Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (222)

Search Parameters:
Keywords = photoelectric fields

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6670 KB  
Article
One-Pot Synthesis of the MoVOx Mixed Oxide Nanobelts and Its Photoelectric Properties in the Broadband Light Spectrum Range Exhibiting Self-Powered Characteristics
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Inorganics 2025, 13(8), 273; https://doi.org/10.3390/inorganics13080273 - 18 Aug 2025
Viewed by 394
Abstract
To exploit the near-infrared (NIR) light of MoO3, the MoVOx mixed oxide was synthesized using a one-pot approach. The effects of different electrodes, V doping, and bias on the optoelectronic properties were investigated. The photoelectric responses to light sources with [...] Read more.
To exploit the near-infrared (NIR) light of MoO3, the MoVOx mixed oxide was synthesized using a one-pot approach. The effects of different electrodes, V doping, and bias on the optoelectronic properties were investigated. The photoelectric responses to light sources with wavelengths of 405, 532, 650, 780, 808, 980, and 1064 nm were studied using both Au and carbon electrodes with 6B pencil drawings. The results demonstrate that the MoVOx nanoblets exhibit photocurrent switching characteristics across the broadband region of the light spectrum. Even when zero bias was applied and the mixed oxide sample was stored at room temperature for over two years, a good photoelectric signal was still observed. This demonstrates that the MoVOx nanoblets present an interface where interfacial charge transfer forms a strong built-in electric field, promoting photogenerated charge separation and transfer while suppressing photogenerated carrier recombination, and exhibiting self-powered characteristics. Interestingly, reducing the power of the typical excitation light sources resulted in a transition from positive to negative photocurrent features. This reflects the result of an imbalance between the concentration of material defects and the concentration of photogenerated electrons. The MoVOx nanoblets not only enhance charge transport performance, but also significantly improve the exploitation of near-infrared light. Doping with V significantly improves the nanocomposites’ near-infrared (NIR) photoelectric sensitivity. This study demonstrates that heavily doping aliovalent ions during the in situ preparation of nanocomposites effectively enhances their photophysical properties. It provides a straightforward approach to narrowing the band gap of wide-bandgap oxides and effectively avoiding the recombination of photogenerated carriers. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 3rd Edition)
Show Figures

Figure 1

17 pages, 8542 KB  
Article
Theoretical Investigation of Quantum Size Effect on the Electronic Structure and Photoelectric Properties for Graphdiyne Nanotubes
by Tao Zhang, Hanbo Wen, Zhou Li, Xinyu Zhao, Xiaoming Wang and Jingang Wang
Nanomaterials 2025, 15(16), 1219; https://doi.org/10.3390/nano15161219 - 9 Aug 2025
Viewed by 340
Abstract
In this paper, the electronic structure and photoelectric properties of graphdiyne nanotubes with armchair (A-GDYNT) and zigzag (Z-GDYNT) types have been studied. Calculations show that as n decreases, the divergence in gap values between (n)-A-GDYNT and (n)-Z-GDYNT increases. This is mainly attributed to [...] Read more.
In this paper, the electronic structure and photoelectric properties of graphdiyne nanotubes with armchair (A-GDYNT) and zigzag (Z-GDYNT) types have been studied. Calculations show that as n decreases, the divergence in gap values between (n)-A-GDYNT and (n)-Z-GDYNT increases. This is mainly attributed to the edge effect arising from their different boundaries. Plasmon spectra are generated in all three directions of X, Y, and Z, with the spectra along the Z direction being more prominent. The optical absorption process exhibits not only the nonlinear nature of the GDYNTs, but also a good regularity, especially in the infrared region. As the pore size increases, the A-GDYNT and Z-GDYNT exhibit striking differences in how their charge self-organizes. Likewise, notable distinctions emerge in the evolutionary pattern of their charge difference density under excitation. The porous structure and excellent sorption ability in various light regions make GDYNTs have great potential application in the field of photocatalysis and far infrared detection. Full article
Show Figures

