Robust Prediction of Cardiorespiratory Signals from a Multimodal Physiological System on the Upper Arm
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Protocol
2.2. Design of the Wearable Device
2.3. Signal Processing Pipeline for Heart and Breathing Rate Estimation
2.3.1. Preprocessing
2.3.2. Window Segmentation
- To estimate HR, we used a 15 s sliding window with a 50% overlap for the sedentary, flexing, typing, and texting tasks. To estimate BRs during the controlled breathing task, we split the 90 s controlled breathing trial into two 45 s windows representing the breathing rates 6 and 10 BRpm.
2.3.3. Estimation of Heart Rate
- We estimated HR from each 15 s window for each of the sensor signals. For SS-ECG and chest ECG, we isolated the R-peaks and extracted the average IBI to compute HR. For PPG/BioZ HR, we computed the power spectral density (PSD) of the signal, isolated the main frequency peak in the range of 0.67–2 Hz, and converted to HR. For both approaches, we eliminated HR estimates less than 40 bpm and greater than 120 bpm as the subjects were not performing extraneous activity and a typical resting HR ranges from 60 to 100 bpm [28]. If an estimate was outside the range of 40–120 bpm, the estimate was discarded.
2.3.4. Estimation of Breathing Rate
- To extract BW, we extracted the upper and lower envelopes of the AC + DC component using a peak-finding envelope filter averaged them, smoothed the data with a Gaussian smoothing filter, and extracted the peak frequency from the PSD of the corresponding signal, and converted it into BR; see left column in Figure 2f.
- To extract the AM component, we extracted the upper envelope of the AC component, followed by detrending and smoothing; see middle column in Figure 2f. Then, we computed the PSD, extracted the main frequency, and converted it into BR.
- To extract the FM component, we first computed the IBI time series (R-peaks for SS-ECG; systolic-peaks for PPG/BioZ) of the AC component; see right column in Figure 2f. Then, we detrended the time series interpolated the time series to a higher sampling rate and smoothed the time series with a gaussian smoothing filter. We computed the PSD, isolated the main frequency and converted it into BR.
2.3.5. Multimodal Prediction of Heart and Breathing Rates
3. Results
3.1. Distribution of Heart Rate Estimations
3.2. Effects of Skin Tone on Heart Rate Estimation
3.3. Unimodal and Multimodal Estimation of Heart Rate
3.4. Unimodal and Multimodal Estimation of Breathing Rate
4. Discussion
4.1. Physiological Noise: Skin Tone and Muscular Activity
4.2. External Noise: Motion Artifacts
4.3. Hardware and Human–Device Noise
4.4. Comparing PPG Wavelengths
4.5. Bioimpedance Signal Limitations and Utility
4.6. Breathing Rate Estimation
4.7. Multimodal Fusion Improves Robustness
4.8. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fine, J.; Branan, K.L.; Rodriguez, A.J.; Boonya-Ananta, T.; Ajmal; Ramella-Roman, J.C.; McShane, M.J.; Coté, G.L. Sources of inaccuracy in photoplethysmography for continuous cardiovascular monitoring. Biosensors 2021, 11, 126. [Google Scholar] [CrossRef] [PubMed]
- Taji, B.; Shirmohammadi, S.; Groza, V.; Batkin, I. Impact of skin–electrode interface on electrocardiogram measurements using conductive textile electrodes. IEEE Trans. Instrum. Meas. 2013, 63, 1412–1422. [Google Scholar] [CrossRef]
