Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (443)

Search Parameters:
Keywords = photovoltaic generation forecasting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3337 KiB  
Article
Imbalance Charge Reduction in the Italian Intra-Day Market Using Short-Term Forecasting of Photovoltaic Generation
by Cristina Ventura, Giuseppe Marco Tina and Santi Agatino Rizzo
Energies 2025, 18(15), 4161; https://doi.org/10.3390/en18154161 - 5 Aug 2025
Abstract
In the Italian intra-day electricity market (MI-XBID), where energy positions can be adjusted up to one hour before delivery, imbalance charges due to forecast errors from non-programmable renewable sources represent a critical issue. This work focuses on photovoltaic (PV) systems, whose production variability [...] Read more.
In the Italian intra-day electricity market (MI-XBID), where energy positions can be adjusted up to one hour before delivery, imbalance charges due to forecast errors from non-programmable renewable sources represent a critical issue. This work focuses on photovoltaic (PV) systems, whose production variability makes them particularly sensitive to forecast accuracy. To address these challenges, a comprehensive methodology for assessing and mitigating imbalance penalties by integrating a short-term PV forecasting model with a battery energy storage system is proposed. Unlike conventional approaches that focus exclusively on improving statistical accuracy, this study emphasizes the economic and regulatory impact of forecast errors under the current Italian imbalance settlement framework. A hybrid physical-artificial neural network is developed to forecast PV power one hour in advance, combining historical production data and clear-sky irradiance estimates. The resulting imbalances are analyzed using regulatory tolerance thresholds. Simulation results show that, by adopting a control strategy aimed at maintaining the battery’s state of charge around 50%, imbalance penalties can be completely eliminated using a storage system sized for just over 2 equivalent hours of storage capacity. The methodology provides a practical tool for market participants to quantify the benefits of storage integration and can be generalized to other electricity markets where tolerance bands for imbalances are applied. Full article
(This article belongs to the Special Issue Advanced Forecasting Methods for Sustainable Power Grid: 2nd Edition)
Show Figures

Figure 1

22 pages, 3409 KiB  
Article
Short-Term Prediction Intervals for Photovoltaic Power via Multi-Level Analysis and Dual Dynamic Integration
by Kaiyang Kuang, Jingshan Zhang, Qifan Chen, Yan Zhou, Yan Yan, Litao Dai and Guanghu Wang
Electronics 2025, 14(15), 3068; https://doi.org/10.3390/electronics14153068 - 31 Jul 2025
Viewed by 156
Abstract
There is an obvious correlation between the photovoltaic (PV) output of different physical levels; that is, the overall power change trend of large-scale regional (high-level) stations can provide a reference for the prediction of the output of sub-regional (low-level) stations. The current PV [...] Read more.
There is an obvious correlation between the photovoltaic (PV) output of different physical levels; that is, the overall power change trend of large-scale regional (high-level) stations can provide a reference for the prediction of the output of sub-regional (low-level) stations. The current PV prediction methods have not deeply explored the multi-level PV power generation elements and have not considered the correlation between different levels, resulting in the inability to obtain potential information on PV power generation. Moreover, traditional probabilistic prediction models lack adaptability, which can lead to a decrease in prediction performance under different PV prediction scenarios. Therefore, a probabilistic prediction method for short-term PV power based on multi-level adaptive dynamic integration is proposed in this paper. Firstly, an analysis is conducted on the multi-level PV power stations together with the influence of the trend of high-level PV power generation on the forecast of low-level power generation. Then, the PV data are decomposed into multiple layers using the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and analyzed by combining fuzzy entropy (FE) and mutual information (MI). After that, a new multi-level model prediction method, namely, the improved dual dynamic adaptive stacked generalization (I-Stacking) ensemble learning model, is proposed to construct short-term PV power generation prediction models. Finally, an improved dynamic adaptive kernel density estimation (KDE) method for prediction errors is proposed, which optimizes the performance of the prediction intervals (PIs) through variable bandwidth. Through comparative experiments and analysis using traditional methods, the effectiveness of the proposed method is verified. Full article
Show Figures

