Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = photoredox catalysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4033 KiB  
Article
Nature-Inspired Redox Active Organic Molecules: Design, Synthesis, and Characterization of Pyridine Derivatives
by Gloria M. Acosta-Tejada, Martha M. Flores-Leonar, Jazmín García-Ramírez, Víctor M. Ugalde-Saldívar and Alfredo Vázquez
Chemistry 2025, 7(3), 100; https://doi.org/10.3390/chemistry7030100 - 18 Jun 2025
Viewed by 1021
Abstract
In this article, we present experimental and theoretical studies of pyridine derivatives (pyDs) inspired by natural systems to investigate the electron transfer processes occurring in aqueous media and elaborate a theoretical model that adequately predicts the behavior of new derivatives. Our results might [...] Read more.
In this article, we present experimental and theoretical studies of pyridine derivatives (pyDs) inspired by natural systems to investigate the electron transfer processes occurring in aqueous media and elaborate a theoretical model that adequately predicts the behavior of new derivatives. Our results might be relevant to scientific and technological applications, including energy storage, redox-active scaffolds for organic synthesis, photoredox catalysis, and new materials. The synthesis of eight pyDs is reported. To improve water solubility, six new compounds are hexafluorophosphate alkylammonium salts. The pyDs exhibit irreversible redox processes, with electron-donating substituents decreasing the cathodic peak potential while electron-withdrawing groups increase it; when both substituents are present, the latter effect prevails. A computational study was performed to investigate the electrochemical behavior of the synthesized compounds and design new electroactive pyDs. DFT calculations provided the predominant species’ redox potentials and acidity constants to elaborate Pourbaix diagrams for each compound. The synthesized molecules exhibit a two-electron-one-proton dismutation process in the water pH window. Beyond this range, stabilized radical species undergo one-electron exchange processes. We correlated experimental and calculated parameters, screening 22 additional derivatives to evaluate their electrochemical behavior, identifying potential candidates capable of performing a one-electron transfer process in the pH window of water, revealing new applications for pyDs. Full article
(This article belongs to the Section Molecular Organics)
Show Figures

Graphical abstract

18 pages, 2416 KiB  
Article
Visible-Light Photoredox Catalyzed Formation of Triarylethylenes Using a Low-Cost Photosensitizer
by Daniel Álvarez-Gutiérrez, Paola Domínguez Domínguez, Raúl Pérez-Ruiz, David Díaz Díaz and M. Consuelo Jiménez
Photochem 2025, 5(2), 13; https://doi.org/10.3390/photochem5020013 - 13 May 2025
Viewed by 1002
Abstract
Visible-light photoredox catalysis using biacetyl (BA) as a low-cost photosensitizer enables the efficient formation of triarylethylenes (TAEs) via a Mizoroki–Heck-type coupling. The reaction proceeds efficiently in acetonitrile upon blue LED irradiation under anaerobic conditions. Alternatively, supramolecular viscoelastic gels have also been [...] Read more.
Visible-light photoredox catalysis using biacetyl (BA) as a low-cost photosensitizer enables the efficient formation of triarylethylenes (TAEs) via a Mizoroki–Heck-type coupling. The reaction proceeds efficiently in acetonitrile upon blue LED irradiation under anaerobic conditions. Alternatively, supramolecular viscoelastic gels have also been explored as reaction media, allowing the possibility of working under aerobic atmosphere. Mechanistic investigations by means of transient absorption spectroscopy and quenching experiments support a charge-separated intermediate pathway. Reaction quantum yield measurements further validate the efficiency of BA, demonstrating its potential as an alternative to transition-metal catalysts. Overall, this work presents a sustainable and scalable strategy for TAEs synthesis, integrating photoredox catalysis with soft material engineering. These findings pave the way for broader applications in green chemistry and functional materials. Full article
Show Figures