- Berkaya, S.K.; Uysal, A.K.; Gunal, E.S.; Ergin, S.; Gunal, S.; Gulmezoglu, M.B. A survey on ECG analysis. Biomed. Signal Process. Control 2018, 43, 216–235. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J.; et al. Wearable sensors: Modalities, challenges, and prospects. Lab A Chip 2018, 18, 217–248. [Google Scholar] [CrossRef]
- Blanco-Almazán, D.; Groenendaal, W.; Catthoor, F.; Jané, R. Detection of respiratory phases to estimate breathing pattern parameters using wearable bioimpedance. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual Conference, 31 October–4 November 2021; IEEE: Piscataway, NJ, USA. [Google Scholar]
- Lázaro, J.; Reljin, N.; Bailon, R.; Gil, E.; Noh, Y.; Laguna, P.; Chon, K.H. Electrocardiogram derived respiratory rate using a wearable armband. IEEE Trans. Biomed. Eng. 2020, 68, 1056–1065. [Google Scholar] [CrossRef]
- Charlton, P.H.; Birrenkott, D.A.; Bonnici, T.; Pimentel, M.A.F.; Johnson, A.E.W.; Alastruey, J.; Tarassenko, L.; Watkinson, P.J.; Beale, R.; Clifton, D.A. Breathing rate estimation from the electrocardiogram and photoplethysmogram: A review. IEEE Rev. Biomed. Eng. 2017, 11, 2–20. [Google Scholar] [CrossRef]
- Bera, T.K. Bioelectrical impedance methods for noninvasive health monitoring: A review. J. Med. Eng. 2014, 2014, 381251. [Google Scholar] [CrossRef]
- Raj, P.S.; Hatzinakos, D. Feasibility of single-arm single-lead ECG biometrics. In Proceedings of the 2014 22nd European Signal Processing Conference (EUSIPCO), Lisbon, Portugal, 1–5 September 2014; IEEE: Piscataway, NJ, USA, 2014. [Google Scholar]
- Russo, M.A.; Santarelli, D.M.; O’Rourke, D. The physiological effects of slow breathing in the healthy human. Breathe 2017, 13, 298–309. [Google Scholar] [CrossRef]
- Meredith, D.J.; Clifton, D.; Charlton, P.; Brooks, J.; Pugh, C.W.; Tarassenko, L. Photoplethysmographic derivation of respiratory rate: A review of relevant physiology. J. Med. Eng. Technol. 2012, 36, 1–7. [Google Scholar] [CrossRef]
- Nitzan, M.; Faib, I.; Friedman, H. Respiration-induced changes in tissue blood volume distal to occluded artery, measured by photoplethysmography. J. Biomed. Opt. 2006, 11, 040506. [Google Scholar] [CrossRef]
- Bao, X.; Abdala, A.K.; Kamavuako, E.N. Estimation of the respiratory rate from localised ECG at different auscultation sites. Sensors 2020, 21, 78. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.; Collins, T.; Woolley, S.; Ponnapalli, P. A review of wearable multi-wavelength photoplethysmography. IEEE Rev. Biomed. Eng. 2021, 16, 136–151. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.K.; Rastegarnia, A.; Sanei, S. Signal artifacts and techniques for artifacts and noise removal. In Signal Processing Techniques for Computational Health Informatics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 23–79. [Google Scholar]
- Escalona, O.J.; Villegas, A.; Mukhtar, S.; Perpiñan, G.; McEneaney, D. Wireless arm wearable sensor band for long-term heart rhythms surveillance using a bipolar Arm-ECG lead. In Proceedings of the 2020 Computing in Cardiology, Rimini, Italy, 13–16 September 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Lázaro, J.; Reljin, N.; Hossain, M.-B.; Noh, Y.; Laguna, P.; Chon, K.H. Wearable armband device for daily life electrocardiogram monitoring. IEEE Trans. Biomed. Eng. 2020, 67, 3464–3473. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.; Lim, M.; Li, G.; Araya, E.; Jia, Y. Continuous ECG monitoring with low-power electronics and energy harvesting. In Proceedings of the 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), Springfield, MA, USA, 9–12 August 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Hettiarachchi, I.T.; Hanoun, S.; Nahavandi, D.; Nahavandi, S. Validation of Polar OH1 optical heart rate sensor for moderate and high intensity physical activities. PLoS ONE 2019, 14, e0217288. [Google Scholar] [CrossRef]
