well tolerated, and 24 h postpartum monitoring revealed no abnormalities. Conclusions: This case adds to the limited but growing literature suggesting that with individualised planning and multidisciplinary care, pregnancies in women with BrS can proceed safely and without complication. Ongoing case reporting is essential to inform future guidelines and optimise maternal and fetal outcomes. Full article
(This article belongs to the Section Obstetrics/Gynaecology)
34 pages, 640 KiB  
Review
Future Pharmacotherapy for Bipolar Disorders: Emerging Trends and Personalized Approaches
by Giuseppe Marano, Francesco Maria Lisci, Gianluca Boggio, Ester Maria Marzo, Francesca Abate, Greta Sfratta, Gianandrea Traversi, Osvaldo Mazza, Roberto Pola, Gabriele Sani, Eleonora Gaetani and Marianna Mazza
Future Pharmacol. 2025, 5(3), 42; https://doi.org/10.3390/futurepharmacol5030042 - 4 Aug 2025
Abstract
Background: Bipolar disorder (BD) is a chronic and disabling psychiatric condition characterized by recurring episodes of mania, hypomania, and depression. Despite the availability of mood stabilizers, antipsychotics, and antidepressants, long-term management remains challenging due to incomplete symptom control, adverse effects, and high relapse [...] Read more.
Background: Bipolar disorder (BD) is a chronic and disabling psychiatric condition characterized by recurring episodes of mania, hypomania, and depression. Despite the availability of mood stabilizers, antipsychotics, and antidepressants, long-term management remains challenging due to incomplete symptom control, adverse effects, and high relapse rates. Methods: This paper is a narrative review aimed at synthesizing emerging trends and future directions in the pharmacological treatment of BD. Results: Future pharmacotherapy for BD is likely to shift toward precision medicine, leveraging advances in genetics, biomarkers, and neuroimaging to guide personalized treatment strategies. Novel drug development will also target previously underexplored mechanisms, such as inflammation, mitochondrial dysfunction, circadian rhythm disturbances, and glutamatergic dysregulation. Physiological endophenotypes, such as immune-metabolic profiles, circadian rhythms, and stress reactivity, are emerging as promising translational tools for tailoring treatment and reducing associated somatic comorbidity and mortality. Recognition of the heterogeneous longitudinal trajectories of BD, including chronic mixed states, long depressive episodes, or intermittent manic phases, has underscored the value of clinical staging models to inform both pharmacological strategies and biomarker research. Disrupted circadian rhythms and associated chronotypes further support the development of individualized chronotherapeutic interventions. Emerging chronotherapeutic approaches based on individual biological rhythms, along with innovative monitoring strategies such as saliva-based lithium sensors, are reshaping the future landscape. Anti-inflammatory agents, neurosteroids, and compounds modulating oxidative stress are emerging as promising candidates. Additionally, medications targeting specific biological pathways implicated in bipolar pathophysiology, such as N-methyl-D-aspartate (NMDA) receptor modulators, phosphodiesterase inhibitors, and neuropeptides, are under investigation. Conclusions: Advances in pharmacogenomics will enable clinicians to predict individual responses and tolerability, minimizing trial-and-error prescribing. The future landscape may also incorporate digital therapeutics, combining pharmacotherapy with remote monitoring and data-driven adjustments. Ultimately, integrating innovative drug therapies with personalized approaches has the potential to enhance efficacy, reduce adverse effects, and improve long-term outcomes for individuals with bipolar disorder, ushering in a new era of precision psychiatry. Full article
Show Figures

