Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (322)

Search Parameters:
Keywords = photonic bandgap

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3453 KB  
Review
Diamond Sensor Technologies: From Multi Stimulus to Quantum
by Pak San Yip, Tiqing Zhao, Kefan Guo, Wenjun Liang, Ruihan Xu, Yi Zhang and Yang Lu
Micromachines 2026, 17(1), 118; https://doi.org/10.3390/mi17010118 - 16 Jan 2026
Viewed by 208
Abstract
This review explores the variety of diamond-based sensing applications, emphasizing their material properties, such as high Young’s modulus, thermal conductivity, wide bandgap, chemical stability, and radiation hardness. These diamond properties give excellent performance in mechanical, pressure, thermal, magnetic, optoelectronic, radiation, biosensing, quantum, and [...] Read more.
This review explores the variety of diamond-based sensing applications, emphasizing their material properties, such as high Young’s modulus, thermal conductivity, wide bandgap, chemical stability, and radiation hardness. These diamond properties give excellent performance in mechanical, pressure, thermal, magnetic, optoelectronic, radiation, biosensing, quantum, and other applications. In vibration sensing, nano/poly/single-crystal diamond resonators operate from MHz to GHz frequencies, with high quality factor via CVD growth, diamond-on-insulator techniques, and ICP etching. Pressure sensing uses boron-doped piezoresistive, as well as capacitive and Fabry–Pérot readouts. Thermal sensing merges NV nanothermometry, single-crystal resonant thermometers, and resistive/diode sensors. Magnetic detection offers FeGa/Ti/diamond heterostructures, complementing NV. Optoelectronic applications utilize DUV photodiodes and color centers. Radiation detectors benefit from diamond’s neutron conversion capability. Biosensing leverages boron-doped diamond and hydrogen-terminated SGFETs, as well as gas targets such as NO2/NH3/H2 via surface transfer doping and Pd Schottky/MIS. Imaging uses AFM/NV probes and boron-doped diamond tips. Persistent challenges, such as grain boundary losses in nanocrystalline diamond, limited diamond-on-insulator bonding yield, high temperature interface degradation, humidity-dependent gas transduction, stabilization of hydrogen termination, near-surface nitrogen-vacancy noise, and the cost of high-quality single-crystal diamond, are being addressed through interface and surface chemistry control, catalytic/dielectric stack engineering, photonic integration, and scalable chemical vapor deposition routes. These advances are enabling integrated, high-reliability diamond sensors for extreme and quantum-enhanced applications. Full article
Show Figures

Figure 1

18 pages, 4662 KB  
Article
Effect of Acetic Acid on Morphology, Structure, Optical Properties, and Photocatalytic Activity of TiO2 Obtained by Sol–Gel
by Sofía Estrada-Flores, Tirso E. Flores-Guia, Catalina M. Pérez-Berumen, Luis A. García-Cerda, Aurora Robledo-Cabrera, Elsa N. Aguilera-González and Antonia Martínez-Luévanos
Reactions 2026, 7(1), 5; https://doi.org/10.3390/reactions7010005 - 10 Jan 2026
Viewed by 140
Abstract
Titanium oxide (TiO2) is of great interest in solar cell manufacturing, hydrogen production, and organic compound photodegradation. The synthesis variables and methodology affect the morphology, texture, crystalline structure, and phase mixtures of TiO2, which, in turn, affect the optical [...] Read more.
Titanium oxide (TiO2) is of great interest in solar cell manufacturing, hydrogen production, and organic compound photodegradation. The synthesis variables and methodology affect the morphology, texture, crystalline structure, and phase mixtures of TiO2, which, in turn, affect the optical and catalytic properties of TiO2. In this work, the effect of acetic acid as a catalyst and chelating agent on the morphology, texture, crystal structure, optical properties, and photocatalytic activity of TiO2 samples obtained using the sol–gel method with sodium dodecyl sulfate (SDS) as a template was investigated. The results indicated that acetic acid not only catalyzes the hydrolysis of the TiO2 precursor but also acts as a chelating agent, causing a decrease in crystallite size from 18.643 nm (T7 sample, pH = 6.8, without addition of acetic acid) to 16.536 nm (T2 sample, pH = 2). At pH 2 and 3, only the anatase phase was formed (T2 and T3 samples), whereas at pH 5 and 6.8, in addition to the anatase phase, the brookite phase (11.4% and 15.61% for samples T5 and T7, respectively) was formed. The band-gap value of TiO2 decreased with decreasing pH during synthesis. Although the T2 sample had the highest specific surface area and pore volume (232.02 m2g−1 and 0.46 gcm−3, respectively), the T3 sample had better efficiency in methylene blue dye photodegradation because its bird-nest-like morphology improved photon absorption, promoting better photocatalytic performance. Full article
Show Figures