- Silverio, A.A.; Suarez, C.G.; Silverio, L.A.A.; Dino, J.Y.; Duran, J.B.; Catambing, G.E.G. An unobtrusive, wireless and wearable single-site blood pressure monitor based on an armband using electrocardiography (ECG) and reflectance Photoplethysmography (PPG) signal processing. Electronics 2023, 12, 1538. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, D.; Zeng, X. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals. Biomed. Eng. Online 2017, 16, 23. [Google Scholar] [CrossRef]
- Ibrahim, B.; Hall, D.A.; Jafari, R. Bio-impedance spectroscopy (BIS) measurement system for wearable devices. In Proceedings of the 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), Turin, Italy, 19–21 October 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Branan, K.L.; McMurray, J.P.; Jennings, R.; Erraguntla, M.; Gutierrez-Osuna, R.; Coté, G.L. Physiological sensing on the upper arm with a wireless multi-modal wearable. In Proceedings of the Optical Diagnostics and Sensing XXIV: Toward Point-of-Care Diagnostics, San Francisco, CA, USA, 29–30 January 2024; SPIE: Bellingham, WA, USA, 2024. [Google Scholar]
- Escalona, O.J.; McFrederick, L.; Borges, M.; Linares, P.; Villegas, R.; Perpiñan, G.I.; McLaughlin, J.; McEneaney, D. Wrist and arm body surface bipolar ECG leads signal and sensor study for long-term rhythm monitoring. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Maeda, Y.; Sekine, M.; Tamura, T. Relationship between measurement site and motion artifacts in wearable reflected photoplethysmography. J. Med. Syst. 2011, 35, 969–976. [Google Scholar] [CrossRef]
- Branan, K.L.; Reyes, G.O.F.; Abel, J.A.; Erraguntla, M.; Gutierrez-Osuna, R.; Cote, G.L.; Shadgan, B.; Gandjbakhche, A.H. Multi-modal physiological sensing on the upper arm. In Proceedings of the Biophotonics in Exercise Science, Sports Medicine, Health Monitoring Technologies, and Wearables III, San Francisco, CA, USA, 22–27 January 2022; SPIE: Bellingham, WA, USA, 2022. [Google Scholar]
- Monk, E. The Monk Skin Tone Scale. Google Research. 2019. Available online: https://skintone.google (accessed on 2 February 2024).
- American Heart Association. Target Heart Rate Charts. 2024. Available online: https://www.heart.org/en/healthy-living/fitness/fitness-basics/target-heart-rates (accessed on 2 February 2025).
- Holland, P.W.; Welsch, R.E. Robust regression using iteratively reweighted least-squares. Commun. Stat.-Theory Methods 1977, 6, 813–827. [Google Scholar] [CrossRef]
- Tamura, T. Current progress of photoplethysmography and SPO2 for health monitoring. Biomed. Eng. Lett. 2019, 9, 21–36. [Google Scholar] [CrossRef]
- Fallow, B.A.; Tarumi, T.; Tanaka, H. Influence of skin type and wavelength on light wave reflectance. J. Clin. Monit. Comput. 2013, 27, 313–317. [Google Scholar] [CrossRef]
- Bent, B.; Goldstein, B.A.; Kibbe, W.A.; Dunn, J.P. Investigating sources of inaccuracy in wearable optical heart rate sensors. npj Digit. Med. 2020, 3, 18. [Google Scholar] [CrossRef]
- Lee, J.; Matsumura, K.; Yamakoshi, K.-I.; Rolfe, P.; Tanaka, S.; Yamakoshi, T. Comparison between red, green and blue light reflection photoplethysmography for heart rate monitoring during motion. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar]