Figure 1

19 pages, 3181 KiB  
Article
Comparative Analysis of Phenolic Acid Metabolites and Differential Genes Between Browning-Resistant and Browning-Sensitive luffa During the Commercial Fruit Stage
by Yingna Feng, Shuai Gao, Rui Wang, Yeqiong Liu, Zhiming Yan, Mingli Yong, Cui Feng, Weichen Ni, Yichen Fang, Simin Zhu, Liwang Liu and Yuanhua Wang
Horticulturae 2025, 11(8), 903; https://doi.org/10.3390/horticulturae11080903 (registering DOI) - 4 Aug 2025
Abstract
Browning significantly impacts the commercial value of luffa (luffa cylindrica) and is primarily driven by the metabolic processes of phenolic acids. Investigating changes in phenolic acids during browning aids in understanding the physiological mechanisms underlying this process and provides a basis [...] Read more.
Browning significantly impacts the commercial value of luffa (luffa cylindrica) and is primarily driven by the metabolic processes of phenolic acids. Investigating changes in phenolic acids during browning aids in understanding the physiological mechanisms underlying this process and provides a basis for improving storage, processing, variety breeding, and utilization of germplasm resources. This study compared browning-resistant (‘30’) and browning-sensitive (‘256’) luffa varieties using high-throughput sequencing and metabolomics techniques. The results revealed 55 genes involved in the phenylpropanoid biosynthesis pathway, including 8 phenylalanine ammonia-lyase (PAL) genes, 20 peroxidase (POD) genes, 2 polyphenol oxidase (PPO) genes associated with tyrosine metabolism, and 37 peroxisome-related genes. Real-time quantitative (qPCR) was employed to validate 15 browning-related genes, revealing that the expression levels of LcPOD21 and LcPOD6 were 12.5-fold and 25-fold higher in ‘30’ compared to ‘256’, while LcPAL5 and LcPAL4 were upregulated in ‘30’. Enzyme analysis showed that catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were higher in ‘30’ than in ‘256’. Conversely, superoxide dismutase (SOD) and polyphenol oxidase (PPO) activities were reduced in ‘30’, whereas CAT activity was upregulated. The concentrations of cinnamic acid, p-coumaric acid, trans-5-O-(4-coumaroyl)mangiferic acid, and caffealdehyde were lower in browning-resistant luffa ‘30’ than in browning-sensitive luffa ‘256’, suggesting that their levels influence browning in luffa. These findings elucidate the mechanisms underlying browning and inform strategies for the storage, processing, and genetic improvement of luffa. Full article
Show Figures

Figure 1

15 pages, 2400 KiB  
Article
Robust Prediction of Cardiorespiratory Signals from a Multimodal Physiological System on the Upper Arm
by Kimberly L. Branan, Rachel Kurian, Justin P. McMurray, Madhav Erraguntla, Ricardo Gutierrez-Osuna and Gerard L. Coté
Biosensors 2025, 15(8), 493; https://doi.org/10.3390/bios15080493 - 1 Aug 2025
Viewed by 156
Abstract
Many commercial wearable sensor systems typically rely on a single continuous cardiorespiratory sensing modality, photoplethysmography (PPG), which suffers from inherent biases (i.e., differences in skin tone) and noise (e.g., motion and pressure artifacts). In this research, we present a wearable device that provides [...] Read more.
Many commercial wearable sensor systems typically rely on a single continuous cardiorespiratory sensing modality, photoplethysmography (PPG), which suffers from inherent biases (i.e., differences in skin tone) and noise (e.g., motion and pressure artifacts). In this research, we present a wearable device that provides robust estimates of cardiorespiratory variables by combining three physiological signals from the upper arm: multiwavelength PPG, single-sided electrocardiography (SS-ECG), and bioimpedance plethysmography (BioZ), along with an inertial measurement unit (IMU) providing 3-axis accelerometry and gyroscope information. We evaluated the multimodal device on 16 subjects by its ability to estimate heart rate (HR) and breathing rate (BR) in the presence of various static and dynamic noise sources (e.g., skin tone and motion). We proposed a hierarchical approach that considers the subject’s skin tone and signal quality to select the optimal sensing modality for estimating HR and BR. Our results indicate that, when estimating HR, there is a trade-off between accuracy and robustness, with SS-ECG providing the highest accuracy (low mean absolute error; MAE) but low reliability (higher rates of sensor failure), and PPG/BioZ having lower accuracy but higher reliability. When estimating BR, we find that fusing estimates from multiple modalities via ensemble bagged tree regression outperforms single-modality estimates. These results indicate that multimodal approaches to cardiorespiratory monitoring can overcome the accuracy–robustness trade-off that occurs when using single-modality approaches. Full article
(This article belongs to the Special Issue Wearable Biosensors for Health Monitoring)
Show Figures