Figure 1

16 pages, 3351 KB  
Article
Intermediate Bandgap (IB) Cu3VSxSe4−x Nanocrystals as a New Class of Light Absorbing Semiconductors
by Jose J. Sanchez Rodriguez, Soubantika Palchoudhury, Jingsong Huang, Daniel Speed, Elizaveta Tiukalova, Godwin Mante, Jordan Hachtel and Arunava Gupta
Nanomaterials 2026, 16(2), 82; https://doi.org/10.3390/nano16020082 - 7 Jan 2026
Viewed by 251
Abstract
A new family of highly uniform, cubic-shaped Cu3VSxSe4−x (CVSSe; 0 ≤ x ≤ 4) nanocrystals based on earth-abundant materials with intermediate bandgaps (IB) in the visible range is reported, synthesized via a hot-injection method. The IB transitions and [...] Read more.
A new family of highly uniform, cubic-shaped Cu3VSxSe4−x (CVSSe; 0 ≤ x ≤ 4) nanocrystals based on earth-abundant materials with intermediate bandgaps (IB) in the visible range is reported, synthesized via a hot-injection method. The IB transitions and optical band gap of the novel CVSSe nanocrystals are investigated using ultraviolet-visible spectroscopy, revealing tunable band gaps that span the visible and near-infrared regimes. The composition-dependent relationships among the crystal phase, optical band gap, and photoluminescence properties of the novel IB semiconductors with progressive substitution of Se by S are examined in detail. High-resolution transmission electron microscopy and scanning electron microscopy characterization confirm the high crystallinity and uniform size (~19.7 nm × 17.2 nm for Cu3VS4) of the cubic-shaped nanocrystals. Density functional theory (DFT) calculations based on virtual crystal approximation support the experimental findings, showing good agreement in lattice parameters and band gaps across the CVSSe series and lending confidence that the targeted phases and compositions have been successfully realized. A current conversion efficiency, i.e., incident photon-to-current efficiency, of 14.7% was achieved with the p-type IB semiconductor Cu3VS4. These novel p-type IB semiconductor nanocrystals hold promise for enabling thin film solar cells with efficiencies beyond the Shockley–Queisser limit by allowing sub-band-gap photon absorption through intermediate-band transitions, in addition to the conventional direct-band-gap transition. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

15 pages, 6878 KB  
Article
Absorption and Light Localization in One-Dimensional Apodized Photonic Crystals
by Ilya M. Efimov, Kum Chol Son, Sergey S. Golik and Ashot H. Gevorgyan
Photonics 2026, 13(1), 24; https://doi.org/10.3390/photonics13010024 - 26 Dec 2025
Viewed by 150
Abstract
Apodization is a well-known method designed to control the propagation of light in photonic crystals (PCs) and has a variety of applications. Apodization involves modulating the depth of refractive index variation in PCs. In this work, we considered harmonic PCs with different forms [...] Read more.
Apodization is a well-known method designed to control the propagation of light in photonic crystals (PCs) and has a variety of applications. Apodization involves modulating the depth of refractive index variation in PCs. In this work, we considered harmonic PCs with different forms of linear apodization. We investigated the characteristics of reflection, absorption, photonic density of states (PDOS), and light energy density spectra in the PC. For the first time, it was shown that apodization significantly reduces the PDOSs at the first edge modes, while its influence on higher-order edge modes is considerably weaker. Depending on the apodization profile, the spectral density of integral absorption can either substantially increase or decrease, and, moreover, in large intervals. We also studied the evolution of light localization in the PC, both in the presence and in the absence of apodization. One of the central and most significant claims in our paper is the demonstration of a divergence between integral absorption and total localized light energy. Our results demonstrate that apodization leads to a reduction in the total integral light energy localized within the PC layer. Full article
Show Figures

