Unveiling Non-Covalent Interactions in Novel Cooperative Photoredox Systems for Efficient Alkene Oxidation in Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis, Spectroscopic, and Redox Characterization
2.2. Photocatalytic Alkene Oxidations
3. Experimental
3.1. Materials, Instrumentation, and Measurements
3.2. Synthesis of Compounds
3.3. Photocatalytic Studies
3.4. Gas Chromatography Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gagnon, S.D.H.F. Encyclopedia of Polymer Science and Engineering, 2nd ed.; Mark, H.F., Bikales, N.M., Overberger, C.G., Menges, G., Kroschwitz, J.I., Eds.; John Wiley & Sons: New York, NY, USA, 1985; Volume 6, pp. 273–307. [Google Scholar]
- de Faveri, G.; Ilyashenko, G.; Watkinson, M. Recent advances in catalytic asymmetric epoxidation using the environmentally benign oxidant hydrogen peroxide and its derivatives. Chem. Soc. Rev. 2011, 40, 1722–1760. [Google Scholar] [CrossRef]
- Smith, J.G. Synthetically useful reactions of epoxides. Synthesis 1984, 1984, 629–656. [Google Scholar] [CrossRef]
- Jacobsen, E.N. Asymmetric catalysis of epoxide ring-opening reactions. Accounts Chem. Res. 2000, 33, 421–431. [Google Scholar] [CrossRef] [PubMed]
- de Vries, E.J.; Janssen, D.B. Biocatalytic conversion of epoxides. Curr. Opin. Biotechnol. 2003, 14, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Muzart, J. Pd-Mediated Reactions of Epoxides. Eur. J. Org. Chem. 2011, 25, 4717–4741. [Google Scholar] [CrossRef]
- Jacobsen, E.N.; Zhang, W.; Muci, A.R.; Ecker, J.R.; Deng, L. Highly enantioselective epoxidation catalysts derived from 1,2-diaminocyclohexane. J. Am. Chem. Soc. 1991, 113, 7063–7064. [Google Scholar] [CrossRef]
- Cussó, O.; Garcia-Bosch, I.; Ribas, X.; Lloret-Fillol, J.; Costas, M. Asymmetric epoxidation with H2O2 by manipulating the electronic properties of non-heme iron catalysts. J. Am. Chem. Soc. 2013, 135, 14871–14878. [Google Scholar] [CrossRef]
- Jeon, S.-J.; Li, H.; Walsh, P.J. A green chemistry approach to a more efficient asymmetric catalyst: Solvent-free and highly concentrated alkyl additions to ketones. J. Am. Chem. Soc. 2005, 127, 16416–16425. [Google Scholar] [CrossRef] [PubMed]
- Sartori, S.K.; Miranda, I.L.; Diaz, M.A.N.; Diaz-Munoz, G. Sharpless asymmetric epoxidation: Applications in the synthesis of bioactive natural products. Mini Rev. Org. Chem. 2021, 18, 606–620. [Google Scholar] [CrossRef]
- Serrano, I.; López, M.I.; Ferrer, I.; Poater, A.; Parella, T.; Fontrodona, X.; Solà, M.; Llobet, A.; Rodríguez, M.; Romero, I. New Ru (II) complexes containing oxazoline ligands as epoxidation catalysts. Influence of the substituents on the catalytic performance. Inorg. Chem. 2011, 50, 6044–6054. [Google Scholar] [CrossRef]
- Ferrer, I.; Fontrodona, X.; Roig, A.; Rodríguez, M.; Romero, I. A recoverable ruthenium aqua complex supported on silica particles: An efficient epoxidation catalyst. Chem. Eur. J. 2017, 23, 4096–4107. [Google Scholar] [CrossRef]
- Ye, D.; Liu, L.; Peng, Q.; Qiu, J.; Gong, H.; Liu, S. Effect of Controlling Thiophene Rings on D-A Polymer Photocatalysts Accessed via Direct Arylation for Hydrogen Production. Molecules 2023, 28, 4507. [Google Scholar] [CrossRef]
- Lang, X.; Zhao, J.; Chen, X. Cooperative photoredox catalysis. Chem. Soc. Rev. 2016, 45, 3026–3038. [Google Scholar] [CrossRef] [PubMed]
- Glasser, F.; Wenger, O.S. Recent progress in the development of transition-metal based photoredoxcatalysts. Coord. Chem. Rev. 2020, 405, 213129. [Google Scholar] [CrossRef]
