Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,879)

Search Parameters:
Keywords = photovoltaic panels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1905 KB  
Article
Feasibility Study of School-Centred Peer-to-Peer Energy Trading with Households and Electric Motorbike Loads
by Lerato Paulina Molise, Jason Avron Samuels and Marthinus Johannes Booysen
Sustainability 2026, 18(2), 978; https://doi.org/10.3390/su18020978 (registering DOI) - 18 Jan 2026
Abstract
South Africa faces high energy costs, highlighting the urgent need for sustainable and cost-effective energy solutions. This study investigates the design of a cost-effective photovoltaic energy system that maximises savings and revenue for the school through energy trading. In this study, the school [...] Read more.
South Africa faces high energy costs, highlighting the urgent need for sustainable and cost-effective energy solutions. This study investigates the design of a cost-effective photovoltaic energy system that maximises savings and revenue for the school through energy trading. In this study, the school trades with 14 neighbouring households and 125 electric motorbikes. This research first applies Latin Hypercube Sampling to explore the solution space and determine which system parameters have a significant impact on supply reliability, investment costs, revenue and savings. Optimal solutions are generated using Non-Dominated Sorting Genetic Algorithm II for a range of system scenarios. Following this, the most promising scenario is selected and applied to 53 schools in the Western Cape. The results show that number of panels strongly correlates with both supply reliability and revenue, thus reducing the break-even years, while battery capacity affects investment costs and, to some extent, break-even years. Among the configurations tested, scenarios where schools traded with both households and electric motorbikes, particularly when both included their own battery systems, achieved the most favourable financial performance for the school, with break-even periods of less than five years under sufficient roof area and improved reliability for the external entities, with an average improvement of 60%. These findings demonstrate that peer-to-peer energy trading between schools and communities can enhance the financial feasibility and sustainability of decentralised solar systems, offering a scalable model for improving energy access and affordability in South Africa and possibly other developing countries. Full article
Show Figures

Figure 1

31 pages, 8880 KB  
Article
A Distributed Electric Vehicles Charging System Powered by Photovoltaic Solar Energy with Enhanced Voltage and Frequency Control in Isolated Microgrids
by Pedro Baltazar, João Dionísio Barros and Luís Gomes
Electronics 2026, 15(2), 418; https://doi.org/10.3390/electronics15020418 (registering DOI) - 17 Jan 2026
Abstract
This study presents a photovoltaic (PV)-based electric vehicle (EV) charging system designed to optimize energy use and support isolated microgrid operations. The system integrates PV panels, DC/AC, AC/DC, and DC/DC converters, voltage and frequency droop control, and two energy management algorithms: Power Sharing [...] Read more.
This study presents a photovoltaic (PV)-based electric vehicle (EV) charging system designed to optimize energy use and support isolated microgrid operations. The system integrates PV panels, DC/AC, AC/DC, and DC/DC converters, voltage and frequency droop control, and two energy management algorithms: Power Sharing and SEWP (Spread Energy with Priority). The DC/AC converter demonstrated high efficiency, with stable AC output and Total Harmonic Distortion (THD) limited to 1%. The MPPT algorithm ensured optimal energy extraction under both gradual and abrupt irradiance variations. The DC/DC converter operated in constant current mode followed by constant voltage regulation, enabling stable power delivery and preserving battery integrity. The Power Sharing algorithm, which distributes PV energy equally, favored vehicles with a higher initial state of charge (SOC), while leaving low-SOC vehicles at modest levels, reducing satisfaction under limited irradiance. In contrast, SEWP prioritized low-SOC EVs, enabling them to achieve higher SOC values compared to the Power Sharing algorithm, reducing SOC dispersion and enhancing fairness. The integration of voltage and frequency droop controls allowed the station to support microgrid stability by limiting reactive power injection to 30% of apparent power and adjusting charging current in response to frequency deviation. Full article
(This article belongs to the Special Issue Recent Advances in Control and Optimization in Microgrids)
Show Figures