Figure 1

16 pages, 3028 KB  
Article
Simulation of a Multiband Stacked Antiparallel Solar Cell with over 70% Efficiency
by Rehab Ramadan, Kin Man Yu and Nair López Martínez
Materials 2025, 18(24), 5625; https://doi.org/10.3390/ma18245625 - 15 Dec 2025
Viewed by 289
Abstract
Multiband solar cells offer a promising route to surpass the Shockley-Queisser limit by harnessing sub-bandgap photons through three active energy band transitions. However, realizing their full potential requires overcoming key challenges in material design and device architecture. Here, we propose a novel multiband [...] Read more.
Multiband solar cells offer a promising route to surpass the Shockley-Queisser limit by harnessing sub-bandgap photons through three active energy band transitions. However, realizing their full potential requires overcoming key challenges in material design and device architecture. Here, we propose a novel multiband stacked anti-parallel junction solar cell structure based on highly mismatched alloys (HMAs), in particular dilute GaAsN with ~1–4% N. An anti-parallel junction consists of two semiconductor junctions connected with opposite polarity, enabling bidirectional current control. The structures of the proposed devices are based on dilute GaAsN with anti-parallel junctions, which allow the elimination of tunneling junctions—a critical yet complex component in conventional multijunction solar cells. Semiconductors with three active energy bands have demonstrated the unique properties of carrier transport through the stacked anti-parallel junctions via tunnel currents. By leveraging highly mismatched alloys with tailored electronic properties, our design enables bidirectional carrier generation through forward- and reverse-biased diodes in series, significantly enhancing photocurrent extraction. Through detailed SCAPS-1D simulations, we demonstrate that strategically placed blocking layers prevent carrier recombination at contacts while preserving the three regions of photon absorption in a single multiband semiconductor p/n junction. Remarkably, our optimized five-stacked anti-parallel junctions structure achieves a maximum theoretical conversion efficiency of 70% under 100 suns illumination, rivaling the performance of state-of-the-art six-junctions III-V solar cells—but without the fabrication complexity of multijunction solar cells associated with tunnel junctions. This work establishes that highly mismatched alloys are a viable platform for high efficiency solar cells with simplified structures. Full article
Show Figures

Figure 1

14 pages, 3483 KB  
Article
The Influence of Annealing on the Structural, Optical and Electrical Properties of Copper Selenite Nanocrystals Synthesized by the Chemical Deposition Method
by Gulnaz Sarsekhan, Abay Usseinov, Aiman Akylbekova, Abdirash Akilbekov, Alma Dauletbekova, Diana Junisbekova, Ainash Abdrakhmetova, Gulnara Aralbayeva, Leila Kassenova and Zein Baimukhanov
Crystals 2025, 15(12), 1060; https://doi.org/10.3390/cryst15121060 - 14 Dec 2025
Viewed by 351
Abstract
This work presents a study of copper selenite nanocrystals, obtained for the first time by chemical deposition (template synthesis) in a SiO2/Si track template, and investigates their properties. The obtained nanostructures were subjected to structural, optical, and electrical analysis. After deposition, [...] Read more.
This work presents a study of copper selenite nanocrystals, obtained for the first time by chemical deposition (template synthesis) in a SiO2/Si track template, and investigates their properties. The obtained nanostructures were subjected to structural, optical, and electrical analysis. After deposition, X-ray diffraction (XRD) analysis confirmed the formation of the orthorhombic phase CuSeO3. Subsequent annealing in a vacuum at 800 °C and 1000 °C led to successive phase transformations: to the monoclinic phase and, finally, to the triclinic polymorph of copper selenite. Photoluminescence (PL) analysis showed that the intensity and spectral position of the emission peaks vary depending on the crystal structure, which is associated with changes in defects and bandgap width as a result of heat treatment. Current–voltage characteristic (CVC) measurements showed that the phase composition significantly affects electrical conductivity. In particular, the transition to the triclinic phase after annealing at 1000 °C led to noticeable changes in optical and electrical properties compared to the initial material. Thus, a direct relationship has been established between heat treatment conditions, crystal structure, and functional properties of CuSeO3-based materials, opening up possibilities for their application in photonics and electronics. Full article
(This article belongs to the Special Issue Electronic Phenomena of Transition Metal Oxides Volume II)
Show Figures