Figure 1

21 pages, 16026 KiB  
Review
Recent Advances in Catalytic Atroposelective Synthesis of Axially Chiral Quinazolinones
by Yilin Liu, Jiaoxue Wang, Yanli Yin and Zhiyong Jiang
Catalysts 2025, 15(5), 426; https://doi.org/10.3390/catal15050426 - 27 Apr 2025
Viewed by 1063
Abstract
Quinazolinones, a class of nitrogen-containing heterocyclic compounds, occupy a crucial position in medicinal chemistry and materials science due to their significant application potential. In recent years, the catalytic asymmetric synthesis of axially chiral quinazolinones has emerged as a prominent research area, driven by [...] Read more.
Quinazolinones, a class of nitrogen-containing heterocyclic compounds, occupy a crucial position in medicinal chemistry and materials science due to their significant application potential. In recent years, the catalytic asymmetric synthesis of axially chiral quinazolinones has emerged as a prominent research area, driven by their prospective applications in the development of bioactive molecules, design of chiral ligands, and fabrication of functional materials. This review comprehensively summarizes recent advancements in the catalytic asymmetric synthesis of axially chiral quinazolinones, with a particular focus on the construction strategies for the three major structural types: the C–N axis, N–N axis, and C–C axis. Key synthetic methodologies, including atroposelective halogenation, kinetic resolution, condensation–oxidation, and photoredox deracemization, are discussed in detail. In addition, the review provides an in-depth analysis of the applications of various catalytic systems, such as peptide catalysis, enzymatic catalysis, metal catalysis, chiral phosphoric acid catalysis, and others. Despite the substantial progress made thus far, several challenges remain, including the expansion of the substrate scope, enhanced control over stereoselectivity, and further exploration of practical applications, such as drug discovery and asymmetric catalysis. These insights are expected to guide future research towards the development of novel synthetic strategies, the diversification of structural variants, and a comprehensive understanding of their biological activities and catalytic functions. Ultimately, this will foster the continued growth and evolution of this rapidly advancing field. Full article
(This article belongs to the Special Issue Recent Catalysts for Organic Synthesis)
Show Figures

Figure 1

14 pages, 2079 KiB  
Article
Diastereoselective Synthesis of 2-Amino-spiro[4.5]decane-6-ones Through Synergistic Photocatalysis and Organocatalysis for [3 + 2] Cycloaddition of Cyclopropylamines with Olefins
by Tianxiao Hu and Xufeng Lin
Catalysts 2025, 15(2), 107; https://doi.org/10.3390/catal15020107 - 22 Jan 2025
Viewed by 1541
Abstract
This research employs 2-methylene-tetrahydronaphtalene-1-ones and N-cyclopropylanilines as starting materials, integrating photocatalysis and organic phosphoric acid catalysis to synthesize 2-amino-spiro[4.5]decane-6-ones via a [3 + 2] cycloaddition approach. This method boasts the advantage of mild reaction conditions that are photocatalyst-free and metal catalyst-free. It achieves [...] Read more.
This research employs 2-methylene-tetrahydronaphtalene-1-ones and N-cyclopropylanilines as starting materials, integrating photocatalysis and organic phosphoric acid catalysis to synthesize 2-amino-spiro[4.5]decane-6-ones via a [3 + 2] cycloaddition approach. This method boasts the advantage of mild reaction conditions that are photocatalyst-free and metal catalyst-free. It achieves 100% atom conversion of the substrates, aligning with the principles of green chemistry. Additionally, it attains a high diastereoselectivity result of up to 99:1, demonstrating good stereoselectivity. In the derivatives of 2-methylene-tetrahydronaphtalene-1-ones, substrates with alkane rings of different sizes or thiophene replacing the phenyl ring are also amenable to this method, enabling the synthesis of different [4.4], [4.5], and [4.6] spirocyclic compounds. In the derivatives of N-cyclopropylanilines, substrates with para-fluoro and meta-fluoro substitutions are also amenable to this method. Finally, a preliminary mechanistic investigation was conducted, proposing a plausible reaction mechanism pathway initiating from the intermediate N-cyclopropylanilines with chiral phosphoric acid. Full article
(This article belongs to the Special Issue Sustainable Catalysis for Green Chemistry and Energy Transition)
Show Figures