Figure 1

26 pages, 16624 KB  
Article
Multi-Scale Photovoltaic Power Forecasting with WDT–CRMABIL–Fusion: A Two-Stage Hybrid Deep Learning Framework
by Reza Khodabakhshi Palandi, Loredana Cristaldi and Luca Martiri
Energies 2026, 19(2), 455; https://doi.org/10.3390/en19020455 (registering DOI) - 16 Jan 2026
Viewed by 26
Abstract
Ultra-short-term photovoltaic (PV) power forecasts are vital for secure grid operation as solar penetration rises. We propose a two-stage hybrid framework, WDT–CRMABIL–Fusion. In Stage 1, we apply a three-level discrete wavelet transform to PV power and key meteorological series (shortwave radiation and panel [...] Read more.
Ultra-short-term photovoltaic (PV) power forecasts are vital for secure grid operation as solar penetration rises. We propose a two-stage hybrid framework, WDT–CRMABIL–Fusion. In Stage 1, we apply a three-level discrete wavelet transform to PV power and key meteorological series (shortwave radiation and panel irradiance). We then forecast the approximation and detail sub-series using specialized component predictors: a 1D-CNN with dual residual multi-head attention (feature-wise and time-wise) together with a BiLSTM. In Stage 2, a compact dense fusion network recombines the component forecasts into the final PV power trajectory. We use 5-minute data from a PV plant in Milan and evaluate 5-, 10-, and 15-minute horizons. The proposed approach outperforms strong baselines (DCC+LSTM, CNN+LSTM, CNN+BiLSTM, CRMABIL direct, and WDT+CRMABIL direct). For the 5-minute horizon, it achieves MAE = 1.60 W and RMSE = 4.21 W with R2 = 0.943 and CORR = 0.973, compared with the best benchmark (MAE = 3.87 W; RMSE = 7.89 W). The gains persist across K-means++ weather clusters (rainy/sunny/cloudy) and across seasons. By combining explicit multi-scale decomposition, attention-based sequence learning, and learned fusion, WDT–CRMABIL–Fusion provides accurate and robust ultra-short-term PV forecasts suitable for storage dispatch and reserve scheduling. Full article
37 pages, 19894 KB  
Article
Sustainable Interpretation Center for Conservation and Environmental Education in Ecologically Sensitive Areas of the Tumbes Mangrove, Peru, 2025
by Doris Esenarro, Miller Garcia, Yerika Calampa, Patricia Vasquez, Duilio Aguilar Vizcarra, Carlos Vargas, Vicenta Irene Tafur Anzualdo, Jesica Vilchez Cairo and Pablo Cobeñas
Urban Sci. 2026, 10(1), 57; https://doi.org/10.3390/urbansci10010057 - 16 Jan 2026
Viewed by 45
Abstract
The continuous degradation of mangrove ecosystems, considered among the most vulnerable worldwide, reveals multiple threats driven by human activities and climate change. In the Peruvian context, particularly in the Tumbes Mangrove ecosystem, these pressures are intensified by the absence of integrated spatial and [...] Read more.
The continuous degradation of mangrove ecosystems, considered among the most vulnerable worldwide, reveals multiple threats driven by human activities and climate change. In the Peruvian context, particularly in the Tumbes Mangrove ecosystem, these pressures are intensified by the absence of integrated spatial and educational infrastructures capable of supporting conservation efforts while engaging local communities. In response, this research proposes a Sustainable Interpretation Center for Conservation and Environmental Education in Ecologically Sensitive Areas of the Tumbes Mangrove, Peru. The methodology includes climate data analysis, identification of local flora and fauna, and site topography characterization, supported by digital tools such as Google Earth, AutoCAD 2025, Revit 2025, and 3D Sun Path. The results are reflected in an architectural proposal that incorporates sustainable materials compatible with sensitive ecosystems, including eco-friendly structural solutions based on algarrobo timber, together with resilient strategies addressing climatic variability, such as lightweight structures, elevated platforms, and passive environmental solutions that minimize impact on the mangrove. Furthermore, the proposal integrates a photovoltaic energy system consisting of 12 solar panels with a unit capacity of 450 W, providing a total installed capacity of 5.4 kWp, complemented by a 48 V LiFePO4 battery storage system designed to ensure energy autonomy during periods of low solar availability. In conclusion, the proposal adheres to principles of sustainability and energy efficiency and aligns with the Sustainable Development Goals (SDGs) 7, 8, 12, 14, and 15, reinforcing the use of clean energy, responsible tourism, sustainable resource management, and the conservation of marine and terrestrial ecosystems. Full article
22 pages, 2057 KB  
Article
Comparative Experimental Performance Assessment of Tilted and Vertical Bifacial Photovoltaic Configurations for Agrivoltaic Applications
by Osama Ayadi, Reem Shadid, Mohammad A. Hamdan, Qasim Aburumman, Abdullah Bani Abdullah, Mohammed E. B. Abdalla, Haneen Sa’deh and Ahmad Sakhrieh
Sustainability 2026, 18(2), 931; https://doi.org/10.3390/su18020931 - 16 Jan 2026
Viewed by 42
Abstract
