Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,020)

Search Parameters:
Keywords = photons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 7552 KiB  
Article
High Resolution Imaging Using Micro-Objectives Fabricated by 2-Photon-Polymerization
by Fabian Thiemicke, Mostafa Agour, Ralf B. Bergmann and Claas Falldorf
Appl. Sci. 2025, 15(15), 8756; https://doi.org/10.3390/app15158756 (registering DOI) - 7 Aug 2025
Abstract
We experimentally demonstrate high-resolution imaging using micro-objectives fabricated by two-photon polymerization (2PP) lithography, highlighting its potential as a flexible and precise fabrication method. The 2PP manufacturing process offers the ability to develop micro-optics with customized geometries and material properties, including tailored refractive indices. [...] Read more.
We experimentally demonstrate high-resolution imaging using micro-objectives fabricated by two-photon polymerization (2PP) lithography, highlighting its potential as a flexible and precise fabrication method. The 2PP manufacturing process offers the ability to develop micro-optics with customized geometries and material properties, including tailored refractive indices. This flexibility introduces new degrees of freedom in optical system design and expands the applicability of micro-optics to advanced imaging tasks where other materials and fabrication methods are insufficient. For our study, bi-convex micro-optics with different geometries with radii of curvature of <15 μm and minimized contact areas (<1 μm2) to ensure easy release from the substrate were fabricated with 2PP and investigated for their optical performance. With these micro-optics, the tracks with a pitch of 320 nm and the pits and lands as small as 130 nm were successfully resolved on a BluRay disc surface, demonstrating for the first time the high-resolution imaging capabilities of bi-convex spherical micro lenses. Full article
23 pages, 4240 KiB  
Article
Heliocentric Orbital Repositioning of a Sun-Facing Diffractive Sail with Controlled Binary Metamaterial Arrayed Grating
by Alessandro A. Quarta
Appl. Sci. 2025, 15(15), 8755; https://doi.org/10.3390/app15158755 (registering DOI) - 7 Aug 2025
Abstract
This paper investigates the performance of a spacecraft equipped with a diffractive sail in a heliocentric mission scenario that requires phasing along a prescribed elliptical orbit. The diffractive sail represents an evolution of the more traditional reflective solar sail, which converts solar radiation [...] Read more.
This paper investigates the performance of a spacecraft equipped with a diffractive sail in a heliocentric mission scenario that requires phasing along a prescribed elliptical orbit. The diffractive sail represents an evolution of the more traditional reflective solar sail, which converts solar radiation pressure into thrust using a large reflective surface typically coated with a thin metallic film. In contrast, the diffractive sail proposed by Swartzlander leverages the properties of an advanced metamaterial-based film to generate a net transverse thrust even when the sail is Sun-facing, i.e., in a configuration that can be passively maintained by a suitably designed spacecraft. Specifically, this study considers a sail membrane covered with a set of electro-optically controlled diffractive panels. These panels employ a (controlled) binary metamaterial arrayed grating to steer the direction of photons exiting the diffractive film. This control technique has recently been applied to achieve a circle-to-circle interplanetary transfer using a Sun-facing diffractive sail. In this work, an optimal control law is employed to execute a rapid phasing maneuver along an elliptical heliocentric orbit with specified characteristics, such as those of Earth and Mercury. The analysis also includes a limiting case involving a circular heliocentric orbit. For this latter scenario, a simplified and elegant control law is proposed based on a linearized form of the equations of motion to describe the heliocentric dynamics of the diffractive sail-based spacecraft during the phasing maneuver. Full article
Show Figures