Figure 1

13 pages, 3412 KiB  
Article
Furan-Indole-Chromenone-Based Organic Photocatalyst for α-Arylation of Enol Acetate and Free Radical Polymerization Under LED Irradiation
by Aurélien Galibert-Guijarro, Adel Noon, Joumana Toufaily, Tayssir Hamieh, Eric Besson, Stéphane Gastaldi, Jacques Lalevée and Laurence Feray
Molecules 2025, 30(2), 265; https://doi.org/10.3390/molecules30020265 - 11 Jan 2025
Viewed by 1230
Abstract
In this study we report on the efficiency of a furane-indole-chromenone-based organic derivative (FIC) as a photocatalyst in the α-arylation of enol acetate upon LED irradiation at 405 nm, and as a photoinitiator/photocatalyst in the free radical polymerization of an acrylate [...] Read more.
In this study we report on the efficiency of a furane-indole-chromenone-based organic derivative (FIC) as a photocatalyst in the α-arylation of enol acetate upon LED irradiation at 405 nm, and as a photoinitiator/photocatalyst in the free radical polymerization of an acrylate group in the presence of bis-(4-tert-butylphenyl)iodonium hexafluorophosphate (Iod) as an additive, or in the presence of both Iod and ethyl-4-(dimethyl amino) benzoate (EDB) under LED irradiation at 365 nm. The photochemical properties of this new light-sensitive compound are described, and the wide redox window (3.27 eV) and the high excited-state potentials FIC*/FIC●− (+2.64 V vs. SCE) and FIC●+/FIC* (−2.41 V vs. SCE) offered by this photocatalyst are revealed. The chemical mechanisms that govern the radical chemistry are discussed by means of different techniques, including fluorescence-quenching experiments, UV-visible absorption and fluorescence spectroscopy, and cyclic voltammetry analysis. Full article
(This article belongs to the Section Cross-Field Chemistry)
Show Figures

Graphical abstract

16 pages, 2825 KiB  
Article
Visible Light Photoredox Catalysis in the Synthesis of Phosphonate-Substituted 1,10-Phenanthrolines
by Gleb V. Morozkov, Artem A. Troickiy, Alexei D. Averin, Alexander Yu. Mitrofanov, Anton S. Abel and Irina P. Beletskaya
Molecules 2024, 29(23), 5558; https://doi.org/10.3390/molecules29235558 - 25 Nov 2024
Viewed by 1755
Abstract
Photoredox-catalyzed phosphonylation of bromo-substituted 1,10-phenanthrolines under visible light irradiation was studied. The reaction was shown to proceed under mild conditions with Eosin Y as a photocatalyst in DMSO under blue light irradiation. It is transition-metal-free and affords the target phosphonate-substituted 1,10-phenanthrolines in moderate [...] Read more.
Photoredox-catalyzed phosphonylation of bromo-substituted 1,10-phenanthrolines under visible light irradiation was studied. The reaction was shown to proceed under mild conditions with Eosin Y as a photocatalyst in DMSO under blue light irradiation. It is transition-metal-free and affords the target phosphonate-substituted 1,10-phenanthrolines in moderate yields (26–51%) in 22 to 40 h. The rate and selectivity of the reaction depend largely on the position of the bromine atom, as well as on the nature and position of other substituents in the 1,10-phenanthroline core. Full article
Show Figures

Graphical abstract

13 pages, 1304 KiB  
Article
Substituent Effects in the Photophysical and Electrochemical Properties of Meso-Tetraphenylporphyrin Derivatives
by Alexandra Cruz Millheim, Enric Ponzano and Albert Moyano
Molecules 2024, 29(15), 3689; https://doi.org/10.3390/molecules29153689 - 4 Aug 2024
Cited by 1 | Viewed by 1344
Abstract
Porphyrins were identified some years ago as a promising, easily accessible, and tunable class of organic photoredox catalysts, but a systematic study on the effect of the electronic nature and of the position of the substituents on both the ground-state and the excited-state [...] Read more.
Porphyrins were identified some years ago as a promising, easily accessible, and tunable class of organic photoredox catalysts, but a systematic study on the effect of the electronic nature and of the position of the substituents on both the ground-state and the excited-state redox potentials of these compounds is still lacking. We prepared a set of known functionalized porphyrin derivatives containing different substituents either in one of the meso positions or at a β-pyrrole carbon, and we determined their ground- and (singlet) excited-state redox potentials. We found that while the estimated singlet excited-state energies are essentially unaffected by the introduction of substituents, the redox potentials (both in the ground- and in the singlet excited-state) depend on the electron-withdrawing or electron-donating nature of the substituents. Thus, the presence of groups with electron-withdrawing resonance effects results in an enhancement of the reduction facility of the photocatalyst, both in the ground and in the excited state. We next prepared a second set of four previously unknown meso-substituted porphyrins, having a benzoyl group at different positions. The reduction facility of the porphyrin increases with the proximity of the substituent to the porphine core, reaching a maximum when the benzoyl substituent is introduced at a meso position. Full article
(This article belongs to the Special Issue Porphyrin-Based Compounds: Synthesis and Application, 2nd Edition)
Show Figures