Figure 1

11 pages, 2087 KB  
Article
Dynamic Barrier Modulation in Graphene–Diamond Schottky Interfaces for Enhanced Ultraviolet Photodetection
by Xiaohui Zhang, Kang Liu, Saifei Fan, Sen Zhang, Fei Xia, Benjian Liu, Bing Dai, Yumin Zhang and Jiaqi Zhu
Sensors 2025, 25(24), 7536; https://doi.org/10.3390/s25247536 - 11 Dec 2025
Viewed by 650
Abstract
Wide-bandgap diamond photodetectors face a fundamental trade-off between dark current suppression and photocurrent collection due to high Schottky barriers. Here, a photo-modulation strategy is demonstrated by integrating monolayer graphene as transparent electrodes on oxygen-terminated single-crystal diamond. The atomically thin graphene (87.3% UV transmittance [...] Read more.
Wide-bandgap diamond photodetectors face a fundamental trade-off between dark current suppression and photocurrent collection due to high Schottky barriers. Here, a photo-modulation strategy is demonstrated by integrating monolayer graphene as transparent electrodes on oxygen-terminated single-crystal diamond. The atomically thin graphene (87.3% UV transmittance at 220 nm) allows photons to penetrate and dynamically reduce Schottky barriers through photoinduced electric fields, while maintaining high barriers (~2.3 eV) under dark conditions for ultralow leakage current. Compared with conventional 100 nm Au electrodes, graphene-based devices exhibit a 4.9-fold responsivity improvement (0.158 A/W at 220 nm) and a 5.2-fold detectivity increase (8.35 × 1013 cm·Hz1/2/W), while preserving ultralow dark current (~10−12 A at ±100 V). XPS measurements confirm a minimal Fermi level shift (0.06 eV) upon graphene integration, demonstrating robust surface state pinning by oxygen termination. Transient photoresponse reveals a 27% faster rise time (30 ns vs. 41 ns) with bi-exponential decay governed by band-to-band recombination (τ1 ≈ 75 ns) and trap-assisted recombination (τ2 ≈ 411 ns). The devices maintain stable performance after one month of ambient exposure and successfully demonstrate UV optical communication capability. This transparent electrode approach offers a versatile strategy for enhancing wide-bandgap semiconductor photodetectors for secure communications, environmental monitoring, and industrial sensing applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