Figure 1

29 pages, 10437 KiB  
Review
Neuromorphic Photonic On-Chip Computing
by Sujal Gupta and Jolly Xavier
Chips 2025, 4(3), 34; https://doi.org/10.3390/chips4030034 (registering DOI) - 7 Aug 2025
Abstract
Drawing inspiration from biological brains’ energy-efficient information-processing mechanisms, photonic integrated circuits (PICs) have facilitated the development of ultrafast artificial neural networks. This in turn is envisaged to offer potential solutions to the growing demand for artificial intelligence employing machine learning in various domains, [...] Read more.
Drawing inspiration from biological brains’ energy-efficient information-processing mechanisms, photonic integrated circuits (PICs) have facilitated the development of ultrafast artificial neural networks. This in turn is envisaged to offer potential solutions to the growing demand for artificial intelligence employing machine learning in various domains, from nonlinear optimization and telecommunication to medical diagnosis. In the meantime, silicon photonics has emerged as a mainstream technology for integrated chip-based applications. However, challenges still need to be addressed in scaling it further for broader applications due to the requirement of co-integration of electronic circuitry for control and calibration. Leveraging physics in algorithms and nanoscale materials holds promise for achieving low-power miniaturized chips capable of real-time inference and learning. Against this backdrop, we present the State of the Art in neuromorphic photonic computing, focusing primarily on architecture, weighting mechanisms, photonic neurons, and training, while giving an overall view of recent advancements, challenges, and prospects. We also emphasize and highlight the need for revolutionary hardware innovations to scale up neuromorphic systems while enhancing energy efficiency and performance. Full article
(This article belongs to the Special Issue Silicon Photonic Integrated Circuits: Advancements and Challenges)
Show Figures

Figure 1

19 pages, 2843 KiB  
Article
Influence of Nitrogen Doping on Vacancy-Engineered T-Graphene Fragments: Insights into Electronic and Optical Properties
by Jyotirmoy Deb and Pratim Kumar Chattaraj
Chemistry 2025, 7(4), 126; https://doi.org/10.3390/chemistry7040126 (registering DOI) - 7 Aug 2025
Abstract
This study investigates the influence of vacancy engineering and nitrogen doping on the structural, electronic, and optical properties of T-graphene fragments (TFs) using density functional theory (DFT) and time-dependent DFT (TD-DFT). A central vacancy and five pyridinic nitrogen doping configurations are explored to [...] Read more.
This study investigates the influence of vacancy engineering and nitrogen doping on the structural, electronic, and optical properties of T-graphene fragments (TFs) using density functional theory (DFT) and time-dependent DFT (TD-DFT). A central vacancy and five pyridinic nitrogen doping configurations are explored to modulate the optoelectronic behavior. All systems are thermodynamically stable, exhibiting tunable HOMO–LUMO gaps, orbital distributions, and charge transfer characteristics. Optical absorption spectra show redshifts and enhanced oscillator strengths in doped variants, notably v-NTF2 and v-NTF4. Nonlinear optical (NLO) analysis reveals significant enhancement in both static and frequency-dependent responses. v-NTF2 displays an exceptionally high first-order hyperpolarizability (⟨β⟩ = 1228.05 au), along with a strong electro-optic Pockels effect (β (−ω; ω, 0)) and second harmonic generation (β (−2ω; ω, ω)). Its third-order response, γ (−2ω; ω, ω, 0), also exceeds 1.2 × 105 au under visible excitation. Conceptual DFT descriptors and energy decomposition analysis further supports the observed trends in reactivity, charge delocalization, and stability. These findings demonstrate that strategic nitrogen doping in vacancy-engineered TFs is a powerful route to tailor electronic excitation, optical absorption, and nonlinear susceptibility. The results offer valuable insight into the rational design of next-generation carbon-based materials for optoelectronic, photonic, and NLO device applications. Full article
(This article belongs to the Special Issue Modern Photochemistry and Molecular Photonics)
Show Figures