Figure 1

19 pages, 1761 KiB  
Article
Prediction of China’s Silicon Wafer Price: A GA-PSO-BP Model
by Jining Wang, Hui Chen and Lei Wang
Mathematics 2025, 13(15), 2453; https://doi.org/10.3390/math13152453 - 30 Jul 2025
Viewed by 171
Abstract
The BP (Back-Propagation) neural network model (hereafter referred to as the BP model) often gets stuck in local optima when predicting China’s silicon wafer price, which hurts the accuracy of the forecasts. This study addresses the issue by enhancing the BP model. It [...] Read more.
The BP (Back-Propagation) neural network model (hereafter referred to as the BP model) often gets stuck in local optima when predicting China’s silicon wafer price, which hurts the accuracy of the forecasts. This study addresses the issue by enhancing the BP model. It integrates the principles of genetic algorithm (GA) with particle swarm optimization (PSO) to develop a new model called the GA-PSO-BP. This study also considers the material price from both the supply and demand sides of the photovoltaic industry. These prices are important factors in China’s silicon wafer price prediction. This research indicates that improving the BP model by integrating GA allows for a broader exploration of potential solution spaces. This approach helps to prevent local minima and identify the optimal solution. The BP model converges more quickly by using PSO for weight initialization. Additionally, the method by which particles share information decreases the probability of being confined to local optima. The upgraded GA-PSO-BP model demonstrates improved generalization capabilities and makes more accurate predictions. The MAE (Mean Absolute Error) value of the GA-PSO-BP model is 31.01% lower than those of the standalone BP model and also falls by 19.36% and 16.28% relative to the GA-BP and PSO-BP models, respectively. The smaller the value, the closer the prediction result of the model is to the actual value. This model has proven effective and superior in China’s silicon wafer price prediction. This capability makes it an essential resource for market analysis and decision-making within the silicon wafer industry. Full article
Show Figures

Figure 1

38 pages, 5939 KiB  
Article
Decentralized Energy Management for Microgrids Using Multilayer Perceptron Neural Networks and Modified Cheetah Optimizer
by Zulfiqar Ali Memon, Ahmed Bilal Awan, Hasan Abdel Rahim A. Zidan and Mohana Alanazi
Processes 2025, 13(8), 2385; https://doi.org/10.3390/pr13082385 - 27 Jul 2025
Viewed by 460
Abstract
This paper presents a decentralized energy management system (EMS) based on Multilayer Perceptron Artificial Neural Networks (MLP-ANNs) and a Modified Cheetah Optimizer (MCO) to account for uncertainty in renewable generation and load demand. The proposed framework applies an MLP-ANN with Levenberg–Marquardt (LM) training [...] Read more.
This paper presents a decentralized energy management system (EMS) based on Multilayer Perceptron Artificial Neural Networks (MLP-ANNs) and a Modified Cheetah Optimizer (MCO) to account for uncertainty in renewable generation and load demand. The proposed framework applies an MLP-ANN with Levenberg–Marquardt (LM) training for high-precision forecasts of photovoltaic/wind generation, ambient temperature, and load demand, greatly outperforming traditional statistical methods (e.g., time-series analysis) and resilient backpropagation (RP) in precision. The new MCO algorithm eliminates local trapping and premature convergence issues in classical optimization methods like Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs). Simulations on a test microgrid verily demonstrate the advantages of the framework, achieving a 26.8% cost-of-operation reduction against rule-based EMSs and classical PSO/GA, and a 15% improvement in forecast accuracy using an LM-trained MLP-ANN. Moreover, demand response programs embodied in the system reduce peak loads by 7.5% further enhancing grid stability. The MLP-ANN forecasting–MCO optimization duet is an effective and cost-competitive decentralized microgrid management solution under uncertainty. Full article
Show Figures