Figure 1

19 pages, 4690 KiB  
Article
Immune-Redox Biomarker Responses to Short- and Long-Term Exposure to Naturally Emitted Compounds from Korean Red Pine (Pinus densiflora) and Japanese Cypress (Chamaecyparis obtusa): In Vivo Study
by Hui Ma, Jiyoon Yang, Chang-Deuk Eom, Johny Bajgai, Md. Habibur Rahman, Thu Thao Pham, Haiyang Zhang, Won-Joung Hwang, Seong Hoon Goh, Bomi Kim, Cheol-Su Kim, Keon-Ho Kim and Kyu-Jae Lee
Toxics 2025, 13(8), 650; https://doi.org/10.3390/toxics13080650 - 31 Jul 2025
Viewed by 222
Abstract
Volatile organic compounds (VOCs) are highly volatile chemicals in natural and anthropogenic environments, significantly affecting indoor air quality. Major sources of indoor VOCs include emissions from building materials, furnishings, and consumer products. Natural wood products release VOCs, including terpenes and aldehydes, which exert [...] Read more.
Volatile organic compounds (VOCs) are highly volatile chemicals in natural and anthropogenic environments, significantly affecting indoor air quality. Major sources of indoor VOCs include emissions from building materials, furnishings, and consumer products. Natural wood products release VOCs, including terpenes and aldehydes, which exert diverse health effects ranging from mild respiratory irritation to severe outcomes, such as formaldehyde-induced carcinogenicity. The temporal dynamics of VOC emissions were investigated, and the toxicological and physiological effects of the VOCs emitted by two types of natural wood, Korean Red Pine (Pinus densiflora) and Japanese Cypress (Chamaecyparis obtusa), were evaluated. Using female C57BL/6 mice as an animal model, the exposure setups included phytoncides, formaldehyde, and intact wood samples over short- and long-term durations. The exposure effects were assessed using oxidative stress markers, antioxidant enzyme activity, hepatic and renal biomarkers, and inflammatory cytokine profiles. Long-term exposure to Korean Red Pine and Japanese Cypress wood VOCs did not induce significant pathological changes. Japanese Cypress exhibited more distinct benefits, including enhanced oxidative stress mitigation, reduced systemic toxicity, and lower pro-inflammatory cytokine levels compared to the negative control group, attributable to its more favorable VOC emission profile. These findings highlight the potential health and environmental benefits of natural wood VOCs and offer valuable insights for optimizing timber use, improving indoor air quality, and informing public health policies. Full article
Show Figures

Figure 1

17 pages, 475 KiB  
Review
The Rationale and Explanation for Rehabilitation Interventions in the Management of Treatment-Induced Trismus in People with Head and Neck Cancer: A Scoping Review of Randomized Controlled Trials
by Ernesto Anarte-Lazo, Ana Bravo-Vazquez, Carlos Bernal-Utrera, Daniel Torres-Lagares, Deborah Falla and Cleofas Rodríguez-Blanco
Medicina 2025, 61(8), 1392; https://doi.org/10.3390/medicina61081392 - 31 Jul 2025
Viewed by 340
Abstract
Background and objectives: Trismus is a frequent and debilitating complication in people with head and neck cancer (HNC) which leads to significant functional limitations and reduced quality of life. Rehabilitation interventions are commonly recommended to manage or prevent trismus. However, in many [...] Read more.
Background and objectives: Trismus is a frequent and debilitating complication in people with head and neck cancer (HNC) which leads to significant functional limitations and reduced quality of life. Rehabilitation interventions are commonly recommended to manage or prevent trismus. However, in many randomized controlled trials (RCTs), the theoretical justification for these interventions is poorly articulated, and the underlying biological or physiological mechanisms are not described in detail, limiting our understanding of why certain treatments may (or may not) work. This review aimed to identify and analyze how RCTs report the rationale for rehabilitation interventions and the explanations used to manage this population. Materials and Methods: A scoping review was conducted in accordance with the PRISMA-ScR guidelines. Five databases (PubMed, PEDro, Web of Science, Scopus, and EMBASE) were searched up to May 2025 for RCTs evaluating rehabilitation interventions for the management or prevention of treatment-induced trismus in patients with HNC. Data were extracted and synthesized narratively, focusing on the type of intervention, the rationale for its use, and the proposed mechanisms of action. Results: Of 2215 records identified, 24 RCTs met the inclusion criteria. Thirteen studies focused on preventive interventions—primarily exercise therapy—while the remainder addressed established trismus using exercise, manual therapy, electrotherapy, or combined treatment modalities. The rationales provided for intervention selection were heterogeneous and often lacked depth, with most studies justifying interventions based on their potential to improve mouth opening or reduce fibrosis but rarely grounding these claims in detailed pathophysiological models. Only half of the studies provided any mechanistic explanation for the intervention’s effects, and these were typically generic or speculative. Conclusions: RCTs investigating rehabilitation interventions for treatment-induced trismus in patients with HNC frequently lack comprehensive rationales and mechanistic explanations for their interventions. This gap limits the ability to refine and optimize treatment approaches, as the underlying processes driving clinical improvements remain poorly understood. Future research should be guided by theoretical models and include objective outcomes to better elucidate the mechanisms of action of interventions to inform clinical practice. Full article
(This article belongs to the Special Issue Advances in Head and Neck Cancer Management)
Show Figures