Agrivoltaics—the co-location of photovoltaic energy production with agriculture—offers a promising pathway to address growing pressures on land, food, and clean energy resources. This study evaluates the first agrivoltaic pilot installation in Jordan, located in Amman (935 m above sea level; hot-summer Mediterranean climate), [...] Read more.
Agrivoltaics—the co-location of photovoltaic energy production with agriculture—offers a promising pathway to address growing pressures on land, food, and clean energy resources. This study evaluates the first agrivoltaic pilot installation in Jordan, located in Amman (935 m above sea level; hot-summer Mediterranean climate), during its first operational year. Two 11.1 kWp bifacial photovoltaic (PV) systems were compared: (i) a south-facing array tilted at 10°, and (ii) a vertical east–west “fence” configuration. The tilted system achieved an annual specific yield of 1962 kWh/kWp, approximately 35% higher than the 1288 kWh/kWp obtained from the vertical array. Seasonal variation was observed, with the performance gap widening to ~45% during winter and narrowing to ~22% in June. As expected, the vertical system exhibited more uniform diurnal output, enhanced early-morning and late-afternoon generation, and lower soiling losses. The light profiles measured for the year indicate that vertical systems barely impede the light requirements of crops, while the tilted system splits into distinct profiles for the intra-row area (akin to the vertical system) and sub-panel area, which is likely to support only low-light requirement crops. This configuration increases the levelized cost of electricity (LCOE) by roughly 88% compared to a conventional ground-mounted system due to elevated structural costs. In contrast, the vertical east–west system provides an energy yield equivalent to about 33% of the land area at the tested configuration but achieves this without increasing the LCOE. These results highlight a fundamental trade-off: elevated tilted systems offer greater land-use efficiency but at higher cost, whereas vertical systems preserve cost parity at the expense of lower energy density. Full article
(This article belongs to the Special Issue Energy Economics and Sustainable Environment)
39 pages, 7296 KB  
Article
Innovative Smart, Autonomous, and Flexible Solar Photovoltaic Cooking Systems with Energy Storage: Design, Experimental Validation, and Socio-Economic Impact
by Bilal Zoukarh, Mohammed Hmich, Abderrafie El Amrani, Sara Chadli, Rachid Malek, Olivier Deblecker, Khalil Kassmi and Najib Bachiri
Energies 2026, 19(2), 408; https://doi.org/10.3390/en19020408 - 14 Jan 2026
Viewed by 125
Abstract
This work presents the design, modeling, and experimental validation of an innovative, highly autonomous, and economically viable photovoltaic solar cooker, integrating a robust battery storage system. The system combines 1200 Wp photovoltaic panels, a control block with DC/DC power converters and digital control [...] Read more.
This work presents the design, modeling, and experimental validation of an innovative, highly autonomous, and economically viable photovoltaic solar cooker, integrating a robust battery storage system. The system combines 1200 Wp photovoltaic panels, a control block with DC/DC power converters and digital control for intelligent energy management, and a thermally insulated heating plate equipped with two resistors. The objective of the system is to reduce dependence on conventional fuels while overcoming the limitations of existing solar cookers, particularly insufficient cooking temperatures, the need for continuous solar orientation, and significant thermal losses. The optimization of thermal insulation using a ceramic fiber and glass wool configuration significantly reduces heat losses and increases the thermal efficiency to 64%, nearly double that of the non-insulated case (34%). This improvement enables cooking temperatures of 100–122 °C, heating element surface temperatures of 185–464 °C, and fast cooking times ranging from 20 to 58 min, depending on the prepared dish. Thermal modeling takes into account sheet metal, strengths, and food. The experimental results show excellent agreement between simulation and measurements (deviation < 5%), and high converter efficiencies (84–97%). The integration of the batteries guarantees an autonomy of 6 to 12 days and a very low depth of discharge (1–3%), allowing continuous cooking even without direct solar radiation. Crucially, the techno-economic analysis confirmed the system’s strong market competitiveness. Despite an Initial Investment Cost (CAPEX) of USD 1141.2, the high performance and low operational expenditure lead to a highly favorable Return on Investment (ROI) of only 4.31 years. Compared to existing conventional and solar cookers, the developed system offers superior energy efficiency and optimized cooking times, and demonstrates rapid profitability. This makes it a sustainable, reliable, and energy-efficient home solution, representing a major technological leap for domestic cooking in rural areas. Full article
Show Figures