- Clerich, E.; Affès, S.; Anticó, E.; Fontrodona, X.; Teixidor, F.; Romero, I. Molecular and supported ruthenium complexes as photoredox oxidation catalysts in water. Inorg. Chem. Front. 2022, 9, 5347–5359. [Google Scholar] [CrossRef]
- Affès, S.; Stamatelou, A.-M.; Fontrodona, X.; Kabadou, A.; Viñas, C.; Teixidor, F.; Romero, I. Enhancing Photoredox Catalysis in Aqueous Environments: Ruthenium Aqua Complex Derivatization of Graphene Oxide and Graphite Rods for Efficient Visible-Light-Driven Hybrid Catalysts. ACS Appl. Mater. Interfaces 2024, 16, 507–519. [Google Scholar] [CrossRef]
- Chen, W.; Rein, F.N.; Scott, B.L.; Rocha, R.C. Catalytic Photooxidation of Alcohols by an Unsymmetrical Tetra (pyridyl) pyrazine-Bridged Dinuclear Ru Complex. Chem. Eur. J. 2011, 17, 5595–5604. [Google Scholar] [CrossRef] [PubMed]
- Lennox, A.J.J.; Fischer, S.; Jurrat, M.; Luo, S.P.; Rockstroh, N.; Junge, H.; Ludwig, R.; Beller, M. Copper-Based Photosensitisers in Water Reduction: A More Efficient In Situ Formed System and Improved Mechanistic Understanding. Chem. Eur. J. 2016, 22, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- Farràs, P.; Maji, S.; Benet-Buchholz, J.; Llobet, A. Synthesis, Characterization, and Reactivity of Dyad Ruthenium-Based Molecules for Light-Driven Oxidation Catalysis. Chem. Eur. J. 2013, 19, 7162–7172. [Google Scholar] [CrossRef]
- Hockin, B.M.; Li, C.; Robertson, N.; Zysman-Colman, E. Photoredox catalysts based on earth-abundant metal complexes. Catal. Sci. Technol. 2019, 9, 889–915. [Google Scholar] [CrossRef]
- Fukuzumi, S.; Kishi, T.; Kotani, H.; Lee, Y.M.; Nam, W. Highly efficient photocatalytic oxygenation reactions using water as an oxygen source. Nat. Chem. 2011, 3, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Chen, L.; Ma, L.; Kwonga, H.-K.; Lau, T.-C. Photocatalytic oxidation of alkenes and alcohols in water by a manganese (v) nitrido complex. Chem. Commun. 2016, 52, 9271–9274. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, I.; Viñas, C.; Romero, I.; Teixidor, F. A stand-alone cobalt bis(dicarbollide) photoredox catalyst epoxidates alkenes in water at extremely low catalyst load. Green Chem. 2021, 23, 10123–10131. [Google Scholar] [CrossRef]
- Fontanet, M.; Rodriguez, M.; Vinas, C.; Teixidor, F.; Romero, I. Carboranycarboxylate complexes as efficient catalysts in epoxidation reactions. Eur. J. Inorg. Chem. 2017, 2017, 4425–4429. [Google Scholar] [CrossRef]
- Mukherjee, S.; Thilagar, P. Boron clusters in luminescent materials. Chem. Commun. 2016, 52, 1070–1093. [Google Scholar] [CrossRef] [PubMed]
- Junki, O.; Kazuo, T.; Yoshiki, T. Recent progress in the development of solid-state luminescent o-carboranes with stimuli responsivity. Angew. Chem. Int. Ed. 2020, 59, 9841–9855. [Google Scholar]
- Shi, C.; Sun, H.; Jiang, Q.; Zhao, Q.; Wang, J.; Huang, W.; Yan, H. Carborane tuning of photophysical properties of phosphorescent iridium(III) complexes. Chem. Commun. 2013, 49, 4746–4748. [Google Scholar] [CrossRef] [PubMed]
- Hawthorne, M.F.; Young, D.C.; Garret, P.M.; Owen, D.A.; Schwerin, S.G.; Tebbe, F.N.; Wegner, P.M. Preparation and characterization of the (3)-1,2-and (3)-1,7-dicarbadodecahydroundecaborate (−1) ions. J. Am. Chem. Soc. 1968, 90, 862–868. [Google Scholar] [CrossRef]
- Bennour, I.; Cioran, A.M.; Teixidor, F.; Viñas, C. 3, 2, 1 and stop! An innovative, straightforward and clean route for the flash synthesis of metallacarboranes. Green Chem. 2019, 21, 1925–1928. [Google Scholar] [CrossRef]