Figure 1

27 pages, 19279 KiB  
Article
Smart Hydroponic Cultivation System for Lettuce (Lactuca sativa L.) Growth Under Different Nutrient Solution Concentrations in a Controlled Environment
by Raul Herrera-Arroyo, Juan Martínez-Nolasco, Enrique Botello-Álvarez, Víctor Sámano-Ortega, Coral Martínez-Nolasco and Cristal Moreno-Aguilera
Appl. Syst. Innov. 2025, 8(4), 110; https://doi.org/10.3390/asi8040110 - 7 Aug 2025
Abstract
The inclusion of the Internet of Things (IoT) in indoor agricultural systems has become a fundamental tool for improving cultivation systems by providing key information for decision-making in pursuit of better performance. This article presents the design and implementation of an IoT-based agricultural [...] Read more.
The inclusion of the Internet of Things (IoT) in indoor agricultural systems has become a fundamental tool for improving cultivation systems by providing key information for decision-making in pursuit of better performance. This article presents the design and implementation of an IoT-based agricultural system installed in a plant growth chamber for hydroponic cultivation under controlled conditions. The growth chamber is equipped with sensors for air temperature, relative humidity (RH), carbon dioxide (CO2) and photosynthetically active photon flux, as well as control mechanisms such as humidifiers, full-spectrum Light Emitting Diode (LED) lamps, mini split air conditioner, pumps, a Wi-Fi surveillance camera, remote monitoring via a web application and three Nutrient Film Technique (NFT) hydroponic systems with a capacity of ten plants each. An ATmega2560 microcontroller manages the smart system using the MODBUS RS-485 communication protocol. To validate the proper functionality of the proposed system, a case study was conducted using lettuce crops, in which the impact of different nutrient solution concentrations (50%, 75% and 100%) on the phenotypic development and nutritional content of the plants was evaluated. The results obtained from the cultivation experiment, analyzed through analysis of variance (ANOVA), show that the treatment with 75% nutrient concentration provides an appropriate balance between resource use and nutritional quality, without affecting the chlorophyll content. This system represents a scalable and replicable alternative for protected agriculture. Full article
(This article belongs to the Special Issue Smart Sensors and Devices: Recent Advances and Applications Volume II)
Show Figures

Figure 1

19 pages, 8504 KiB  
Article
Fiber-Based Ultra-High-Speed Diffuse Speckle Contrast Analysis System for Deep Blood Flow Sensing Using a Large SPAD Camera
by Quan Wang, Renzhe Bi, Songhua Zheng, Ahmet T. Erdogan, Yi Qi, Chenxu Li, Yuanyuan Hua, Mingliang Pan, Yining Wang, Neil Finlayson, Malini Olivo, Robert K. Henderson and David Uei-Day Li
Biosensors 2025, 15(8), 514; https://doi.org/10.3390/bios15080514 - 7 Aug 2025
Abstract
Diffuse speckle contrast analysis (DSCA), also called speckle contrast optical spectroscopy (SCOS), has emerged as a groundbreaking optical imaging technique for tracking dynamic biological processes, including blood flow and tissue perfusion. Recent advancements in single-photon avalanche diode (SPAD) cameras have unlocked exceptional sensitivity, [...] Read more.
Diffuse speckle contrast analysis (DSCA), also called speckle contrast optical spectroscopy (SCOS), has emerged as a groundbreaking optical imaging technique for tracking dynamic biological processes, including blood flow and tissue perfusion. Recent advancements in single-photon avalanche diode (SPAD) cameras have unlocked exceptional sensitivity, time resolution, and high frame-rate imaging capabilities. Despite this, the application of large-format SPAD arrays in speckle contrast analysis is still relatively uncommon. This study introduces a pioneering use of a large-format SPAD camera for DSCA. By harnessing the camera’s high temporal resolution and photon-detection efficiency, we significantly enhance the accuracy and robustness of speckle contrast measurements. Our experimental results demonstrate the system’s remarkable ability to capture rapid temporal variations over a broad field of view, enabling detailed spatiotemporal analysis. Through simulations, phantom experiments, and in vivo studies, we validated the proposed approach’s potential for cerebral blood flow and functional tissue monitoring. This work highlights the transformative impact of large SPAD cameras on DSCA, setting the stage for breakthroughs in optical imaging. Full article
Show Figures