Figure 1

21 pages, 7671 KiB  
Article
The Scarlet Alchemy of Survival: Integrated Transcriptomic and Metabolomic Analysis of Leaf Coloration in Endangered Parrotia subaequalis
by Lifang Zhang, Aya Hafsi, Xianting Wang, Chenyun Zhang, Zedong Lang, Mingjian Yu and Yanming Fang
Plants 2025, 14(15), 2345; https://doi.org/10.3390/plants14152345 - 29 Jul 2025
Viewed by 356
Abstract
Parrotia subaequalis is a rare and endangered deciduous tree native to China, valued for its vibrant autumn foliage and ornamental appeal. Its leaves exhibit striking coloration, ranging from red to yellow and purple, yet the physiological and molecular mechanisms behind this variation remain [...] Read more.
Parrotia subaequalis is a rare and endangered deciduous tree native to China, valued for its vibrant autumn foliage and ornamental appeal. Its leaves exhibit striking coloration, ranging from red to yellow and purple, yet the physiological and molecular mechanisms behind this variation remain poorly understood. Here, we combined transcriptomic, metabolomic, and physiological analyses to investigate pigment changes within the yellow leaf phenotype of P. subaequalis. Our findings revealed significant differences in gene expression and metabolic profiles between yellow and green leaves, particularly in starch and sucrose metabolism, photosynthesis, and carbon metabolism. Yellow leaves exhibited reduced photosynthetic capacity and carotenoid levels, alongside increased D-glucose concentration. These findings suggest that visible color transitions are likely driven by coordinated changes in carbohydrate metabolism, photosynthetic function, and organic compound accumulation. This study provides novel insights into the molecular and physiological mechanisms governing leaf pigmentation in an endangered tree, with useful information relevant to their conservation and sustainable utilization. Full article
(This article belongs to the Special Issue Research on Genetic Breeding and Biotechnology of Forest Trees)
Show Figures

Figure 1

52 pages, 1635 KiB  
Review
Impact of Stress on Adrenal and Neuroendocrine Responses, Body Composition, and Physical Performance Amongst Women in Demanding Tactical Occupations: A Scoping Review
by Tunde K. Szivak, Erica A. Schafer, Hayley V. MacDonald and Catherine Saenz
Metabolites 2025, 15(8), 506; https://doi.org/10.3390/metabo15080506 - 29 Jul 2025
Viewed by 210
Abstract
Background/Objectives: This scoping review critically evaluated existing literature and summarized the impact of occupational, physiological, and psychological stressors on adrenal and neuroendocrine responses, body composition, and physical performance amongst women in tactical occupations. Methods: Boolean searches identified potentially qualifying reports involving: (1) adult [...] Read more.
Background/Objectives: This scoping review critically evaluated existing literature and summarized the impact of occupational, physiological, and psychological stressors on adrenal and neuroendocrine responses, body composition, and physical performance amongst women in tactical occupations. Methods: Boolean searches identified potentially qualifying reports involving: (1) adult women (≥19 y) currently employed or completing their training for a tactical profession; (2) ≥1 marker of “stress”; and (3) ≥1 adrenal, neuroendocrine, body composition, or fitness/performance outcome. Quantitative data (e.g., sample characteristics, outcomes of interest) were extracted and summarized. The completeness of reporting for each study was documented using existing checklists and quantified as: low (<50%), moderate (50–79%), or high (≥80%). Results: 40 studies (k) of moderate reporting quality (~64%) were included in the final sample (3693 women); 11 studies (28%) focused on women exclusively, and 16 studies identified sex differences in ≥1 outcome. Most studies involved military trainee populations (80%, k = 32). Occupation-related stress tended to negatively impact adrenal, neuroendocrine, body composition, and performance outcomes. Conclusions: This review highlights progress in assessing occupational performance in female tactical personnel exposed to diverse stressors; however, our understanding remains incomplete due to methodological and conceptual limitations in the literature. Holistic research strategies are needed to capture the complexity of performance readiness in women, integrating how stress affects key tactical performance aspects such as muscle physiology, reproductive health, and energy and nutrient balance in realistic operational contexts. Integrating such data is vital for informing policy, improving readiness, and enhancing the health and career longevity of female tactical personnel. Full article
Show Figures