Figure 1

14 pages, 6090 KiB  
Article
Unveiling Non-Covalent Interactions in Novel Cooperative Photoredox Systems for Efficient Alkene Oxidation in Water
by Isabel Guerrero, Clara Viñas, Francesc Teixidor and Isabel Romero
Molecules 2024, 29(10), 2378; https://doi.org/10.3390/molecules29102378 - 18 May 2024
Viewed by 1203
Abstract
A new cooperative photoredox catalytic system, [RuII(trpy)(bpy)(H2O)][3,3′-Co(8,9,12-Cl3-1,2-C2B9H8)2]2, 5, has been synthesized and fully characterized for the first time. In this system, the photoredox catalyst [3,3′-Co(8,9,12-Cl3 [...] Read more.
A new cooperative photoredox catalytic system, [RuII(trpy)(bpy)(H2O)][3,3′-Co(8,9,12-Cl3-1,2-C2B9H8)2]2, 5, has been synthesized and fully characterized for the first time. In this system, the photoredox catalyst [3,3′-Co(8,9,12-Cl3-1,2-C2B9H8)2] [Cl6-1], a metallacarborane, and the oxidation catalyst [RuII(trpy)(bpy)(H2O)]2+, 2 are linked by non-covalent interactions. This compound, along with the one previously synthesized by us, [RuII(trpy)(bpy)(H2O)][(3,3′-Co(1,2-C2B9H11)2]2, 4, are the only examples of cooperative molecular photocatalysts in which the catalyst and photosensitizer are not linked by covalent bonds. Both cooperative systems have proven to be efficient photocatalysts for the oxidation of alkenes in water through Proton Coupled Electron Transfer processes (PCETs). Using 0.05 mol% of catalyst 4, total conversion values were achieved after 15 min with moderate selectivity for the corresponding epoxides, which decreases with reaction time, along with the TON values. However, with 0.005 mol% of catalyst, the conversion values are lower, but the selectivity and TON values are higher. This occurs simultaneously with an increase in the amount of the corresponding diol for most of the substrates studied. Photocatalyst 4 acts as a photocatalyst in both the epoxidation of alkenes and their hydroxylation in aqueous medium. The hybrid system 5 shows generally higher conversion values at low loads compared to those obtained with 4 for most of the substrates studied. However, the selectivity values for the corresponding epoxides are lower even after 15 min of reaction. This is likely due to the enhanced oxidizing capacity of CoIV in catalyst 5, resulting from the presence of more electron-withdrawing substituents on the metallacarborane platform. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry and Photocatalysis)
Show Figures

Figure 1

21 pages, 2582 KiB  
Communication
Efficient Functionalization of Organosulfones via Photoredox Catalysis: Direct Incorporation of α-Carbonyl Alkyl Side Chains into α-Allyl-β-Ketosulfones
by Hong-Li Huang, Shan Li, Yong-Zheng Lv, Ya-Qian Shi, Tian-Tian Pang, Ru-Fen Zhang, Wenjing Huang, Jianhui Yin and Fei Gao
Molecules 2024, 29(9), 1971; https://doi.org/10.3390/molecules29091971 - 25 Apr 2024
Cited by 2 | Viewed by 1181
Abstract
A novel and efficient method for functionalizing organosulfones has been established, utilizing a visible-light-driven intermolecular radical cascade cyclization of α-allyl-β-ketosulfones. This process employs fac-Ir(ppy)3 as the photoredox catalyst and α-carbonyl alkyl bromide as the oxidizing agent. Via [...] Read more.
A novel and efficient method for functionalizing organosulfones has been established, utilizing a visible-light-driven intermolecular radical cascade cyclization of α-allyl-β-ketosulfones. This process employs fac-Ir(ppy)3 as the photoredox catalyst and α-carbonyl alkyl bromide as the oxidizing agent. Via this approach, the substrates experience intermolecular addition of α-carbonyl alkyl radicals to the alkene bonds, initiating a sequence of C-C bond formations that culminate in the production of organosulfone derivatives. Notably, this technique features gentle reaction conditions and an exceptional compatibility with a wide array of functional groups, making it a versatile and valuable addition to the field of organic synthesis. Full article
Show Figures