Figure 1

13 pages, 14213 KiB  
Article
All-Weather Drone Vision: Passive SWIR Imaging in Fog and Rain
by Alexander Bessonov, Aleksei Rozanov, Richard White, Galih Suwito, Ivonne Medina-Salazar, Marat Lutfullin, Dmitrii Gusev and Ilya Shikov
Drones 2025, 9(8), 553; https://doi.org/10.3390/drones9080553 - 7 Aug 2025
Abstract
Short-wave-infrared (SWIR) imaging can extend drone operations into fog and rain, yet the optimum spectral strategy remains unclear. We evaluated a drone-borne quantum-dot SWIR camera inside a climate-controlled tunnel that generated calibrated advection fog, radiation fog, and rain. Images were captured with a [...] Read more.
Short-wave-infrared (SWIR) imaging can extend drone operations into fog and rain, yet the optimum spectral strategy remains unclear. We evaluated a drone-borne quantum-dot SWIR camera inside a climate-controlled tunnel that generated calibrated advection fog, radiation fog, and rain. Images were captured with a broadband 400–1700 nm setting and three sub-band filters, each at four lens apertures (f/1.8–5.6). Entropy, structural-similarity index (SSIM), and peak signal-to-noise ratio (PSNR) were computed for every weather–aperture–filter combination. Broadband SWIR consistently outperformed all filtered configurations. The gain stems from higher photon throughput, which outweighs the modest scattering reduction offered by narrowband selection. Under passive illumination, broadband SWIR therefore represents the most robust single-camera choice for unmanned aerial vehicles (UAVs), enhancing situational awareness and flight safety in fog and rain. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

8 pages, 2061 KiB  
Article
Flexible Cs3Cu2I5 Nanocrystal Thin-Film Scintillators for Efficient α-Particle Detection
by Yang Li, Xue Du, Silong Zhang, Bo Liu, Naizhe Zhao, Yapeng Zhang and Xiaoping Ouyang
Crystals 2025, 15(8), 716; https://doi.org/10.3390/cryst15080716 - 6 Aug 2025
Abstract
Thin-film detection technology plays a significant role in particle physics, X-ray imaging and radiation monitoring. In this paper, the detection capability of a Cs3Cu2I5 thin-film scintillator toward α particles is investigated. The flexible thin-film scintillator is fabricated by [...] Read more.
Thin-film detection technology plays a significant role in particle physics, X-ray imaging and radiation monitoring. In this paper, the detection capability of a Cs3Cu2I5 thin-film scintillator toward α particles is investigated. The flexible thin-film scintillator is fabricated by a facile and cost-effective in situ strategy, exhibiting excellent scintillation properties. Upon α-particle excitation, the light yield of the Cs3Cu2I5 thin-film is 2400 photons/MeV, which greatly benefits its application for single-particle events detection. Moreover, it shows linear energy response within the range of 4.7–5.5 MeV and moderate decay time of 667 ns. We further explored the cryogenic scintillation performance of Cs3Cu2I5@PMMA film. As the temperature decreases from 300 K to 50 K, its light yield gradually increases to 1.3 fold of its original value, while its decay time remains almost unchanged. This scintillator film also shows excellent low-temperature stability and flexible operational stability. This work demonstrates the great potential of the Cs3Cu2I5@PMMA film for the practical utilization in α-particle detection application. Full article
Show Figures