21 pages, 4500 KB  
Article
Spectroscopic Ellipsometry and Luminescence Properties of Low Temperature Sputter-Deposited Zinc Oxide Thin Films: Cryogenic Self-Stress-Induced Crystallization
by M. A. Ebdah, M. E. Kordesch, W. Yuan, W. M. Jadwisienczak, S. Kaya, M. D. Nazzal, A. Ibdah and K. S. Al-iqdah
Crystals 2025, 15(12), 1031; https://doi.org/10.3390/cryst15121031 - 2 Dec 2025
Viewed by 403
Abstract
Zinc oxide (ZnO) thin films were deposited by radio-frequency reactive magnetron sputtering at a cryogenic substrate temperature of −78 °C to explore a novel low-thermal-budget route for semiconductor growth. Despite the extremely low temperature, X-ray diffraction revealed spontaneous partial crystallization of wurtzite ZnO [...] Read more.
Zinc oxide (ZnO) thin films were deposited by radio-frequency reactive magnetron sputtering at a cryogenic substrate temperature of −78 °C to explore a novel low-thermal-budget route for semiconductor growth. Despite the extremely low temperature, X-ray diffraction revealed spontaneous partial crystallization of wurtzite ZnO upon warming to room temperature, driven by strain relaxation and stress coupling at the ZnO/SiO2 interface. Atomic-force and scanning-electron microscopies confirmed nanoscale hillock and ridge morphologies that correlate with in-plane compressive stress and out-of-plane tensile strain. Spectroscopic ellipsometry, modeled using a general oscillator (GO) mathematical model approach, determined a film thickness of 60.81 nm, surface roughness of 3.75 nm, and a direct optical bandgap of 3.40 eV. Photoluminescence spectra exhibited strong near-band-edge emission modulated with LO-phonon replicas at 300 K, indicating robust exciton–phonon coupling. This study demonstrates that ZnO films grown at cryogenic conditions can undergo substrate-induced self-crystallize upon warming, which eliminates the need for thermal annealing. The introduced cryogenic self-crystallization regime offers a new pathway for depositing crystalline semiconductors on thermally sensitive or flexible substrates where heating is undesirable, enabling future optoelectronic and photonic device fabrication under ultra-low thermal-budget conditions. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 1834 KB  
Article
Tunable Luminescence in Sb3+-Doped Cs3LnCl6 Perovskites for Wide-Coverage Emission and Anti-Counterfeiting Applications
by Lianao Zhang, Le Chen, Sai Xu, Yongze Cao, Xizhen Zhang, Hongquan Yu, Yuefeng Gao and Baojiu Chen
Nanomaterials 2025, 15(23), 1790; https://doi.org/10.3390/nano15231790 - 27 Nov 2025
Viewed by 463
Abstract
Zero-dimensional (0D) rare-earth-based metal halides show great potential in photonic and optoelectronic applications owing to their high stability, strong exciton confinement, and tunable energy levels. However, the weak absorption and narrow 4f-4f transitions of rare-earth ions limit their performance. To address this, a [...] Read more.
Zero-dimensional (0D) rare-earth-based metal halides show great potential in photonic and optoelectronic applications owing to their high stability, strong exciton confinement, and tunable energy levels. However, the weak absorption and narrow 4f-4f transitions of rare-earth ions limit their performance. To address this, a series of Sb3+-doped Cs3LnCl6 (Ln: Yb, La, Eu, Ho, Ce, Er, Tb, Sm, Y) nanocrystals were synthesized via a hot-injection method to study the role of Sb3+ doping. Sb3+ incorporation induces strong broadband self-trapped exciton (STE) emission from Jahn–Teller-distorted [SbCl6]3− units and enables efficient energy transfer from STEs to rare-earth ions. As a result, the photoluminescence intensity and spectral tunability are improved, accompanied by bandgap narrowing and enhanced light absorption. Different lanthanide hosts exhibit distinct luminescence behaviors: La-based materials show dominant STE emission, while Tb-, Er-, Yb-, Ho-, and Sm-based systems display STE-mediated energy transfer and enhanced f-f emission. In Eu- and Ce-based hosts, unique mechanisms involving Eu2+/Eu3+ conversion and Ce3+ → STE energy transfer are observed. Moreover, composition-dependent emissions in Sb3+-doped Cs3Tb/EuCl6 enable a dual-mode color and spectral encoding strategy for optical anti-counterfeiting. This study highlights the versatile role of Sb3+ in tuning electronic structures and energy transfer, offering new insights for designing high-performance rare-earth halide materials for advanced optoelectronic applications. Full article
Show Figures