Figure 1

37 pages, 7561 KiB  
Article
Efficient Machine Learning-Based Prediction of Solar Irradiance Using Multi-Site Data
by Hassan N. Noura, Zaid Allal, Ola Salman and Khaled Chahine
Future Internet 2025, 17(8), 336; https://doi.org/10.3390/fi17080336 - 27 Jul 2025
Viewed by 219
Abstract
Photovoltaic panels have become a promising solution for generating renewable energy and reducing our reliance on fossil fuels by capturing solar energy and converting it into electricity. The effectiveness of this conversion depends on several factors, such as the quality of the solar [...] Read more.
Photovoltaic panels have become a promising solution for generating renewable energy and reducing our reliance on fossil fuels by capturing solar energy and converting it into electricity. The effectiveness of this conversion depends on several factors, such as the quality of the solar panels and the amount of solar radiation received in a specific region. This makes accurate solar irradiance forecasting essential for planning and managing efficient solar power systems. This study examines the application of machine learning (ML) models for accurately predicting global horizontal irradiance (GHI) using a three-year dataset from six distinct photovoltaic stations: NELHA, ULL, HSU, RaZON+, UNLV, and NWTC. The primary aim is to identify optimal shared features for GHI prediction across multiple sites using a 30 min time shift based on autocorrelation analysis. Key features identified for accurate GHI prediction include direct normal irradiance (DNI), diffuse horizontal irradiance (DHI), and solar panel temperatures. The predictions were performed using tree-based algorithms and ensemble learners, achieving R2 values exceeding 95% at most stations, with NWTC reaching 99%. Gradient Boosting Regression (GBR) performed best at NELHA, NWTC, and RaZON, while Multi-Layer Perceptron (MLP) excelled at ULL and UNLV. CatBoost was optimal for HSU. The impact of time-shifting values on performance was also examined, revealing that larger shifts led to performance deterioration, though MLP performed well under these conditions. The study further proposes a stacking ensemble approach to enhance model generalizability, integrating the strengths of various models for more robust GHI prediction. Full article
(This article belongs to the Section Smart System Infrastructure and Applications)
Show Figures

Figure 1

22 pages, 7392 KiB  
Article
Model Predictive Control for Charging Management Considering Mobile Charging Robots
by Max Faßbender, Nicolas Rößler, Christoph Wellmann, Markus Eisenbarth and Jakob Andert
Energies 2025, 18(15), 3948; https://doi.org/10.3390/en18153948 - 24 Jul 2025
Viewed by 232
Abstract
Mobile Charging Robots (MCRs), essentially high-voltage batteries mounted on mobile platforms, offer a flexible solution for electric vehicle (EV) charging, particularly in environments like supermarket parking lots with photovoltaic (PV) generation. Unlike fixed charging stations, MCRs must be strategically dispatched and recharged to [...] Read more.
Mobile Charging Robots (MCRs), essentially high-voltage batteries mounted on mobile platforms, offer a flexible solution for electric vehicle (EV) charging, particularly in environments like supermarket parking lots with photovoltaic (PV) generation. Unlike fixed charging stations, MCRs must be strategically dispatched and recharged to maximize operational efficiency and revenue. This study investigates a Model Predictive Control (MPC) approach using Mixed-Integer Linear Programming (MILP) to coordinate MCR charging and movement, accounting for the additional complexity that EVs can park at arbitrary locations. The performance impact of EV arrival and demand forecasts is evaluated, comparing perfect foresight with data-driven predictions using long short-term memory (LSTM) networks. A slack variable method is also introduced to ensure timely recharging of the MCRs. Results show that incorporating forecasts significantly improves performance compared to no prediction, with perfect forecasts outperforming LSTM-based ones due to better-timed recharging decisions. The study highlights that inaccurate forecasts—especially in the evening—can lead to suboptimal MCR utilization and reduced profitability. These findings demonstrate that combining MPC with predictive models enhances MCR-based EV charging strategies and underlines the importance of accurate forecasting for future smart charging systems. Full article
Show Figures