- Fuentes, I.; Andrio, A.; Teixidor, F.; Viñas, C.; Compan, V. Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Phys. Chem. Chem. Phys. 2017, 19, 15177–15186. [Google Scholar] [CrossRef]
- Stoica, A.-I.; Viñas, C.; Teixidor, F. Cobaltabisdicarbollide anion receptor for enantiomer-selective membrane electrodes. Chem. Commun. 2009, 4988–4990. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, I.; Pujols, J.; Viñas, C.; Ventura, S.; Texidor, F. Dual binding mode of metallacarborane produces a robust shield on proteins. Chem. Eur. J. 2019, 25, 12820–12829. [Google Scholar] [CrossRef] [PubMed]
- Pazderová, L.; Tüzün, E.Z.; Bavol, D.; Litecká, M.; Fojt, L.; Grüner, B. Chemistry of Carbon-Substituted Derivatives of Cobalt Bis(dicarbollide)(1−) Ion and Recent Progress in Boron Substitution. Molecules 2023, 28, 6971. [Google Scholar] [CrossRef] [PubMed]
- Bauduin, P.; Prevost, S.; Farràs, P.; Teixidor, F.; Diat, O.; Zemb, T. A theta-shaped amphiphilic cobaltabisdicarbollide anion: Transition from monolayer vesicles to micelles. Angew. Chem. Int. Ed. 2011, 50, 5298–5300. [Google Scholar] [CrossRef] [PubMed]
- Uchman, M.; Ďorďovič, V.; Tošner, Z.; Matějíček, P. Classical amphiphilic behavior of nonclassical amphiphiles: A comparison of metallacarborane self-assembly with SDS micellization. Angew. Chem. Int. Ed. 2015, 54, 14113–14117. [Google Scholar] [CrossRef] [PubMed]
- Zaulet, A.; Teixidor, F.; Bauduin, P.; Diat, O.; Hirva, P.; Ofori, A.; Viñas, C. Deciphering the role of the cation in anionic cobaltabisdicarbollide clusters. J. Organomet. Chem. 2018, 865, 214–225. [Google Scholar] [CrossRef]
- Guerrero, I.; Kelemen, Z.; Viñas, C.; Romero, I.; Teixidor, F. Metallacarboranes as photoredox catalysts in water. Chem. Eur. J. 2020, 26, 5027–5036. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, I.; Saha, A.; Xavier, J.A.M.; Viñas, C.; Romero, I.; Teixidor, F. Noncovalently linked metallacarboranes on functionalized magnetic nanoparticles as highly efficient, robust, and reusable photocatalysts in aqueous medium. ACS Appl. Mater. Interfaces 2020, 12, 56372–56384. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, I.; Fontrodona, X.; Viñas, C.; Romero, I.; Teixidor, F. Aqueous persistent noncovalent ion-pair cooperative coupling in a ruthenium cobaltabis (dicarbollide) system as a highly efficient photoredox oxidation catalyst. Inorg. Chem. 2021, 60, 8898–8907. [Google Scholar] [CrossRef]
- Rodríguez, M.; Romero, I.; Sens, C.; Llobet, A. Ru=O complexes as catalysts for oxidative transformations, including the oxidation of water to molecular dioxygen. J. Mol. Catal. A Chem. 2006, 251, 215–220. [Google Scholar] [CrossRef]
- Takeuchi, K.J.; Tompson, M.S.; Pipes, D.V.; Meyer, T.J. Redox and spectral properties of monooxo polypyridyl complexes of ruthenium and osmium in aqueous media. Inorg. Chem. 1984, 23, 1845–1851. [Google Scholar] [CrossRef]
- Mátel, L.; Macášek, F.; Rajec, P.; Heřmánek, S.; Plešek, J. B-Halogen derivatives of the bis (1,2-dicarbollyl) cobalt (III) anion. Polyhedron 1982, 1, 511–519. [Google Scholar] [CrossRef]
- Rojo, I.; Teixidor, F.; Viñas, C.; Kivekäs, R.; Sillanpää, R. Relevance of the electronegativity of boron in η5-coordinating ligands: Regioselective monoalkylation and monoarylation in cobaltabisdicarbollide [3,3′-Co(1,2-C2B9H11)2]− clusters. Chem. Eur. J. 2003, 9, 4311–4323. [Google Scholar] [CrossRef] [PubMed]
- Cerný, V.; Pavlík, J.; Kustková-Maxová, E. Ligand field theory, d-d spectra of ferrocene and other d6-metallocenes. Collect. Czechoslov. Chem. Commun. 1976, 41, 3232–3244. [Google Scholar] [CrossRef]