Figure 1

18 pages, 301 KiB  
Review
Restoring a Healthy Relationship with Food by Decoupling Stress and Eating: A Translational Review of Nutrition and Mental Health
by Alison Warren and Leigh A. Frame
Nutrients 2025, 17(15), 2466; https://doi.org/10.3390/nu17152466 - 29 Jul 2025
Viewed by 507
Abstract
Psychological stress and dietary behavior are interdependent forces that greatly influence mental and physical health. Thus, both what and how we eat impact our well-being. Maladaptive eating patterns, such as eating in response to emotional cues rather than physiological hunger, have become increasingly [...] Read more.
Psychological stress and dietary behavior are interdependent forces that greatly influence mental and physical health. Thus, both what and how we eat impact our well-being. Maladaptive eating patterns, such as eating in response to emotional cues rather than physiological hunger, have become increasingly common amid modern stressors and an ultra-processed food environment. This narrative review synthesizes interdisciplinary findings from nutritional psychiatry, microbiome science, and behavioral nutrition to explore how stress physiology, gut–brain interactions, and dietary quality shape emotional regulation and eating behavior. It highlights mechanisms (e.g., HPA-axis dysregulation, blunted interoception, and inflammatory and epigenetic pathways) and examines the evidence for mindful and intuitive eating; phytochemical-rich, whole-food dietary patterns; and the emerging role of precision nutrition. Trauma-informed approaches, cultural foodways, structural barriers to healthy eating, and clinical implementation strategies (e.g., interprofessional collaboration) are considered in the context of public health equity to support sustainable mental wellness through dietary interventions. Ultimately, restoring a healthy relationship with food positions nutrition not only as sustenance but as a modifiable regulator of affect, cognition, and stress resilience, central to mental and physical well-being. Full article
(This article belongs to the Special Issue The Interdependence of Nutrition and Mental Well-Being)
17 pages, 2708 KiB  
Review
Review of Optical Imaging in Coronary Artery Disease Diagnosis
by Naeif Almagal, Niall Leahy, Foziyah Alqahtani, Sara Alsubai, Hesham Elzomor, Paolo Alberto Del Sole, Ruth Sharif and Faisal Sharif
J. Cardiovasc. Dev. Dis. 2025, 12(8), 288; https://doi.org/10.3390/jcdd12080288 - 29 Jul 2025
Viewed by 243
Abstract
Optical Coherence Tomography (OCT) is a further light-based intravascular imaging modality and provides a high-resolution, cross-sectional view of coronary arteries. It has a useful anatomic and increasingly physiological evaluation in light of coronary artery disease (CAD). This review provides a critical examination of [...] Read more.
Optical Coherence Tomography (OCT) is a further light-based intravascular imaging modality and provides a high-resolution, cross-sectional view of coronary arteries. It has a useful anatomic and increasingly physiological evaluation in light of coronary artery disease (CAD). This review provides a critical examination of the increased application of the OCT in assessing coronary artery physiology, beyond its initial mainstay application in anatomical imaging. OCT provides precise information on plaque morphology, which can help identify vulnerable plaques, and is most important in informing percutaneous coronary interventions (PCIs), including implanting a stent and optimizing it. The combination of OCT and functional measurements, such as optical flow ratio and OCT-based fractional flow reserve (OCT-FFR), permits a more complete assessment of coronary stenoses, which may provide increased diagnostic accuracy and better revascularization decision-making. The recent developments in OCT technology have also enhanced the accuracy in the measurement of coronary functions. The innovations may support the optimal treatment of patients as they provide more personalized and individualized treatment options; however, it is critical to recognize the limitations of OCT and distinguish between the hypothetical advantages and empirical outcomes. This review evaluates the existing uses, technological solutions, and future trends in OCT-based physiological imaging and evaluation, and explains how such an advancement will be beneficial in the treatment of CAD and gives a fair representation concerning other imaging applications. Full article
Show Figures