Figure 1

10 pages, 5047 KB  
Article
Topological Phase Transition by Tuning Central Unit in C3 Symmetric Lattice of Terahertz Photonic Crystals
by Zhigang Yan, Kangrong Deng, Shuangjie Song, Tingting Liu, Jinhui Cai, Le Zhang and Bo Fang
Photonics 2025, 12(11), 1143; https://doi.org/10.3390/photonics12111143 - 19 Nov 2025
Viewed by 410
Abstract
A terahertz band-switchable photonic topological insulator (PTI) composed of a C3-symmetric rod-type photonic crystal is designed. By tuning the size of the central cylinder in the lattice, a topological phase transition can occur in the PTI, and the topological nontrivial bandgap [...] Read more.
A terahertz band-switchable photonic topological insulator (PTI) composed of a C3-symmetric rod-type photonic crystal is designed. By tuning the size of the central cylinder in the lattice, a topological phase transition can occur in the PTI, and the topological nontrivial bandgap can be switched from the first to the second bandgap. In both cases, before and after switching, topological edge-state transport of terahertz waves along zigzag topological domain walls, as well as terahertz corner-state localization in constructed resonant cavities, are numerically demonstrated. In addition, an existence of the topological phase transition is also confirmed when tuning the central unit in the lattice of another C3-symmetric hole-type photonic crystal. This work provides a new approach for flexible terahertz waveguiding and lasing applications. Full article
(This article belongs to the Special Issue Emerging Terahertz Devices and Applications)
Show Figures

Figure 1

12 pages, 2956 KB  
Article
Fabrication Process Development for Optical Channel Waveguides in Sputtered Aluminum Nitride
by Soheila Mardani, Bjorn Jongebloed, Ward A. P. M. Hendriks, Meindert Dijkstra and Sonia M. Garcia-Blanco
Micromachines 2025, 16(11), 1259; https://doi.org/10.3390/mi16111259 - 6 Nov 2025
Viewed by 740
Abstract
Aluminum nitride (AlN) is a wide-bandgap semiconductor (6.2 eV) with a broad transparency window spanning from the ultraviolet (UV) to the mid-infrared (MIR) wavelength region, making it a promising material for integrated photonics. In this work, AlN thin films using reactive RF sputtering [...] Read more.
Aluminum nitride (AlN) is a wide-bandgap semiconductor (6.2 eV) with a broad transparency window spanning from the ultraviolet (UV) to the mid-infrared (MIR) wavelength region, making it a promising material for integrated photonics. In this work, AlN thin films using reactive RF sputtering are deposited, followed by annealing at 600 °C in a nitrogen atmosphere to reduce slab waveguide propagation losses. After annealing, the measured loss is 0.84 dB/cm at 978 nm, determined using the prism coupling method. A complete microfabrication process flow is then developed for the realization of optical channel waveguides. A key challenge in the processing of AlN is its susceptibility to oxidation when exposed to water or oxygen plasma, which significantly impacts device performance. The process is validated through the fabrication of microring resonators (MRRs), used to characterize the propagation losses of the AlN channel waveguides. The fabricated MRRs exhibit a quality factor of 12,000, corresponding to a propagation loss of 4.4 dB/cm at 1510–1515 nm. The dominant loss mechanisms are identified, and strategies for further process optimization are proposed. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