Figure 1

18 pages, 6388 KB  
Article
Spatial–Temporal Hotspot Management of Photovoltaic Modules Based on Fiber Bragg Grating Sensor Arrays
by Haotian Ding, Rui Guo, Huan Xing, Yu Chen, Jiajun He, Junxian Luo, Maojie Chen, Ye Chen, Shaochun Tang and Fei Xu
Sensors 2025, 25(15), 4879; https://doi.org/10.3390/s25154879 - 7 Aug 2025
Viewed by 522
Abstract
Against the backdrop of an urgent energy crisis, solar energy has attracted sufficient attention as one of the most inexhaustible and friendly types of environmental energy. Faced with long service and harsh environment, the poor performance ratios of photovoltaic arrays and safety hazards [...] Read more.
Against the backdrop of an urgent energy crisis, solar energy has attracted sufficient attention as one of the most inexhaustible and friendly types of environmental energy. Faced with long service and harsh environment, the poor performance ratios of photovoltaic arrays and safety hazards are frequently boosted worldwide. In particular, the hot spot effect plays a vital role in weakening the power generation performance and reduces the lifetime of photovoltaic (PV) modules. Here, our research reports a spatial–temporal hot spot management system integrated with fiber Bragg grating (FBG) temperature sensor arrays and cooling hydrogels. Through finite element simulations and indoor experiments in laboratory conditions, a superior cooling effect of hydrogels and photoelectric conversion efficiency improvement have been demonstrated. On this basis, field tests were carried out in which the FBG arrays detected the surface temperature of the PV module first, and then a classifier based on an optimized artificial neural network (ANN) recognized hot spots with an accuracy of 99.1%. The implementation of cooling hydrogels as a feedback mechanism achieved a 7.7 °C reduction in temperature, resulting in a 5.6% enhancement in power generation efficiency. The proposed strategy offers valuable insights for conducting predictive maintenance of PV power plants in the case of hot spots. Full article
Show Figures

Figure 1

20 pages, 5152 KB  
Article
Grain Boundary Regulation in Aggregated States of MnOx Nanofibres and the Photoelectric Properties of Their Nanocomposites Across a Broadband Light Spectrum
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Coatings 2025, 15(8), 920; https://doi.org/10.3390/coatings15080920 - 6 Aug 2025
Viewed by 315
Abstract
Improving charge transport in the aggregated state of nanocomposites is challenging due to the large number of defects present at grain boundaries. To enhance the charge transfer and photogenerated carrier extraction of MnOx nanofibers, a MnOx/GO (graphene oxide) nanocomposite was [...] Read more.
Improving charge transport in the aggregated state of nanocomposites is challenging due to the large number of defects present at grain boundaries. To enhance the charge transfer and photogenerated carrier extraction of MnOx nanofibers, a MnOx/GO (graphene oxide) nanocomposite was prepared. The effects of GO content and bias on the optoelectronic properties were studied. Representative light sources at 405, 650, 780, 808, 980, and 1064 nm were used to examine the photoelectric signals. The results indicate that the MnOx/GO nanocomposites have photocurrent switching behaviours from the visible region to the NIR (near-infrared) when the amount of GO added is optimised. It was also found that even with zero bias and storage of the nanocomposite sample at room temperature for over 8 years, a good photoelectric signal could still be extracted. This demonstrates that the MnOx/GO nanocomposites present a strong built-in electric field that drives the directional motion of photogenerated carriers, avoids the photogenerated carrier recombination, and reflect a good photophysical stability. The strength of the built-in electric field is strongly affected by the component ratios of the resulting nanocomposite. The formation of the built-in electric field results from interfacial charge transfer in the nanocomposite. Modulating the charge behaviour of nanocomposites can significantly improve the physicochemical properties of materials when excited by light with different wavelengths and can be used in multidisciplinary applications. Since the recombination of photogenerated electron–hole pairs is the key bottleneck in multidisciplinary fields, this study provides a simple, low-cost method of tailoring defects at grain boundaries in the aggregated state of nanocomposites. These results can be used as a reference for multidisciplinary fields with low energy consumption. Full article
Show Figures