- Balzani, V.; Juris, M.; Campagna, S.; Serroni, S. Luminiscent and redox-active polynuclear transition metal complexes. Chem. Rev. 1996, 96, 759–834. [Google Scholar] [CrossRef] [PubMed]
- Moyer, B.A.; Thompson, M.S.; Meyer, T.J. Chemically catalyzed net electrochemical oxidation of alcohols, aldehydes, and unsaturated hydrocarbons using the system (trpy)(bpy)Ru(OH2)2+/(trpy)(bpy)RuO2+. J. Am. Chem. Soc. 1980, 102, 2310–2312. [Google Scholar] [CrossRef]
- Behr, A.; Westfechtel, A.; Pérez Gomes, J. Catalytic processes for the technical use of natural fats and oils. Chem. Eng. Technol. 2008, 31, 700–714. [Google Scholar] [CrossRef]
- Sullivan, B.P.; Calvert, J.M.; Meyer, T.J. Cis-trans isomerism in (trpy)(PPh3)RuC12. Comparisons between the chemical and physical properties of a cis-trans isomeric pair. Inorg. Chem. 1980, 19, 1404–1407. [Google Scholar] [CrossRef]
Entry | Substrate | Conv.(selec.)% | Product | TON | ||
---|---|---|---|---|---|---|
0.05 mol% | 0.005 mol% | 0.05 mol% | 0.005 mol% | |||
1 | 70(96) [a] | 1344 [a] | ||||
≥99(57) [b] | 73(56) [b] | 1140 [b] | 8200 [b] | |||
≥99(51) [c] | ≥99(61) [c] | 1020 [c] | 12,200 [c] | |||
2 | 96(79) [b] | 1520 [b] | ||||
≥99(69) [c] | 91(≥99) [c] | 1380 [c] | 18,200 [c] | |||
3 | 89(96) [b] | 80(≥99) [b] | 1700 [b] | 16,000 [b] | ||
97(54) [c] | ≥99(71) [c] | 1040 [c] | 14,200 [c] | |||
4 | ≥99(91) [b] | 61(≥99) [b] | 1820 (59%,cis) [b] | 12,200 (46%,cis) [b] | ||
≥99(60) [c] | 73(≥99) [c] | 1200 (36%,cis) [c] | 14,600 (27%,cis) [c] | |||
5 | ≥99(67) [b] | 68(66) [b] | 1340 [b] | 9000 [b] | ||
≥99(55) [c] | 85(41) [c] | 1100 [c] | 6970 [c] | |||
6 | ≥99(69) [b] | 58(≥99) [b] | 1380 [b] | 11,600 [b] | ||
≥99(35) [c] | 95(≥99) [c] | 700 [c] | 19,000 [c] |
Entry | Substrate | Conv.(selec.)% | Product | TON | ||
---|---|---|---|---|---|---|
4 | 5 | 4 | 5 | |||
1 | 73(56) [a] | 75(31) [a] | 8200 [a] | 4600 [a] | ||
≥99(61) [b] | 12,200 [b] | |||||
2 | 91(≥99) [b] | 87(≥99) [b] | 18,200 [b] | 17,400 [b] | ||
3 | 80(≥99) [a] | ≥99(86) [a] | 16,000 [a] | 17,200 [a] | ||
≥99(71) [b] | ≥99(83) [b] | 14,200 [b] | 16,600 [b] | |||
4 | 61(≥99) [a] | 88(57) [a] | 12,200 (46%,cis) [a] | 10,000 (50%,trans) [a] | ||
73(≥99) [b] | 89(57) [b] | 14,600 (73%,trans) [b] | 10,100 (51%,trans) [b] | |||
5 | 68(66) [a] | 92(≥99) [a] | 9000 [a] | 18,400 [a] | ||
85(41) [b] | 96(55) [b] | 6970 [b] | 10,600 [b] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero, I.; Viñas, C.; Teixidor, F.; Romero, I. Unveiling Non-Covalent Interactions in Novel Cooperative Photoredox Systems for Efficient Alkene Oxidation in Water. Molecules 2024, 29, 2378. https://doi.org/10.3390/molecules29102378
Guerrero I, Viñas C, Teixidor F, Romero I. Unveiling Non-Covalent Interactions in Novel Cooperative Photoredox Systems for Efficient Alkene Oxidation in Water. Molecules. 2024; 29(10):2378. https://doi.org/10.3390/molecules29102378
Chicago/Turabian StyleGuerrero, Isabel, Clara Viñas, Francesc Teixidor, and Isabel Romero. 2024. "Unveiling Non-Covalent Interactions in Novel Cooperative Photoredox Systems for Efficient Alkene Oxidation in Water" Molecules 29, no. 10: 2378. https://doi.org/10.3390/molecules29102378
APA StyleGuerrero, I., Viñas, C., Teixidor, F., & Romero, I. (2024). Unveiling Non-Covalent Interactions in Novel Cooperative Photoredox Systems for Efficient Alkene Oxidation in Water. Molecules, 29(10), 2378. https://doi.org/10.3390/molecules29102378