Figure 1

11 pages, 493 KiB  
Proceeding Paper
PV Power Generation Forecasting with Fuzzy Inference Systems
by Cinthia Rodriguez, Marco Pacheco, Marley Vellasco, Manoela Kohler and Thiago Medeiros
Eng. Proc. 2025, 101(1), 5; https://doi.org/10.3390/engproc2025101005 - 23 Jul 2025
Viewed by 189
Abstract
This paper aims to implement a fuzzy system for the purpose of forecasting the output of photovoltaic (PV) systems. A bibliometric review was conducted to establish a baseline, involving the exploration of six different configuration of fuzzy systems. These systems were trained and [...] Read more.
This paper aims to implement a fuzzy system for the purpose of forecasting the output of photovoltaic (PV) systems. A bibliometric review was conducted to establish a baseline, involving the exploration of six different configuration of fuzzy systems. These systems were trained and evaluated using a sliding window technique and a validation set. The development of the study utilized data collected from 1 May 2018 to 30 June 2018 at the Universidad Autónoma de Occidente campus. The dataset was analyzed in order to identify any discernible trends, seasonal patterns, and instances of stationarity. A comparison of the six models revealed their ability to predict PV power generation, with the model with 13 lags and five fuzzy sets demonstrating results with a reasonable trade-off between training and test performance. The model achieved an R-squared value of 0.8124 and an RMSE of 29.7025 kWh in the test data, indicating that the predictions were closely aligned with the actual values. However, this suggests that the model may be overly simple or may require additional data to more accurately capture the inherent variability of the data. The paper concludes with a discussion of the model’s limitations and potential avenues for future research. Full article
Show Figures

Figure 1

29 pages, 9145 KiB  
Article
Ultra-Short-Term Forecasting-Based Optimization for Proactive Home Energy Management
by Siqi Liu, Zhiyuan Xie, Zhengwei Hu, Kaisa Zhang, Weidong Gao and Xuewen Liu
Energies 2025, 18(15), 3936; https://doi.org/10.3390/en18153936 - 23 Jul 2025
Viewed by 207
Abstract
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy [...] Read more.
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy that integrates advanced forecasting models with multi-objective scheduling algorithms. By leveraging deep learning techniques like Graph Attention Network (GAT) architectures, the system predicts ultra-short-term household load profiles with high accuracy, addressing the volatility of residential energy use. Then, based on the predicted data, a comprehensive consideration of electricity costs, user comfort, carbon emission pricing, and grid load balance indicators is undertaken. This study proposes an enhanced mixed-integer optimization algorithm to collaboratively optimize multiple objective functions, thereby refining appliance scheduling, energy storage utilization, and grid interaction. Case studies demonstrate that integrating photovoltaic (PV) power generation forecasting and load forecasting models into a home energy management system, and adjusting the original power usage schedule based on predicted PV output and water heater demand, can effectively reduce electricity costs and carbon emissions without compromising user engagement in optimization. This approach helps promote energy-saving and low-carbon electricity consumption habits among users. Full article
Show Figures

Figure 1

27 pages, 3704 KiB  
Article
Explainable Machine Learning and Predictive Statistics for Sustainable Photovoltaic Power Prediction on Areal Meteorological Variables
by Sajjad Nematzadeh and Vedat Esen
Appl. Sci. 2025, 15(14), 8005; https://doi.org/10.3390/app15148005 - 18 Jul 2025
Cited by 1 | Viewed by 389
Abstract
Precisely predicting photovoltaic (PV) output is crucial for reliable grid integration; so far, most models rely on site-specific sensor data or treat large meteorological datasets as black boxes. This study proposes an explainable machine-learning framework that simultaneously ranks the most informative weather parameters [...] Read more.
Precisely predicting photovoltaic (PV) output is crucial for reliable grid integration; so far, most models rely on site-specific sensor data or treat large meteorological datasets as black boxes. This study proposes an explainable machine-learning framework that simultaneously ranks the most informative weather parameters and reveals their physical relevance to PV generation. Starting from 27 local and plant-level variables recorded at 15 min resolution for a 1 MW array in Çanakkale region, Türkiye (1 August 2022–3 August 2024), we apply a three-stage feature-selection pipeline: (i) variance filtering, (ii) hierarchical correlation clustering with Ward linkage, and (iii) a meta-heuristic optimizer that maximizes a neural-network R2 while penalizing poor or redundant inputs. The resulting subset, dominated by apparent temperature and diffuse, direct, global-tilted, and terrestrial irradiance, reduces dimensionality without significantly degrading accuracy. Feature importance is then quantified through two complementary aspects: (a) tree-based permutation scores extracted from a set of ensemble models and (b) information gain computed over random feature combinations. Both views converge on shortwave, direct, and global-tilted irradiance as the primary drivers of active power. Using only the selected features, the best model attains an average R2 ≅ 0.91 on unseen data. By utilizing transparent feature-reduction techniques and explainable importance metrics, the proposed approach delivers compact, more generalized, and reliable PV forecasts that generalize to sites lacking embedded sensor networks, and it provides actionable insights for plant siting, sensor prioritization, and grid-operation strategies. Full article
Show Figures