Figure 1

14 pages, 926 KB  
Article
A Study on Recycling End-of-Life Crystalline Silicon PV Panels via DMPU-Coupled Pyrolysis: Energy Efficiency and Carbon Emission Reduction Performance
by Jianzhong Luo, Jie Yao, Chunhua Zhu and Feihong Guo
Recycling 2026, 11(1), 15; https://doi.org/10.3390/recycling11010015 - 14 Jan 2026
Viewed by 113
Abstract
The rapid expansion of China’s photovoltaic (PV) industry has led to a significant increase in decommissioned PV modules. To address the high energy consumption and environmental impact of traditional recycling techniques, this study proposes a novel method that integrates DMPU solvent recycling with [...] Read more.
The rapid expansion of China’s photovoltaic (PV) industry has led to a significant increase in decommissioned PV modules. To address the high energy consumption and environmental impact of traditional recycling techniques, this study proposes a novel method that integrates DMPU solvent recycling with pyrolysis for recovering PV cell sheets. DMPU, an organic solvent with low volatility, non-toxicity, and excellent recyclability, was used in this study. The effects of temperature and treatment duration on the structural integrity of silicon cell sheets were systematically evaluated, establishing optimal parameters: immersion in DMPU at 200 °C for 60 min, followed by pyrolysis at 480 °C for 60 min. A case study was conducted on a small-scale recycling facility with a daily processing capacity of 200 standard PV panels, encompassing system boundaries such as transportation, pretreatment, and pyrolysis. The recycling process consumed 2.14 × 109 kJ of energy annually, reducing CO2 emissions by 9357.2 tons. Compared to conventional methods such as pyrolysis, mechanical dismantling, and chemical dissolution, the proposed approach employing a green, recyclable solvent markedly reduces energy consumption and carbon emissions, offering notable environmental benefits. Full article
Show Figures

Figure 1

23 pages, 4391 KB  
Article
Experimental and Numerical Analysis of Thermal Efficiency Improvement in a Hybrid Solar–Electric Water Heating System
by Hussein N. O. AL-Abboodi, Mehmet Özalp, Hasanain A. Abdul Wahhab, Cevat Özarpa and Mohammed A. M. AL-Jaafari
Appl. Sci. 2026, 16(2), 764; https://doi.org/10.3390/app16020764 - 12 Jan 2026
Viewed by 94
Abstract
Many studies on solar heating systems have examined individual techniques to enhance the performance of solar water collectors, such as flow obstructions, increased turbulence, nanofluids, and investment in thermal storage. The benefits of integrating these sustainability strategies into a single, sustainable system have [...] Read more.
Many studies on solar heating systems have examined individual techniques to enhance the performance of solar water collectors, such as flow obstructions, increased turbulence, nanofluids, and investment in thermal storage. The benefits of integrating these sustainability strategies into a single, sustainable system have yet to be fully established. This work displays a hybrid water-heating system that contains a solar water collector (SWC) and an electric water heater (EWH), a photovoltaic panel (PV), and nano-additives to increase the outlet water temperature and improve thermal efficiency. Numerical and experimental analyses were used to estimate the influence of water flow rate (2.5, 3.5, and 4.5 L/min) and different Al2O3 concentrations (0.1%, 0.2%, and 0.3%) on system performance using U-shaped pipe in SWC model. The results highlight that lower flow rates consistently yield higher ΔT values because water spends a longer time in the collector, allowing it to absorb more heat. Also, when using water only, the collector efficiency increases pro-aggressively with flow rate. A significant performance enhancement is observed upon incorporating Al2O3 nanoparticles into the fluid, with a 0.1% Al2O3 volume concentration improving efficiency by ~7.4% over water. At 0.3%, the highest improvement is recorded, yielding a ~9.3% gain in efficiency compared to the base case. Full article
Show Figures