Figure 1

34 pages, 1294 KiB  
Perspective
Electromagnetic Radiation Shielding Using Carbon Nanotube and Nanoparticle Composites
by Bianca Crank, Brayden Fricker, Andrew Hubbard, Hussain Hitawala, Farhana Islam Muna, Olalekan Samuel Okunlola, Alexandra Doherty, Alex Hulteen, Logan Powers, Gabriel Purtell, Prakash Giri, Henry Spitz and Mark Schulz
Appl. Sci. 2025, 15(15), 8696; https://doi.org/10.3390/app15158696 - 6 Aug 2025
Abstract
This paper showcases current developments in the use of carbon nanotube (CNT) and nanoparticle-based materials for electromagnetic radiation shielding. Electromagnetic radiation involves different types of radiation covering a wide spectrum of frequencies. Due to their good electrical conductivity, small diameter, and light weight, [...] Read more.
This paper showcases current developments in the use of carbon nanotube (CNT) and nanoparticle-based materials for electromagnetic radiation shielding. Electromagnetic radiation involves different types of radiation covering a wide spectrum of frequencies. Due to their good electrical conductivity, small diameter, and light weight, individual CNTs are good candidates for shielding radio and microwaves. CNTs can be organized into macroscale forms by dispersing them in polymers or by wrapping CNT strands into fabrics or yarn. Magnetic nanoparticles can also be incorporated into the CNT fabric to provide excellent shielding of electromagnetic waves. However, for shielding higher-frequency X-ray and gamma ray radiation, the situation is reversed. Carbon’s low atomic number means that CNTs alone are less effective than metals. Thus, different nanoparticles such as tungsten are added to the CNT materials to provide improved shielding of photons. The goal is to achieve a desired combination of light weight, flexibility, safety, and multifunctionality for use in shielding spacecraft, satellites, nuclear reactors, and medical garments and to support lunar colonization. Future research should investigate the effect of the size, shape, and configuration of nanoparticles on radiation shielding. Developing large-scale low-cost methods for the continuous manufacturing of lightweight multifunctional nanoparticle-based materials is also needed. Full article
(This article belongs to the Section Nanotechnology and Applied Nanosciences)
Show Figures

Figure 1

9 pages, 497 KiB  
Article
Ultra-Weak Photon Emission from Crown Ethers Exposed to Fenton’s Reagent Fe2+-H2O2
by Michał Nowak, Krzysztof Sasak, Anna Wlodarczyk, Izabela Grabska-Kobylecka, Agata Sarniak and Dariusz Nowak
Molecules 2025, 30(15), 3282; https://doi.org/10.3390/molecules30153282 - 5 Aug 2025
Abstract
We hypothesized that compounds containing ether linkages within their backbone structures, when exposed to hydroxyl radicals (•OH), can generate ultra-weak photon emission (UPE) as a result of the formation of triplet excited carbonyl species (3R=O*). To evaluate this hypothesis, we investigated [...] Read more.
We hypothesized that compounds containing ether linkages within their backbone structures, when exposed to hydroxyl radicals (•OH), can generate ultra-weak photon emission (UPE) as a result of the formation of triplet excited carbonyl species (3R=O*). To evaluate this hypothesis, we investigated the UPE of four compounds, each at a final concentration of 185.2 µmol/L: EGTA (ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid), a potent chelator of divalent cations, and three crown ethers—12-crown-4, 15-crown-5, and 18-crown-6—containing two, four, five, and six ether bonds, respectively. •OH was generated using a modified Fenton reagent—92.6 µmol/L Fe2+ and 2.6 mmol/L H2O2. The highest UPE was recorded for the Fe2+–EGTA–H2O2 (2863 ± 158 RLU; relative light units), followed by 18-crown-6, 15-crown-5, and 12-crown-4 (1161 ± 78, 615± 86, and 579 ± 109 RLU, respectively; p < 0.05), corresponding to the number of ether groups present. Controls lacking either H2O2 or Fe2+ exhibited no significant light emission compared to the buffer medium. These findings support the hypothesis that ether bonds, when oxidatively attacked by •OH, undergo chemical transformations resulting in the formation of 3R=O* species, the decay of which is associated with UPE. In crown ethers exposed to Fe2+-H2O2, the intensity of UPE was correlated with the number of ether bonds in their structure. Full article
(This article belongs to the Special Issue Molecular Insights into Bioluminescence and Chemiluminescence)
Show Figures