Figure 1

32 pages, 3289 KiB  
Article
Optimal Spot Market Participation of PV + BESS: Impact of BESS Sizing in Utility-Scale and Distributed Configurations
by Andrea Scrocca, Roberto Pisani, Diego Andreotti, Giuliano Rancilio, Maurizio Delfanti and Filippo Bovera
Energies 2025, 18(14), 3791; https://doi.org/10.3390/en18143791 - 17 Jul 2025
Viewed by 342
Abstract
Recent European regulations promote distributed energy resources as alternatives to centralized generation. This study compares utility-scale and distributed photovoltaic (PV) systems coupled with Battery Energy-Storage Systems (BESSs) in the Italian electricity market, analyzing different battery sizes. A multistage stochastic mixed-integer linear programming model, [...] Read more.
Recent European regulations promote distributed energy resources as alternatives to centralized generation. This study compares utility-scale and distributed photovoltaic (PV) systems coupled with Battery Energy-Storage Systems (BESSs) in the Italian electricity market, analyzing different battery sizes. A multistage stochastic mixed-integer linear programming model, using Monte Carlo PV production scenarios, optimizes day-ahead and intra-day market offers while incorporating PV forecast updates. In real time, battery flexibility reduces imbalances. Here we show that, to ensure dispatchability—defined as keeping annual imbalances below 5% of PV output—a 1 MW PV system requires 220 kWh of storage for utility-scale and 50 kWh for distributed systems, increasing the levelized cost of electricity by +13.1% and +1.94%, respectively. Net present value is negative for BESSs performing imbalance netting only. Therefore, a multiple service strategy, including imbalance netting and energy arbitrage, is introduced. Performing arbitrage while keeping dispatchability reaches an economic optimum with a 1.7 MWh BESS for utility-scale systems and 1.1 MWh BESS for distributed systems. These results show lower PV firming costs than previous studies, and highlight that under a multiple-service strategy, better economic outcomes are obtained with larger storage capacities. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

22 pages, 4306 KiB  
Article
A Novel Renewable Energy Scenario Generation Method Based on Multi-Resolution Denoising Diffusion Probabilistic Models
by Donglin Li, Xiaoxin Zhao, Weimao Xu, Chao Ge and Chunzheng Li
Energies 2025, 18(14), 3781; https://doi.org/10.3390/en18143781 - 17 Jul 2025
Cited by 1 | Viewed by 291
Abstract
As the global energy system accelerates its transition toward a low-carbon economy, renewable energy sources (RESs), such as wind and photovoltaic power, are rapidly replacing traditional fossil fuels. These RESs are becoming a critical element of deeply decarbonized power systems (DDPSs). However, the [...] Read more.
As the global energy system accelerates its transition toward a low-carbon economy, renewable energy sources (RESs), such as wind and photovoltaic power, are rapidly replacing traditional fossil fuels. These RESs are becoming a critical element of deeply decarbonized power systems (DDPSs). However, the inherent non-stationarity, multi-scale volatility, and uncontrollability of RES output significantly increase the risk of source–load imbalance, posing serious challenges to the reliability and economic efficiency of power systems. Scenario generation technology has emerged as a critical tool to quantify uncertainty and support dispatch optimization. Nevertheless, conventional scenario generation methods often fail to produce highly credible wind and solar output scenarios. To address this gap, this paper proposes a novel renewable energy scenario generation method based on a multi-resolution diffusion model. To accurately capture fluctuation characteristics across multiple time scales, we introduce a diffusion model in conjunction with a multi-scale time series decomposition approach, forming a multi-stage diffusion modeling framework capable of representing both long-term trends and short-term fluctuations in RES output. A cascaded conditional diffusion modeling framework is designed, leveraging historical trend information as a conditioning input to enhance the physical consistency of generated scenarios. Furthermore, a forecast-guided fusion strategy is proposed to jointly model long-term and short-term dynamics, thereby improving the generalization capability of long-term scenario generation. Simulation results demonstrate that MDDPM achieves a Wasserstein Distance (WD) of 0.0156 in the wind power scenario, outperforming DDPM (WD = 0.0185) and MC (WD = 0.0305). Additionally, MDDPM improves the Global Coverage Rate (GCR) by 15% compared to MC and other baselines. Full article
(This article belongs to the Special Issue Advances in Power Distribution Systems)
Show Figures