Figure 1

29 pages, 14221 KB  
Article
Integrated Control of Hybrid Thermochemical–PCM Storage for Renewable Heating and Cooling Systems in a Smart House
by Georgios Martinopoulos, Paschalis A. Gkaidatzis, Luis Jimeno, Alberto Belda González, Panteleimon Bakalis, George Meramveliotakis, Apostolos Gkountas, Nikolaos Tarsounas, Dimosthenis Ioannidis, Dimitrios Tzovaras and Nikolaos Nikolopoulos
Electronics 2026, 15(2), 279; https://doi.org/10.3390/electronics15020279 - 7 Jan 2026
Viewed by 296
Abstract
The development of integrated renewable energy and high-density thermal energy storage systems has been fueled by the need for environmentally friendly heating and cooling in buildings. In this paper, MiniStor, a hybrid thermochemical and phase-change material storage system, is presented. It is equipped [...] Read more.
The development of integrated renewable energy and high-density thermal energy storage systems has been fueled by the need for environmentally friendly heating and cooling in buildings. In this paper, MiniStor, a hybrid thermochemical and phase-change material storage system, is presented. It is equipped with a heat pump, advanced electronics-enabled control, photovoltaic–thermal panels, and flat-plate solar collectors. To optimize energy flows, regulate charging and discharging cycles, and maintain operational stability under fluctuating solar irradiance and building loads, the system utilizes state-of-the-art power electronics, variable-frequency drives and modular multi-level converters. The hybrid storage is safely, reliably, and efficiently integrated with building HVAC requirements owing to a multi-layer control architecture that is implemented via Internet of Things and SCADA platforms that allow for real-time monitoring, predictive operation, and fault detection. Data from the MiniStor prototype demonstrate effective thermal–electrical coordination, controlled energy consumption, and high responsiveness to dynamic environmental and demand conditions. The findings highlight the vital role that digital control, modern electronics, and Internet of Things-enabled supervision play in connecting small, high-density thermal storage and renewable energy generation. This strategy demonstrates the promise of electronics-driven integration for next-generation renewable energy solutions and provides a scalable route toward intelligent, robust, and effective building energy systems. Full article
(This article belongs to the Special Issue New Insights in Power Electronics: Prospects and Challenges)
Show Figures