16 pages, 4229 KB  
Article
In Situ Construction of 2D/2D g-C3N4/rGO Hybrid Photocatalysts for Efficient Ciprofloxacin Degradation
by Mengyao Wang, Yong Li, Rui Li, Yali Zhang, Deyun Yue, Shihao Zhao, Maosong Chen and Haojie Song
Nanomaterials 2025, 15(21), 1641; https://doi.org/10.3390/nano15211641 - 28 Oct 2025
Viewed by 601
Abstract
Insufficient harvesting of visible photons, limited adsorption, and fast recombination of photogenerated electron-hole pairs restrict the application of graphitic carbon nitride (g-C3N4). Here, we propose a straightforward solid-phase synthesis method for fabricating 2D/2D graphitic carbon nitride/reduced graphene oxide (SCN/GR) [...] Read more.
Insufficient harvesting of visible photons, limited adsorption, and fast recombination of photogenerated electron-hole pairs restrict the application of graphitic carbon nitride (g-C3N4). Here, we propose a straightforward solid-phase synthesis method for fabricating 2D/2D graphitic carbon nitride/reduced graphene oxide (SCN/GR) hybrid photocatalysts. The synthesis process involves the thermal condensation of three precursors: dicyandiamide (as the g-C3N4 source), NH4Cl (as a pore-forming agent), and graphene oxide (GO, which is in situ reduced to rGO during thermal treatment). The incorporation of reduced graphene oxide (rGO) into the g-C3N4 matrix not only narrows the bandgap of the material but also expedites the separation of photogenerated carriers. The photocatalytic activity of the SCN/GR hybrid was systematically evaluated by degrading ciprofloxacin in aqueous solution under different light conditions. The results demonstrated remarkable degradation efficiency: 72% removal within 1 h under full-spectrum light, 81% under UV light, and 52% under visible light. Notably, the introduction of rGO significantly improved the visible light absorption capacity of g-C3N4. Additionally, SCN/GR exhibits exceptional cyclic stability, maintaining its structural integrity and photocatalytic properties unchanged across five successive degradation cycles. This study offers a simple yet effective pathway to synthesize 2D/2D composite photocatalysts, which hold significant promise for practical applications in water treatment processes. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

18 pages, 9691 KB  
Article
Solitons in a One-Dimensional Rhombic Waveguide Array
by Dmitry V. Shaykin and Nikita V. Bykov
Photonics 2025, 12(11), 1054; https://doi.org/10.3390/photonics12111054 - 24 Oct 2025
Viewed by 538
Abstract
We present an analytical and numerical study of nonlinear wave localization in a one-dimensional rhombic (diamond) waveguide array that combines forward- and backward-propagating channels. This mixed-index configuration, realizable through Bragg-type couplers or corrugated waveguides, produces a tunable spectral gap and supports nonlinear self-localized [...] Read more.
We present an analytical and numerical study of nonlinear wave localization in a one-dimensional rhombic (diamond) waveguide array that combines forward- and backward-propagating channels. This mixed-index configuration, realizable through Bragg-type couplers or corrugated waveguides, produces a tunable spectral gap and supports nonlinear self-localized states in both transmission and forbidden-band regimes. Starting from the full set of coupled-mode equations, we derive the effective evolution model, identify the role of coupling asymmetry and nonlinear coefficients, and obtain explicit soliton solutions using the method of multiple scales. The resulting envelopes satisfy a nonlinear Schrödinger equation with an effective nonlinear parameter θ, which determines the conditions for soliton existence (θ>0) for various combinations of focusing and defocusing nonlinearities. We distinguish solitons formed outside and inside the bandgap and analyze their dependence on the dispersion curvature and nonlinear response. Direct numerical simulations confirm the analytical predictions and reveal robust propagation and interactions of counter-propagating soliton modes. Order-of-magnitude estimates show that the predicted effects are accessible in realistic integrated photonic platforms. These results provide a unified theoretical framework for soliton formation in mixed-index lattices and suggest feasible routes for realizing controllable nonlinear localization in Bragg-type photonic structures. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