Figure 1

20 pages, 6273 KB  
Article
Seeding Status Monitoring System for Toothed-Disk Cotton Seeders Based on Modular Optoelectronic Sensors
by Tao Jiang, Xuejun Zhang, Zenglu Shi, Jingyi Liu, Wei Jin, Jinshan Yan, Duijin Wang and Jian Chen
Agriculture 2025, 15(15), 1594; https://doi.org/10.3390/agriculture15151594 - 24 Jul 2025
Viewed by 291
Abstract
In precision cotton seeding, the toothed-disk precision seeder often experiences issues with missed seeding and multiple seeding. To promptly detect and address these abnormal seeding conditions, this study develops a modular photoelectric sensing monitoring system. Initially, the monitoring time window is divided using [...] Read more.
In precision cotton seeding, the toothed-disk precision seeder often experiences issues with missed seeding and multiple seeding. To promptly detect and address these abnormal seeding conditions, this study develops a modular photoelectric sensing monitoring system. Initially, the monitoring time window is divided using the capacitance sensing signal between two seed drop ports. Concurrently, a photoelectric monitoring circuit is designed to convert the time when seeds block the sensor into a level signal. Subsequently, threshold segmentation is performed on the time when seeds block the photoelectric path under different seeding states. The proposed spatiotemporal joint counting algorithm identifies, in real time, the threshold type of the photoelectric sensor’s output signal within the current monitoring time window, enabling the differentiation of seeding states and the recording of data. Additionally, an STM32 micro-controller serves as the core of the signal acquisition circuit, sending collected data to the PC terminal via serial port communication. The graphical display interface, designed with LVGL (Light and Versatile Graphics Library), updates the seeding monitoring information in real time. Compared to photoelectric monitoring algorithms that detect seed pickup at the seed metering disc, the monitoring node in this study is positioned posteriorly within the seed guide chamber. Consequently, the differentiation between single seeding and multiple seeding is achieved with greater accuracy by the spatiotemporal joint counting algorithm, thereby enhancing the monitoring precision of the system. Field test results indicate that the system’s average accuracy for single-seeding monitoring is 97.30%, for missed-seeding monitoring is 96.48%, and for multiple-seeding monitoring is 96.47%. The average probability of system misjudgment is 3.25%. These outcomes suggest that the proposed modular photoelectric sensing monitoring system can meet the monitoring requirements of precision cotton seeding at various seeding speeds. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

20 pages, 3588 KB  
Article
Design and Experimental Operation of a Swing-Arm Orchard Sprayer
by Zhongyi Yu, Mingtian Geng, Keyao Zhao, Xiangsen Meng, Hongtu Zhang and Xiongkui He
Agronomy 2025, 15(7), 1706; https://doi.org/10.3390/agronomy15071706 - 15 Jul 2025
Viewed by 480
Abstract
In recent years, the traditional orchard sprayer has had problems, such as waste of liquid agrochemicals, low target coverage, high manual dependence, and environmental pollution. In this study, an automatic swing-arm sprayer for orchards was developed based on the standardized pear orchard in [...] Read more.
In recent years, the traditional orchard sprayer has had problems, such as waste of liquid agrochemicals, low target coverage, high manual dependence, and environmental pollution. In this study, an automatic swing-arm sprayer for orchards was developed based on the standardized pear orchard in Pinggu, Beijing. Firstly, the structural principles of a crawler-type traveling system and swing-arm sprayer were simulated using finite element software design. The combination of a diffuse reflection photoelectric sensor and Arduino single-chip microcomputer was used to realize real-time detection and dynamic spray control in the pear canopy, and the sensor delay compensation algorithm was used to optimize target recognition accuracy and improve the utilization rate of liquid agrochemicals. Through the integration of innovative structural design and intelligent control technology, a vertical droplet distribution test was carried out, and the optimal working distance of the spray was determined to be 1 m; the nozzle angle for the upper layer was 45°, that for the lower layer was 15°, and the optimal speed of the swing-arm motor was 75 r/min. Finally, a particle size test and field test of the orchard sprayer were completed, and it was concluded that the swing-arm mode increased the pear tree canopy droplet coverage by 74%, the overall droplet density by 21.4%, and the deposition amount by 23% compared with the non-swing-arm mode, which verified the practicability and reliability of the swing-arm spray and achieved the goal of on-demand pesticide application in pear orchards. Full article
(This article belongs to the Special Issue Unmanned Farms in Smart Agriculture—2nd Edition)
Show Figures