Figure 1

19 pages, 3965 KB  
Article
Assessing the Sustainability and Thermo-Economic Performance of Solar Power Technologies: Photovoltaic Power Plant and Linear Fresnel Reflector Coupled with an Organic Rankine System
by Erdal Yıldırım and Mehmet Azmi Aktacir
Processes 2026, 14(2), 204; https://doi.org/10.3390/pr14020204 - 7 Jan 2026
Viewed by 163
Abstract
In this study, the technical, economic, and environmental performances of a Linear Fresnel Reflector (LFR) integrated with an Organic Rankine Cycle (ORC), designed with a non-storage approach, and a monocrystalline photovoltaic (PV) system were comparatively evaluated in meeting a building’s 10 kW electricity [...] Read more.
In this study, the technical, economic, and environmental performances of a Linear Fresnel Reflector (LFR) integrated with an Organic Rankine Cycle (ORC), designed with a non-storage approach, and a monocrystalline photovoltaic (PV) system were comparatively evaluated in meeting a building’s 10 kW electricity demand. Solar-based electricity generation systems play a critical role in reducing carbon emissions and increasing energy self-sufficiency in buildings, yet small-scale, storage-free LFR-ORC applications remain relatively underexplored compared to PV systems. The optimal areas for both systems were determined using the P1P2 methodology. The electricity generation of the LFR-ORC system was calculated based on experimentally measured thermal power output and ORC efficiency, while the production of the PV system was determined using panel area, efficiency, and measured solar irradiation data. System performance was assessed through self-consumption and self-sufficiency ratios, and the economic analysis included life cycle savings (LCS), payback period, and levelized cost of electricity (LCOE). The results indicate that the PV system is more advantageous economically, with an optimal payback of 4.93 years and lower LCOE of 0.053 €/kWh when the economically optimal panel area is considered. On the other hand, the LFR-ORC system exhibits up to 35% lower life-cycle CO2 emissions compared to grid electricity under grid-connected operation (15.86 tons CO2-eq for the standalone LFR-ORC system versus 50.57 tons CO2-eq for PV over 25-year lifetime), thus providing superiority in terms of environmental sustainability. In this context, the study presents an engineering-based approach for the technical, economic, and environmental assessment of small-scale, non-storage solar energy systems in line with the United Nations Sustainable Development Goals (SDG 7: Affordable and Clean Energy and SDG 13: Climate Action) and contributes to the existing literature. Full article
Show Figures

Figure 1

15 pages, 2185 KB  
Article
Salt Deposit Detection on Offshore Photovoltaic Modules Using an Enhanced YOLOv8 Framework
by Gang Li, Shuqing Wang, Bo Liu, Mingqiang Xu, Zhenhai Liu and Haoge Wang
Energies 2026, 19(2), 294; https://doi.org/10.3390/en19020294 - 6 Jan 2026
Viewed by 187
Abstract
To address the challenges of low detection efficiency and limited accuracy in identifying contamination on offshore photovoltaic platforms, this study proposes an enhanced YOLOv8-based algorithm for detecting salt deposit on photovoltaic modules. The SimAM parameter-free attention mechanism is integrated at the end of [...] Read more.
To address the challenges of low detection efficiency and limited accuracy in identifying contamination on offshore photovoltaic platforms, this study proposes an enhanced YOLOv8-based algorithm for detecting salt deposit on photovoltaic modules. The SimAM parameter-free attention mechanism is integrated at the end of the backbone network and within the neck layers to improve feature representation of salt deposits under complex environmental conditions, thereby enhancing detection accuracy. In addition, the WIoU loss function is employed in place of the original CIoU loss to alleviate harmful gradients caused by low-quality data and to strengthen the generalization capability of the model. A dedicated dataset of salt accumulation images from offshore photovoltaic panels is constructed to support this targeted detection task. Experimental results demonstrate that the proposed algorithm achieves an mAP50 of 85.8%, a 3% improvement over YOLOv8, while maintaining a detection speed of 67 frames per second. These findings confirm that the proposed approach meets both the accuracy and efficiency requirements for automated detection of salt deposition on offshore photovoltaic modules. Full article
Show Figures