- Ryals, S.; Chiang, A.; Schutte-Rodin, S.; Chandrakantan, A.; Verma, N.; Holfinger, S.; Abbasi-Feinberg, F.; Bandyopadhyay, A.; Baron, K.; Bhargava, S.; et al. Photoplethysmography—New applications for an old technology: A sleep technology review. J. Clin. Sleep Med. 2023, 19, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Pachyn, E.; Aumiller, M.; Freymüller, C.; Linek, M.; Volgger, V.; Buchner, A.; Rühm, A.; Sroka, R. Investigation on the influence of the skin tone on hyperspectral imaging for free flap surgery. Sci. Rep. 2024, 14, 13979. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, V.; Liu, H.; Chen, F.; Qiu, Q.; Hughes, S.; Zheng, D. Quantitative comparison of photoplethysmographic waveform characteristics: Effect of measurement site. Front. Physiol. 2019, 10, 198. [Google Scholar] [CrossRef] [PubMed]
- Charlton, P.H.; Villarroel, M.; Salguiero, F. Waveform Analysis to Estimate Respiratory Rate. In Secondary Analysis of Electronic Health Records; Springer International Publishing: Cham, Switzerland, 2016; pp. 377–390. [Google Scholar]
- Birrenkott, D.A.; Pimentel, M.A.; Watkinson, P.J.; Clifton, D.A. A robust fusion model for estimating respiratory rate from photoplethysmography and electrocardiography. IEEE Trans. Biomed. Eng. 2017, 65, 2033–2041. [Google Scholar] [CrossRef]
Method | Red | IR | Green | BioZ | SS-ECG | Regression (14-Channels) |
---|---|---|---|---|---|---|
AM | 4.5 (3.4) | 3.7 (3.6) | 2.4 (2.3) | 4.7 (3.7) | 2.3 (3.9) | - |
FM | 4.0 (3.1) | 3.3 (2.8) | 3.7 (3.8) | 4.4 (3.9) | 0.97 (1.2) | - |
BW | 2.1 (2.3) | 1.9 (2.1) | 2.9 (2.4) | 0.57 (0.80) | - | - |
Regression | 0.97 (0.62) | 1.5 (0.85) | 1.7 (0.74) | 0.13 (0.27) | 0.66 (0.88) | 0.22 (0.37) |
Noise Category | Noise Source | Modality | ||||
---|---|---|---|---|---|---|
PPG-Green | PPG-Red | PPG-IR | BioZ | SS-ECG | ||
Physiological | Skin Tone | High | Moderate | Low | None | None |
EMG (Flexing) | None | None | None | High | High | |
External | Motion (Typing) | Low | Moderate | Low | High | Moderate |
Motion (Texting) | Low | Moderate | Low | High | Low | |
Hardware | Crosstalk | None | None | None | None | None |
EMI | None | None | None | None | None | |
Human–Device | Electrode–Skin Interface | None | None | None | High | High |
Location | Low | Low | Low | High | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branan, K.L.; Kurian, R.; McMurray, J.P.; Erraguntla, M.; Gutierrez-Osuna, R.; Coté, G.L. Robust Prediction of Cardiorespiratory Signals from a Multimodal Physiological System on the Upper Arm. Biosensors 2025, 15, 493. https://doi.org/10.3390/bios15080493
Branan KL, Kurian R, McMurray JP, Erraguntla M, Gutierrez-Osuna R, Coté GL. Robust Prediction of Cardiorespiratory Signals from a Multimodal Physiological System on the Upper Arm. Biosensors. 2025; 15(8):493. https://doi.org/10.3390/bios15080493
Chicago/Turabian StyleBranan, Kimberly L., Rachel Kurian, Justin P. McMurray, Madhav Erraguntla, Ricardo Gutierrez-Osuna, and Gerard L. Coté. 2025. "Robust Prediction of Cardiorespiratory Signals from a Multimodal Physiological System on the Upper Arm" Biosensors 15, no. 8: 493. https://doi.org/10.3390/bios15080493
APA StyleBranan, K. L., Kurian, R., McMurray, J. P., Erraguntla, M., Gutierrez-Osuna, R., & Coté, G. L. (2025). Robust Prediction of Cardiorespiratory Signals from a Multimodal Physiological System on the Upper Arm. Biosensors, 15(8), 493. https://doi.org/10.3390/bios15080493