Figure 1

15 pages, 1961 KiB  
Article
Age-Dependent Immune Defense Against Beauveria bassiana in Long- and Short-Lived Drosophila Populations
by Elnaz Bagheri, Han Yin, Arnie Lynn C. Bengo, Kshama Ekanath Rai, Taryn Conyers, Robert Courville, Mansour Abdoli, Molly K. Burke and Parvin Shahrestani
J. Fungi 2025, 11(8), 556; https://doi.org/10.3390/jof11080556 - 27 Jul 2025
Viewed by 326
Abstract
Aging in sexually reproducing organisms is shaped by the declining force of natural selection after reproduction begins. In Drosophila melanogaster, experimental evolution shows that altering the age of reproduction shifts the timing of aging. Using the Drosophila experimental evolution population (DEEP) resource, [...] Read more.
Aging in sexually reproducing organisms is shaped by the declining force of natural selection after reproduction begins. In Drosophila melanogaster, experimental evolution shows that altering the age of reproduction shifts the timing of aging. Using the Drosophila experimental evolution population (DEEP) resource, which includes long- and short- lived populations evolved under distinct reproductive schedules, we investigated how immune defense against Beauveria bassiana changes with age and evolved lifespan. We tested survival post-infection at multiple ages and examined genomic differentiation for immune-related genes. Both population types showed age-related declines in immune defense. Long-lived populations consistently exhibited age-specific defense when both long- and short-lived populations were tested. Genomic comparisons revealed thousands of differentiated loci, yet no enrichment for canonical immune genes or overlap with gene sets from studies of direct selection for immunity. These results suggest that enhanced immune defense can evolve alongside extended lifespan, likely via general physiological robustness rather than traditional immune pathways. A more detailed analysis may reveal that selection for lifespan favors tolerance-based mechanisms that reduce infection damage without triggering immune activation, in contrast to direct selection for resistance. Our findings demonstrate the utility of experimentally evolved populations for dissecting the genetic architecture of aging and immune defense to inform strategies to mitigate age-related costs associated with immune activation. Full article
(This article belongs to the Special Issue Advances in Research on Entomopathogenic Fungi)
Show Figures

Figure 1

58 pages, 1238 KiB  
Review
The Collapse of Brain Clearance: Glymphatic-Venous Failure, Aquaporin-4 Breakdown, and AI-Empowered Precision Neurotherapeutics in Intracranial Hypertension
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(15), 7223; https://doi.org/10.3390/ijms26157223 - 25 Jul 2025
Viewed by 328
Abstract
Although intracranial hypertension (ICH) has traditionally been framed as simply a numerical escalation of intracranial pressure (ICP) and usually dealt with in its clinical form and not in terms of its complex underlying pathophysiology, an emerging body of evidence indicates that ICH is [...] Read more.
Although intracranial hypertension (ICH) has traditionally been framed as simply a numerical escalation of intracranial pressure (ICP) and usually dealt with in its clinical form and not in terms of its complex underlying pathophysiology, an emerging body of evidence indicates that ICH is not simply an elevated ICP process but a complex process of molecular dysregulation, glymphatic dysfunction, and neurovascular insufficiency. Our aim in this paper is to provide a complete synthesis of all the new thinking that is occurring in this space, primarily on the intersection of glymphatic dysfunction and cerebral vein physiology. The aspiration is to review how glymphatic dysfunction, largely secondary to aquaporin-4 (AQP4) dysfunction, can lead to delayed cerebrospinal fluid (CSF) clearance and thus the accumulation of extravascular fluid resulting in elevated ICP. A range of other factors such as oxidative stress, endothelin-1, and neuroinflammation seem to significantly impair cerebral autoregulation, making ICH challenging to manage. Combining recent studies, we intend to provide a revised conceptualization of ICH that recognizes the nuance and complexity of ICH that is understated by previous models. We wish to also address novel diagnostics aimed at better capturing the dynamic nature of ICH. Recent advances in non-invasive imaging (i.e., 4D flow MRI and dynamic contrast-enhanced MRI; DCE-MRI) allow for better visualization of dynamic changes to the glymphatic and cerebral blood flow (CBF) system. Finally, wearable ICP monitors and AI-assisted diagnostics will create opportunities for these continuous and real-time assessments, especially in limited resource settings. Our goal is to provide examples of opportunities that exist that might augment early recognition and improve personalized care while ensuring we realize practical challenges and limitations. We also consider what may be therapeutically possible now and in the future. Therapeutic opportunities discussed include CRISPR-based gene editing aimed at restoring AQP4 function, nano-robotics aimed at drug targeting, and bioelectronic devices purposed for ICP modulation. Certainly, these proposals are innovative in nature but will require ethically responsible confirmation of long-term safety and availability, particularly to low- and middle-income countries (LMICs), where the burdens of secondary ICH remain preeminent. Throughout the review, we will be restrained to a balanced pursuit of innovative ideas and ethical considerations to attain global health equity. It is not our intent to provide unequivocal answers, but instead to encourage informed discussions at the intersections of research, clinical practice, and the public health field. We hope this review may stimulate further discussion about ICH and highlight research opportunities to conduct translational research in modern neuroscience with real, approachable, and patient-centered care. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2025)
Show Figures