Figure 1

31 pages, 5378 KB  
Article
Composite Fractal Index for Assessing Voltage Resilience in RES-Dominated Smart Distribution Networks
by Plamen Stanchev and Nikolay Hinov
Fractal Fract. 2026, 10(1), 32; https://doi.org/10.3390/fractalfract10010032 - 5 Jan 2026
Viewed by 127
Abstract
This work presents a lightweight and interpretable framework for the early warning of voltage stability degradation in distribution networks, based on fractal and spectral features from flow measurements. We propose a Fast Voltage Stability Index (FVSI), which combines four independent indicators: the Detrended [...] Read more.
This work presents a lightweight and interpretable framework for the early warning of voltage stability degradation in distribution networks, based on fractal and spectral features from flow measurements. We propose a Fast Voltage Stability Index (FVSI), which combines four independent indicators: the Detrended Fluctuation Analysis (DFA) exponent α (a proxy for long-term correlation), the width of the multifractal spectrum Δα, the slope of the spectral density β in the low-frequency range, and the c2 curvature of multiscale structure functions. The indicators are calculated in sliding windows on per-node series of voltage in per unit Vpu and reactive power Q, standardized against an adaptive rolling/first-N baseline, and anomalies over time are accumulated using the Exponentially Weighted Moving Average (EWMA) and Cumulative SUM (CUSUM). A full online pipeline is implemented with robust preprocessing, automatic scaling, thresholding, and visualizations at the system level with an overview and heat maps and at the node level and panel graphs. Based on the standard IEEE 13-node scheme, we demonstrate that the Fractal Voltage Stability Index (FVSI_Fr) responds sensitively before reaching limit states by increasing α, widening Δα, a more negative c2, and increasing β, locating the most vulnerable nodes and intervals. The approach is of low computational complexity, robust to noise and gaps, and compatible with real-time Phasor Measurement Unit (PMU)/Supervisory Control and Data Acquisition (SCADA) streams. The results suggest that FVSI_Fr is a useful operational signal for preventive actions (Q-support, load management/Photovoltaic System (PV)). Future work includes the calibration of weights and thresholds based on data and validation based on long field series. Full article
(This article belongs to the Special Issue Fractional-Order Dynamics and Control in Green Energy Systems)
Show Figures

Figure 1

28 pages, 7884 KB  
Article
Numerical Analysis of Deformation Behavior in the Double-Layer Flexible Photovoltaic Support Structure
by Xin Ye, Ming Luo, Hang Zou, Zhu Zhu, Ronglin Hong, Yehui Cui and Jiachen Zhao
Eng 2026, 7(1), 27; https://doi.org/10.3390/eng7010027 - 5 Jan 2026
Viewed by 233
Abstract
Flexible photovoltaic (PV) support systems, referring to cable-supported structural systems that carry conventional rigid PV modules rather than flexible thin-film modules, have attracted increasing attention as a promising solution for photovoltaic construction in complex terrains due to their advantages of broad-span design and [...] Read more.
Flexible photovoltaic (PV) support systems, referring to cable-supported structural systems that carry conventional rigid PV modules rather than flexible thin-film modules, have attracted increasing attention as a promising solution for photovoltaic construction in complex terrains due to their advantages of broad-span design and simplified installation. However, the deformation behavior of flexible PV supports remains insufficiently understood, which restricts its application and engineering optimization. To address this issue, a three-dimensional finite element model of a flexible PV support system was developed using an in-house Python code to investigate its deformation characteristics. The model discretizes the structure into beam and cable elements according to their mechanical properties, and the coupling relationship between their degrees of freedom is established by means of a multi-point constraint. The validation of the proposed model is confirmed by comparison with theoretical solutions. Simulation results reveal that the deformation of flexible PV supports is more sensitive to horizontal loads, indicating that their overall deformation performance is primarily governed by lateral rather than vertical loading. Furthermore, dynamic analyses show that higher loading frequencies induce noticeable torsional de-formation of the structure, which may compromise the stability of the PV panels. These findings provide valuable theoretical guidance for the design and optimization of flexible PV support systems deployed in complex terrains. Full article
Show Figures