Figure 1

30 pages, 4318 KiB  
Article
AI-Enhanced Photovoltaic Power Prediction Under Cross-Continental Dust Events and Air Composition Variability in the Mediterranean Region
by Pavlos Nikolaidis
Energies 2025, 18(14), 3731; https://doi.org/10.3390/en18143731 - 15 Jul 2025
Viewed by 221
Abstract
Accurate short-term forecasting of photovoltaic power generation is vital for the operational stability of isolated energy systems, especially in regions with increasing renewable energy penetration. This study presents a novel AI-based forecasting framework applied to the island of Cyprus. Using machine learning methods, [...] Read more.
Accurate short-term forecasting of photovoltaic power generation is vital for the operational stability of isolated energy systems, especially in regions with increasing renewable energy penetration. This study presents a novel AI-based forecasting framework applied to the island of Cyprus. Using machine learning methods, particularly regression trees, the proposed approach evaluates the impact of key environmental variables on PV performance, with an emphasis on atmospheric dust transport and air composition variability. A distinguishing feature of this work is the integration of cross-continental dust events and diverse atmospheric parameters into a structured forecasting model. A new clustering methodology is introduced to classify these inputs and analyze their correlation with PV output, enabling improved feature selection for model training. Importantly, all input parameters are sourced from publicly accessible, internet-based platforms, facilitating wide reproducibility and operational application. The obtained results demonstrate that incorporating dust deposition and air composition features significantly enhances forecasting accuracy, particularly during severe dust episodes. This research not only fills a notable gap in the PV forecasting literature but also provides a scalable model for other dust-prone regions transitioning to high levels of solar energy integration. Full article
Show Figures

Figure 1

22 pages, 2892 KiB  
Article
Optimization of Photovoltaic and Battery Storage Sizing in a DC Microgrid Using LSTM Networks Based on Load Forecasting
by Süleyman Emre Eyimaya, Necmi Altin and Adel Nasiri
Energies 2025, 18(14), 3676; https://doi.org/10.3390/en18143676 - 11 Jul 2025
Cited by 1 | Viewed by 368
Abstract
This study presents an optimization approach for sizing photovoltaic (PV) and battery energy storage systems (BESSs) within a DC microgrid, aiming to enhance cost-effectiveness, energy reliability, and environmental sustainability. PV generation is modeled based on environmental parameters such as solar irradiance and ambient [...] Read more.
This study presents an optimization approach for sizing photovoltaic (PV) and battery energy storage systems (BESSs) within a DC microgrid, aiming to enhance cost-effectiveness, energy reliability, and environmental sustainability. PV generation is modeled based on environmental parameters such as solar irradiance and ambient temperature, while battery charging and discharging operations are managed according to real-time demand. A simulation framework is developed in MATLAB 2021b to analyze PV output, battery state of charge (SOC), and grid energy exchange. For demand-side management, the Long Short-Term Memory (LSTM) deep learning model is employed to forecast future load profiles using historical consumption data. Moreover, a Multi-Layer Perceptron (MLP) neural network is designed for comparison purposes. The dynamic load prediction, provided by LSTM in particular, improves system responsiveness and efficiency compared to MLP. Simulation results indicate that optimal sizing of PV and storage units significantly reduces energy costs and dependency on the main grid for both forecasting methods; however, the LSTM-based approach consistently achieves higher annual savings, self-sufficiency, and Net Present Value (NPV) than the MLP-based approach. The proposed method supports the design of more resilient and sustainable DC microgrids through data-driven forecasting and system-level optimization, with LSTM-based forecasting offering the greatest benefits. Full article
Show Figures