Figure 1

39 pages, 3221 KiB  
Article
Balancing Multi-Source Heterogeneous User Requirement Information in Complex Product Design
by Cengjuan Wu, Tianlu Zhu, Yajun Li, Zhizheng Zhang and Tianyu Wu
Symmetry 2025, 17(8), 1192; https://doi.org/10.3390/sym17081192 - 25 Jul 2025
Viewed by 187
Abstract
User requirements are the core driving force behind the iterative development of complex products. Their comprehensive collection, accurate interpretation, and effective integration directly affect design outcomes. However, current practices often depend heavily on single-source data and designer intuition, resulting in incomplete, biased, and [...] Read more.
User requirements are the core driving force behind the iterative development of complex products. Their comprehensive collection, accurate interpretation, and effective integration directly affect design outcomes. However, current practices often depend heavily on single-source data and designer intuition, resulting in incomplete, biased, and fragile design decisions. Moreover, multi-source heterogeneous user requirements often exhibit inherent asymmetry and imbalance in both structure and contribution. To address these issues, this study proposes a symmetric and balanced optimization method for multi-source heterogeneous user requirements in complex product design. Multiple acquisition and analysis approaches are integrated to mitigate the limitations of single-source data by fusing complementary information and enabling balanced decision-making. Firstly, unstructured text data from online reviews are used to extract initial user requirements, and a topic analysis method is applied for modeling and clustering. Secondly, user interviews are analyzed using a fuzzy satisfaction analysis, while eye-tracking experiments capture physiological behavior to support correlation analysis between internal preferences and external behavior. Finally, a cooperative game-based model is introduced to optimize conflicts among data sources, ensuring fairness in decision-making. The method was validated using a case study of oxygen concentrators. The findings demonstrate improvements in both decision robustness and requirement representation. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

16 pages, 577 KiB  
Review
Personalized Neonatal Therapy: Application of Magistral Formulas in Therapeutic Orphan Populations
by Wenwen Shao, Angela Gomez, Alejandra Alejano, Teresa Gil and María Cristina Benéitez
Pharmaceutics 2025, 17(8), 963; https://doi.org/10.3390/pharmaceutics17080963 - 25 Jul 2025
Viewed by 340
Abstract
This review explores the potential of magistral formulas (MFs) as a viable option to meet the needs of neonates, given the lack of adequate therapies for this vulnerable group. The scientific literature on medicines available for neonates is limited. The physiological differences between [...] Read more.
This review explores the potential of magistral formulas (MFs) as a viable option to meet the needs of neonates, given the lack of adequate therapies for this vulnerable group. The scientific literature on medicines available for neonates is limited. The physiological differences between neonates and adults make it difficult to formulate these medicines. In addition, there are a variety of difficulties in conducting research on neonates: few clinical trials are performed, and there is frequent use of unauthorized medicines. Pharmacokinetics in neonates was investigated in comparison to adults, and different aspects of the absorption, distribution, metabolism, and excretion were observed. One of the main problems is the different pharmacokinetics between the two populations. It is necessary to promote and allow research related to pediatric drug design, approve a specific authorization for use in age-appropriate dosage forms, and improve the quality and availability of information on drugs. This study focused on the MFs typically used for pediatrics, specifically for neonates, analyzing the pharmaceutical forms currently available and the presence of indications and dosage recommendations of the European Medicines Agency. Medications were classified according to therapeutic group, as antihypertensives, corticosteroids, and antiepileptics. The use of off-label medicines remains high in neonatal intensive care units and in primary healthcare, besides in the preparation of MFs by pharmacists. The shortage of medicines specifically designed and approved for neonates is a serious problem for society. Neonates continue to be treated, on numerous occasions, with off-label medicines. Studies and research should be expanded in this vulnerable population group. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

Back to TopTop