Figure 1

18 pages, 3247 KB  
Article
Effects of Photovoltaic-Integrated Tea Plantation on Tea Field Productivity and Tea Leaf Quality
by Xin-Qiang Zheng, Xue-Han Zhang, Jian-Gao Zhang, Rong-Jin Zheng, Jian-Liang Lu, Jian-Hui Ye and Yue-Rong Liang
Agriculture 2026, 16(1), 125; https://doi.org/10.3390/agriculture16010125 - 3 Jan 2026
Viewed by 347
Abstract
Agrivoltaics integrates photovoltaic (PV) power generation with agricultural practices, enabling dual land-use and mitigating land-use competition between agriculture and energy production. China has 3.43 million hectares of tea fields, offering significant potential for PV-integrated tea plantations (PVtea) to address land scarcity in clean [...] Read more.
Agrivoltaics integrates photovoltaic (PV) power generation with agricultural practices, enabling dual land-use and mitigating land-use competition between agriculture and energy production. China has 3.43 million hectares of tea fields, offering significant potential for PV-integrated tea plantations (PVtea) to address land scarcity in clean energy development. This study aimed to investigate the impact of PV modules above tea bushes in PVtea on the yield and quality of tea, as well as tea plant resistance to environmental stresses. The PV system uses a single-axis tracking system with a horizontal north–south axis and ±45° tilt. It includes 70 UL-270P-60 polycrystalline solar panels (270 Wp each), arranged in 5 columns of 14 panels, spaced 4500 mm apart, covering 280 m2. The panels are mounted 2400 mm above the ground, with a total capacity of 18.90 kWp (656 kWp/ha). Tea yield, quality-related components, leaf photosystem II (PSII) activity, and plant resistance to environmental stresses were investigated in comparison to an adjacent open-field tea plantation (control). The mean photosynthetic active radiation (PAR) reaching the plucking table of PVtea was 52.9% of the control, with 32.0% of the control on a sunny day and 49.0% on a cloudy day, accompanied by an increase in ambient relative humidity. These changes alleviated the midday depression of leaf PSII activity caused by high light, resulting in a 9.3–15.3% increase in leaf yield. Moreover, PVtea summer tea exhibited higher levels of amino acids and total catechins, resulting in tea quality improvement. Additionally, PVtea enhanced the resistance of tea plants to frost damage in spring and heat stress in summer. PVtea integrates photovoltaic power generation with tea cultivation practices, which not only facilitates clean energy production—an average annual generation of 697,878.5 kWh per hectare—but also increases tea productivity by 9.3–15.3% and the land-use equivalence ratio (LER) by 70%. Full article
(This article belongs to the Special Issue Advanced Cultivation Technologies for Horticultural Crops Production)
Show Figures

Graphical abstract

33 pages, 3089 KB  
Article
Designing a Sustainable Off-Grid EV Charging Station: Analysis Across Urban and Remote Canadian Regions
by Muhammad Nadeem Akram and Walid Abdul-Kader
Batteries 2026, 12(1), 17; https://doi.org/10.3390/batteries12010017 - 1 Jan 2026
Viewed by 300
Abstract
Electric vehicles are becoming more commonplace as we shift towards cleaner transportation. However, current charging infrastructure is immature, especially in remote and off-grid regions, making electric vehicle adoption challenging. This study presents an architecture for a standalone renewable energy-based electric vehicle charging station. [...] Read more.
Electric vehicles are becoming more commonplace as we shift towards cleaner transportation. However, current charging infrastructure is immature, especially in remote and off-grid regions, making electric vehicle adoption challenging. This study presents an architecture for a standalone renewable energy-based electric vehicle charging station. The proposed renewable energy system comprises wind turbines, solar photovoltaic panels, fuel cells, and a hydrogen tank. As an energy storage system, second-life electric vehicle batteries are considered. This study investigates the feasibility and performance of the charging station with respect to two vastly different Canadian regions, Windsor, Ontario (urban), and Eagle Plains, Yukon (remote). In modeling these two regions using HOMER Pro software, this study concludes that due to its higher renewable energy availability, Windsor shows a net-present cost of $2.80 million and cost of energy of $0.201/kWh as compared to the severe climate of Eagle Plains, with a net-present cost of $3.61 million and cost of energy of $0.259/kWh. In both cases, we see zero emissions in off-grid configurations. A sensitivity analysis shows that system performance can be improved by increasing wind turbine hub heights and solar photovoltaic panel lifespans. With Canada’s goal of transitioning towards 100% zero-emission vehicle sales by 2035, this study provides practical insights regarding site-specific resource optimization for electric vehicle infrastructure that does not rely on grid energy. Furthermore, this study highlights a means to progress the sustainable development goals, namely goals 7, 9, and 13, through the development of more accessible electric vehicle charging stations. Full article
Show Figures

Graphical abstract

Back to TopTop