Graphical abstract

5 pages, 212 KiB  
Editorial
Recent Advances in Photoredox Catalysts
by Frédéric Dumur and Jacques Lalevée
Catalysts 2024, 14(1), 26; https://doi.org/10.3390/catal14010026 - 28 Dec 2023
Cited by 6 | Viewed by 2746
Abstract
Photoredox catalysis constitutes a flourishing and fascinating field of organic chemistry, enabling the efficient construction of a variety of non-traditional bonds [...] Full article
(This article belongs to the Special Issue Recent Advances in Photoredox Catalysts)
35 pages, 7530 KiB  
Review
Recent Advances in Catalyst Design for Carboxylation Using CO2 as the C1 Feedstock
by Sagarkumar Rajendrakumar Shah, Nayan Jyoti Mazumdar, Ander Centeno-Pedrazo, Dhanapati Deka, Nancy Artioli and Haresh Manyar
Catalysts 2023, 13(12), 1489; https://doi.org/10.3390/catal13121489 - 30 Nov 2023
Cited by 4 | Viewed by 5328
Abstract
Carbon dioxide is ideal for carboxylation reactions as a renewable and sustainable C1 feedstock and has significant recognition owing to its low cost, non-toxicity, and high abundance. To depreciate the environmental concentration of CO2, which causes the greenhouse gas effect, developing [...] Read more.
Carbon dioxide is ideal for carboxylation reactions as a renewable and sustainable C1 feedstock and has significant recognition owing to its low cost, non-toxicity, and high abundance. To depreciate the environmental concentration of CO2, which causes the greenhouse gas effect, developing new catalytic protocols for organic synthesis in CO2 utilization is of great importance. This review focuses on carboxylation reactions using CO2 as a C1 feedstock to synthesize value-added functionalized carboxylic acids and their corresponding derivatives via catalytically generated allyl metal intermediates, photoredox catalysis, and electrocatalysis with a focus on recent developments and opportunities in catalyst design for carboxylation reactions. In this article, we describe recent developments in the carboxylation of C–H bonds, alkenes, and alkynes using CO2 as the C1 source for various reactions under different conditions, as well as the potential direction for the further development of CO2 utilization in organic synthesis. Full article
Show Figures

Graphical abstract

9 pages, 1237 KiB  
Communication
Photoinduced Synthesis of Sulfonyl-Containing Phosphorothioates via a Three-Component Reaction
by Xianda Wu, Minghong Chen, Shuiyun Zheng, Jie Wu, Gang Liu and Fu-Sheng He
Molecules 2023, 28(23), 7869; https://doi.org/10.3390/molecules28237869 - 30 Nov 2023
Viewed by 1987
Abstract
Both sulfonyl and phosphorothioate are important privileged structural motifs which are widely presented in pharmaceuticals and agrochemicals. Herein, we describe an efficient approach to synthesizing sulfonyl-containing phosphorothioates by merging photoredox and copper catalysis at room temperature. This protocol is compatible with a wide [...] Read more.
Both sulfonyl and phosphorothioate are important privileged structural motifs which are widely presented in pharmaceuticals and agrochemicals. Herein, we describe an efficient approach to synthesizing sulfonyl-containing phosphorothioates by merging photoredox and copper catalysis at room temperature. This protocol is compatible with a wide range of substrates and can be applied to the late-stage modification of complex molecules. Control experiments are conducted to demonstrate the generation of the sulfonyl radical in the transformation. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

17 pages, 1932 KiB  
Article
t-BuOOH/TiO2 Photocatalytic System as a Convenient Peroxyl Radical Source at Room Temperature under Visible Light and Its Application for the CH-Peroxidation of Barbituric Acids
by Elena R. Lopat’eva, Igor B. Krylov and Alexander O. Terent’ev
Catalysts 2023, 13(9), 1306; https://doi.org/10.3390/catal13091306 - 19 Sep 2023
Cited by 7 | Viewed by 2251
Abstract
TiO2 is one of the most promising heterogeneous photoredox catalysts employed in oxidative pollutant destruction, CO2 reduction, water splitting, disinfection, solar cell design and organic synthesis. Due to the wide bandgap of TiO2, visible light energy is not sufficient [...] Read more.
TiO2 is one of the most promising heterogeneous photoredox catalysts employed in oxidative pollutant destruction, CO2 reduction, water splitting, disinfection, solar cell design and organic synthesis. Due to the wide bandgap of TiO2, visible light energy is not sufficient for its activation, and electron/hole pairs generated upon UV irradiation demonstrate limited selectivity for application in organic synthesis. Thus, the development of TiO2-based catalytic systems activated by visible light is highly attractive. In the present work we demonstrate the generation of t-BuOO• radicals from tert-butylhydroperoxide catalyzed using commercially available unmodified TiO2 under visible light. This finding was used for the highly selective CH-peroxidation of barbituric acids, which contrasts with the behavior of the known TiO2/H2O2/UV photocatalytic system used for deep oxidation of organic pollutants. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