Figure 1

13 pages, 3292 KiB  
Article
Topological Large-Area Waveguide States Based on THz Photonic Crystals
by Yulin Zhao, Feng Liang, Jingsen Li, Jianfei Han, Jiangyu Chen, Haihua Hu, Ke Zhang and Yuanjie Yang
Photonics 2025, 12(8), 791; https://doi.org/10.3390/photonics12080791 - 5 Aug 2025
Abstract
Terahertz (THz) has attracted substantial attention owing to its unique advantages in high-speed communications. However, conventional THz waveguide systems are inherently constrained by high transmission losses, stringent fabrication precision requirements, and extreme sensitivity to structural defects. Topological edge states with topological protection have [...] Read more.
Terahertz (THz) has attracted substantial attention owing to its unique advantages in high-speed communications. However, conventional THz waveguide systems are inherently constrained by high transmission losses, stringent fabrication precision requirements, and extreme sensitivity to structural defects. Topological edge states with topological protection have driven significant advancements in THz wave manipulation. Nevertheless, the width of the topological waveguide based on edge states remains restricted. In this work, we put forward a type of spin photonic crystal with three-layer heterostructures, where large-area topological waveguide states are demonstrated. The results show that these topological waveguide states are localized within the region of Dirac photonic crystals. They also display spin-momentum-locking characteristics and maintain strong robustness against defects and sharp bends. Furthermore, a THz beam splitter and a topological beam modulator are implemented. The designed heterostructures expand the applications of multi-functional topological devices and provide a prospective pathway for overcoming the waveguide bottleneck in THz applications. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

42 pages, 2191 KiB  
Review
Photochemical Haze Formation on Titan and Uranus: A Comparative Review
by David Dubois
Int. J. Mol. Sci. 2025, 26(15), 7531; https://doi.org/10.3390/ijms26157531 - 4 Aug 2025
Viewed by 94
Abstract
The formation and evolution of haze layers in planetary atmospheres play a critical role in shaping their chemical composition, radiative balance, and optical properties. In the outer solar system, the atmospheres of Titan and the giant planets exhibit a wide range of compositional [...] Read more.
The formation and evolution of haze layers in planetary atmospheres play a critical role in shaping their chemical composition, radiative balance, and optical properties. In the outer solar system, the atmospheres of Titan and the giant planets exhibit a wide range of compositional and seasonal variability, creating environments favorable for the production of complex organic molecules under low-temperature conditions. Among them, Uranus—the smallest of the ice giants—has, since Voyager 2, emerged as a compelling target for future exploration due to unanswered questions regarding the composition and structure of its atmosphere, as well as its ring system and diverse icy moon population (which includes four possible ocean worlds). Titan, as the only moon to harbor a dense atmosphere, presents some of the most complex and unique organics found in the solar system. Central to the production of these organics are chemical processes driven by low-energy photons and electrons (<50 eV), which initiate reaction pathways leading to the formation of organic species and gas phase precursors to high-molecular-weight compounds, including aerosols. These aerosols, in turn, remain susceptible to further processing by low-energy UV radiation as they are transported from the upper atmosphere to the lower stratosphere and troposphere where condensation occurs. In this review, I aim to summarize the current understanding of low-energy (<50 eV) photon- and electron-induced chemistry, drawing on decades of insights from studies of Titan, with the objective of evaluating the relevance and extent of these processes on Uranus in anticipation of future observational and in situ exploration. Full article
(This article belongs to the Special Issue Chemistry Triggered by Low-Energy Particles)
Show Figures