14 pages, 2291 KB  
Article
Infrared FEL-Induced Alteration of Zeta Potential in Electrochemically Grown Quantum Dots: Insights into Ion Modification
by Sukrit Sucharitakul, Siripatsorn Thanasanvorakun, Vasan Yarangsi, Suparoek Yarin, Kritsada Hongsith, Monchai Jitvisate, Hideaki Ohgaki, Surachet Phadungdhitidhada, Heishun Zen, Sakhorn Rimjaem and Supab Choopun
Nanomaterials 2025, 15(20), 1543; https://doi.org/10.3390/nano15201543 - 10 Oct 2025
Viewed by 1002
Abstract
This study explores the use of mid-infrared (MIR) free-electron laser (FEL) irradiation as a tool for tailoring the surface properties of electrochemically synthesized TiO2—graphene quantum dots (QDs). The QDs, prepared in colloidal form via a cost-effective electrochemical method in a KCl—citric [...] Read more.
This study explores the use of mid-infrared (MIR) free-electron laser (FEL) irradiation as a tool for tailoring the surface properties of electrochemically synthesized TiO2—graphene quantum dots (QDs). The QDs, prepared in colloidal form via a cost-effective electrochemical method in a KCl—citric acid medium, were exposed to MIR wavelengths (5.76, 8.02, and 9.10 µm) at the Kyoto University FEL facility. Post-irradiation measurements revealed a pronounced inversion of zeta potential by 40–50 mV and approximately 10% reduction in hydrodynamic size, indicating double-layer contraction and ionic redistribution at the QD—solvent interface. Photoluminescence spectra showed enhanced emission for GQDs and TiO2/GQD composites, while Tauc analysis revealed modest bandgap blue shifts (0.04–0.08 eV), both consistent with trap-state passivation and sharper band edges. TEM confirmed intact crystalline structures, verifying that FEL-induced modifications were confined to surface chemistry rather than bulk lattice damage. Taken together, these results demonstrate that MIR FEL irradiation provides a resonance-driven, non-contact method to reorganize ions, suppress defect states, and improve the optoelectronic quality of QDs. This approach offers a scalable post-synthetic pathway for enhancing electron transport layers in perovskite solar cells and highlights the broader potential of photonic infrastructure for advanced nanomaterial processing and interface engineering in optoelectronic and energy applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

13 pages, 1889 KB  
Article
Dimension Tailoring of Quasi-2D Perovskite Films Based on Atmosphere Control Toward Enhanced Amplified Spontaneous Emission
by Zijia Wang, Xuexuan Huang, Zixuan Song, Chiyu Guo, Liang Tao, Shibo Wei, Ke Ren, Yuze Wu, Xuejiao Sun and Chenghao Bi
Materials 2025, 18(19), 4628; https://doi.org/10.3390/ma18194628 - 7 Oct 2025
Viewed by 720
Abstract
Quasi-two-dimensional (Q2D) perovskite films have garnered significant attention as novel gain media for lasers due to their tunable bandgap, narrow linewidth, and solution processability. Q2D perovskites endowed with intrinsic quantum well structures demonstrate remarkable potential as gain media for cost-effective miniaturized lasers, owing [...] Read more.
Quasi-two-dimensional (Q2D) perovskite films have garnered significant attention as novel gain media for lasers due to their tunable bandgap, narrow linewidth, and solution processability. Q2D perovskites endowed with intrinsic quantum well structures demonstrate remarkable potential as gain media for cost-effective miniaturized lasers, owing to their superior ambient stability and enhanced photon confinement capabilities. However, the mixed-phase distribution within Q2D films constitutes a critical determinant of their optical properties, exhibiting pronounced sensitivity to specific fabrication protocols and processing parameters, including annealing temperature, duration, antisolvent volume, injection timing, and dosing rate. These factors frequently lead to broad phase distribution in Q2D perovskite films, thereby inducing incomplete exciton energy transfer and multiple emission peaks, while simultaneously making the fabrication processes intricate and reducing reproducibility. Here, we report a novel annealing-free and antisolvent-free method for the preparation of Q2D perovskite films fabricated in ambient atmosphere. By constructing a tailored mixed-solvent vapor atmosphere and systematically investigating its regulatory effects on the nucleation and growth processes of film via in situ photoluminescence spectra, we successfully achieved the fabrication of Q2D perovskite films with large n narrow phase distribution characteristics. Due to the reduced content of small n domains, the incomplete energy transfer from small n to large n phases and the carriers’ accumulation in small n can be greatly suppressed, thereby suppressing the trap-assistant nonradiative recombination and Auger recombination. Ultimately, the Q2D perovskite film showed a single emission peak at 519 nm with the narrow full width at half maximum (FWHM) of 21.5 nm and high photoluminescence quantum yield (PLQY) of 83%. And based on the optimized Q2D film, we achieved an amplified spontaneous emission (ASE) with a low threshold of 29 μJ·cm−2, which was approximately 60% lower than the 69 μJ·cm−2 of the control film. Full article
Show Figures

Figure 1

Back to TopTop