78 pages, 17647 KiB  
Review
Recent Advances in C–H Functionalisation through Indirect Hydrogen Atom Transfer
by Filip S. Meger and John A. Murphy
Molecules 2023, 28(16), 6127; https://doi.org/10.3390/molecules28166127 - 18 Aug 2023
Cited by 34 | Viewed by 10612
Abstract
The functionalisation of C–H bonds has been an enormous achievement in synthetic methodology, enabling new retrosynthetic disconnections and affording simple synthetic equivalents for synthons. Hydrogen atom transfer (HAT) is a key method for forming alkyl radicals from C–H substrates. Classic reactions, including the [...] Read more.
The functionalisation of C–H bonds has been an enormous achievement in synthetic methodology, enabling new retrosynthetic disconnections and affording simple synthetic equivalents for synthons. Hydrogen atom transfer (HAT) is a key method for forming alkyl radicals from C–H substrates. Classic reactions, including the Barton nitrite ester reaction and Hofmann–Löffler–Freytag reaction, among others, provided early examples of HAT. However, recent developments in photoredox catalysis and electrochemistry have made HAT a powerful synthetic tool capable of introducing a wide range of functional groups into C–H bonds. Moreover, greater mechanistic insights into HAT have stimulated the development of increasingly site-selective protocols. Site-selectivity can be achieved through the tuning of electron density at certain C–H bonds using additives, a judicious choice of HAT reagent, and a solvent system. Herein, we describe the latest methods for functionalizing C–H/Si–H/Ge–H bonds using indirect HAT between 2018–2023, as well as a critical discussion of new HAT reagents, mechanistic aspects, substrate scopes, and background contexts of the protocols. Full article
Show Figures

Graphical abstract

11 pages, 2191 KiB  
Article
Bodipy Dimer for Enhancing Triplet-Triplet Annihilation Upconversion Performance
by Min Gao, Le Zeng, Linhan Jiang, Mingyu Zhang, Yong Chen and Ling Huang
Molecules 2023, 28(14), 5474; https://doi.org/10.3390/molecules28145474 - 18 Jul 2023
Cited by 7 | Viewed by 2596
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) has considerable potential for emerging applications in bioimaging, optogenetics, photoredox catalysis, solar energy harvesting, etc. Fluoroboron dipyrrole (Bodipy) dyes are an essential type of annihilator in TTA-UC. However, conventional Bodipy dyes generally have large molar extinction coefficients and small [...] Read more.
Triplet-triplet annihilation upconversion (TTA-UC) has considerable potential for emerging applications in bioimaging, optogenetics, photoredox catalysis, solar energy harvesting, etc. Fluoroboron dipyrrole (Bodipy) dyes are an essential type of annihilator in TTA-UC. However, conventional Bodipy dyes generally have large molar extinction coefficients and small Stokes shifts (<20 nm), subjecting them to severe internal filtration effects at high concentrations, and resulting in low upconversion quantum efficiency of TTA-UC systems using Bodipy dyes as annihilators. In this study, a Bodipy dimer (B-2) with large Stokes shifts was synthesized using the strategy of dimerization of an already reported Bodipy annihilator (B-1). Photophysical characterization and theoretical chemical analysis showed that both B-1 and B-2 can couple with the red light-activated photosensitizer PdTPBP to fulfill TTA-UC; however, the higher fluorescence quantum yield of B-2 resulted in a higher upconversion efficiency (ηUC) for PdTPBP/B-2 (10.7%) than for PdTPBP/B-1 (4.0%). This study proposes a new strategy to expand Bodipy Stokes shifts and improve TTA-UC performance, which can facilitate the application of TTA-UC in photonics and biophotonics. Full article
Show Figures

Figure 1

Back to TopTop