Figure 1

11 pages, 2306 KiB  
Article
Optical Path Design of an Integrated Cavity Optomechanical Accelerometer with Strip Waveguides
by Chengwei Xian, Pengju Kuang, Zhe Li, Yi Zhang, Changsong Wang, Rudi Zhou, Guangjun Wen, Yongjun Huang and Boyu Fan
Photonics 2025, 12(8), 785; https://doi.org/10.3390/photonics12080785 - 4 Aug 2025
Viewed by 127
Abstract
To improve the efficiency and stability of the system, this paper proposes a monolithic integrated optical path design for a cavity optomechanical accelerometer based on a 250 nm top silicon thickness silicon-on-insulator (SOI) wafer instead of readout through U-shape fiber coupling. Finite Element [...] Read more.
To improve the efficiency and stability of the system, this paper proposes a monolithic integrated optical path design for a cavity optomechanical accelerometer based on a 250 nm top silicon thickness silicon-on-insulator (SOI) wafer instead of readout through U-shape fiber coupling. Finite Element Analysis (FEA) and Finite-Difference Time-Domain (FDTD) methods are employed to systematically investigate the performance of key optical structures, including the resonant modes and bandgap characteristics of photonic crystal (PhC) microcavities, transmission loss of strip waveguides, coupling efficiency of tapered-lensed fiber-to-waveguide end-faces, coupling characteristics between strip waveguides and PhC waveguides, and the coupling mechanism between PhC waveguides and microcavities. Simulation results demonstrate that the designed PhC microcavity achieves a quality factor (Q-factor) of 2.26 × 105 at a 1550 nm wavelength while the optimized strip waveguide exhibits a low loss of merely 0.2 dB over a 5000 μm transmission length. The strip waveguide to PhC waveguide coupling achieves 92% transmittance at the resonant frequency, corresponding to a loss below 0.4 dB. The optimized edge coupling structure exhibits a transmittance of 75.8% (loss < 1.2 dB), with a 30 μm coupling length scheme (60% transmittance, ~2.2 dB loss) ultimately selected based on process feasibility trade-offs. The total optical path system loss (input to output) is 5.4 dB. The paper confirms that the PhC waveguide–microcavity evanescent coupling method can effectively excite the target cavity mode, ensuring optomechanical coupling efficiency for the accelerometer. This research provides theoretical foundations and design guidelines for the fabrication of high-precision monolithic integrated cavity optomechanical accelerometers. Full article
Show Figures

Figure 1

7 pages, 183 KiB  
Editorial
Editorial Board Members’ Collection Series: Nonlinear Photonics
by Luigi Sirleto
Photonics 2025, 12(8), 783; https://doi.org/10.3390/photonics12080783 - 4 Aug 2025
Viewed by 112
Abstract
Photonics has often been defined as the key technology of the 21st century [...] Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Nonlinear Photonics)
14 pages, 3571 KiB  
Article
Thermal Modulation of Photonic Spin Hall Effect in Vortex Beam Based on MIM-VO2 Metasurface
by Li Luo, Jiahui Huo, Yuanyuan Lv, Jie Li, Yu He, Xiao Liang, Sui Peng, Bo Liu, Ling Zhou, Yuxin Zou, Yuting Wang, Jingjing Bian and Yuting Yang
Surfaces 2025, 8(3), 55; https://doi.org/10.3390/surfaces8030055 - 3 Aug 2025
Viewed by 193
Abstract
The photon spin Hall effect (PSHE) arises from the spin–orbit interaction of light. Metasurfaces enable precise control over the PSHE through their influence. Using electromagnetic simulations as its foundation, this work engineers a metal–insulator–metal (MIM) metasurface for generating vortex beams in the near-infrared [...] Read more.
The photon spin Hall effect (PSHE) arises from the spin–orbit interaction of light. Metasurfaces enable precise control over the PSHE through their influence. Using electromagnetic simulations as its foundation, this work engineers a metal–insulator–metal (MIM) metasurface for generating vortex beams in the near-infrared band, targeting enhanced modulation of the PSHE. Electromagnetic simulations embed vanadium dioxide (VO2)—a thermally responsive phase-change material—within the MIM metasurface architecture. Numerical evidence confirms that harnessing VO2’s insulator–metal-transition-mediated optical switching dynamically tailors spin-dependent splitting in the illuminated MIM-VO2 hybrid, thereby achieving a significant amplification of the PSHE displacement. Electromagnetic simulations determine the reflection coefficients for both VO2 phase states in the MIM-VO2 structure. Computed spin displacements under vortex beam incidence reveal that VO2’s phase transition couples to the MIM’s top metal and dielectric layers, modifying reflection coefficients and producing phase-dependent PSHE displacements. The simulation results show that the displacement change of the PSHE before and after the phase transition of VO2 reaches 954.7 µm, achieving a significant improvement compared with the traditional layered structure. The dynamic modulation mechanism of the PSHE based on the thermal–optical effect has been successfully verified. Full article
Show Figures

Figure 1

Back to TopTop