Figure 1

15 pages, 1296 KiB  
Article
Predicting Photovoltaic Energy Production Using Neural Networks: Renewable Integration in Romania
by Grigore Cican, Adrian-Nicolae Buturache and Valentin Silivestru
Processes 2025, 13(7), 2219; https://doi.org/10.3390/pr13072219 - 11 Jul 2025
Viewed by 357
Abstract
Photovoltaic panels are pivotal in transforming solar irradiance into electricity, making them a key technology in renewable energy. Despite their potential, the distribution of photovoltaic systems in Romania remains sparse, requiring advanced data analytics for effective management, particularly in addressing the intermittent nature [...] Read more.
Photovoltaic panels are pivotal in transforming solar irradiance into electricity, making them a key technology in renewable energy. Despite their potential, the distribution of photovoltaic systems in Romania remains sparse, requiring advanced data analytics for effective management, particularly in addressing the intermittent nature of photovoltaic energy. This study investigates the predictive capabilities of Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) architectures for forecasting hourly photovoltaic energy production in Romania. The results indicate that CNN models significantly outperform LSTM models, with 77% of CNNs achieving an R2 of 0.9 or higher compared to only 13% for LSTMs. The best-performing CNN model reached an R2 of 0.9913 with a mean absolute error (MAE) of 9.74, while the top LSTM model achieved an R2 of 0.9880 and an MAE of 12.57. The rapid convergence of the CNN model to stable error rates illustrates its superior generalization capabilities. Moreover, the model’s ability to accurately predict photovoltaic production over a two-day timeframe, which is not included in the testing dataset, confirms its robustness. This research highlights the critical role of accurate energy forecasting in optimizing the integration of photovoltaic energy into Romania’s power grid, thereby supporting sustainable energy management strategies in line with the European Union’s climate goals. Through this methodology, we aim to enhance the operational safety and efficiency of photovoltaic systems, facilitating their large-scale adoption and ultimately contributing to the fight against climate change. Full article
(This article belongs to the Special Issue Design, Modeling and Optimization of Solar Energy Systems)
Show Figures

Figure 1

22 pages, 3542 KiB  
Article
Enhanced Short-Term PV Power Forecasting via a Hybrid Modified CEEMDAN-Jellyfish Search Optimized BiLSTM Model
by Yanhui Liu, Jiulong Wang, Lingyun Song, Yicheng Liu and Liqun Shen
Energies 2025, 18(13), 3581; https://doi.org/10.3390/en18133581 - 7 Jul 2025
Viewed by 345
Abstract
Accurate short-term photovoltaic (PV) power forecasting is crucial for ensuring the stability and efficiency of modern power systems, particularly given the intermittent and nonlinear characteristics of solar energy. This study proposes a novel hybrid forecasting model that integrates complete ensemble empirical mode decomposition [...] Read more.
Accurate short-term photovoltaic (PV) power forecasting is crucial for ensuring the stability and efficiency of modern power systems, particularly given the intermittent and nonlinear characteristics of solar energy. This study proposes a novel hybrid forecasting model that integrates complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), the jellyfish search (JS) optimization algorithm, and a bidirectional long short-term memory (BiLSTM) neural network. First, the original PV power signal was decomposed into intrinsic mode functions using a modified CEEMDAN method to better capture the complex nonlinear features. Subsequently, the fast Fourier transform and improved Pearson correlation coefficient (IPCC) were applied to identify and merge similar-frequency intrinsic mode functions, forming new composite components. Each reconstructed component was then forecasted individually using a BiLSTM model, whose parameters were optimized by the JS algorithm. Finally, the predicted components were aggregated to generate the final forecast output. Experimental results on real-world PV datasets demonstrate that the proposed CEEMDAN-JS-BiLSTM model achieves an R2 of 0.9785, a MAPE of 8.1231%, and an RMSE of 37.2833, outperforming several commonly used forecasting models by a substantial margin in prediction accuracy. This highlights its effectiveness as a promising solution for intelligent PV power management. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

Back to TopTop