Figure 1

17 pages, 1027 KB  
Review
Photon Detector Technology for Laser Ranging: A Review of Recent Developments
by Zhihui Li, Xin Jin, Changfu Yuan and Kai Wang
Coatings 2025, 15(7), 798; https://doi.org/10.3390/coatings15070798 - 8 Jul 2025
Viewed by 1085
Abstract
Laser ranging technology holds a key position in the military, aerospace, and industrial fields due to its high precision and non-contact measurement characteristics. As a core component, the performance of the photon detector directly determines the ranging accuracy and range. This paper systematically [...] Read more.
Laser ranging technology holds a key position in the military, aerospace, and industrial fields due to its high precision and non-contact measurement characteristics. As a core component, the performance of the photon detector directly determines the ranging accuracy and range. This paper systematically reviews the technological development of photonic detectors for laser ranging, with a focus on analyzing the working principles and performance differences of traditional photodiodes [PN (P-N junction photodiode), PIN (P-intrinsic-N photodiode), and APD (avalanche photodiode)] (such as the high-frequency response characteristics of PIN and the internal gain mechanism of APD), as well as their applications in short- and medium-range scenarios. Additionally, this paper discusses the unique advantages of special structures such as transmitting junction-type and Schottky-type detectors in applications like ultraviolet light detection. This article focuses on photon counting technology, reviewing the technological evolution of photomultiplier tubes (PMTs), single-photon avalanche diodes (SPADs), and superconducting nanowire single-photon detectors (SNSPDs). PMT achieves single-photon detection based on the external photoelectric effect but is limited by volume and anti-interference capability. SPAD achieves sub-decimeter accuracy in 100 km lidars through Geiger mode avalanche doubling, but it faces challenges in dark counting and temperature control. SNSPD, relying on the characteristics of superconducting materials, achieves a detection efficiency of 95% and a dark count rate of less than 1 cps in the 1550 nm band. It has been successfully applied in cutting-edge fields such as 3000 km satellite ranging (with an accuracy of 8 mm) and has broken through the near-infrared bottleneck. This study compares the differences among various detectors in core indicators such as ranging error and spectral response, and looks forward to the future technical paths aimed at improving the resolution of photon numbers and expanding the full-spectrum detection capabilities. It points out that the new generation of detectors represented by SNSPD, through material and process innovations, is promoting laser ranging to leap towards longer distances, higher precision, and wider spectral bands. It has significant application potential in fields such as space debris monitoring. Full article
Show Figures

Graphical abstract

26 pages, 3149 KB  
Review
Research Progress and Future Perspectives on Photonic and Optoelectronic Devices Based on p-Type Boron-Doped Diamond/n-Type Titanium Dioxide Heterojunctions: A Mini Review
by Shunhao Ge, Dandan Sang, Changxing Li, Yarong Shi, Qinglin Wang and Dao Xiao
Nanomaterials 2025, 15(13), 1003; https://doi.org/10.3390/nano15131003 - 29 Jun 2025
Cited by 1 | Viewed by 626
Abstract
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. [...] Read more.
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. For instance, TiO2 is widely used as a photocatalyst for hydrogen production via water splitting and for degrading organic pollutants, thanks to its efficient photo-generated electron–hole separation. Additionally, TiO2 exhibits remarkable performance in dye-sensitized solar cells and photodetectors, providing critical support for advancements in green energy and photoelectric conversion technologies. Boron-doped diamond (BDD) is renowned for its exceptional electrical conductivity, high hardness, wide electrochemical window, and outstanding chemical inertness. These unique characteristics enable its extensive use in fields such as electrochemical analysis, electrocatalysis, sensors, and biomedicine. For example, BDD electrodes exhibit high sensitivity and stability in detecting trace chemicals and pollutants, while also demonstrating excellent performance in electrocatalytic water splitting and industrial wastewater treatment. Its chemical stability and biocompatibility make it an ideal material for biosensors and implantable devices. Research indicates that the combination of TiO2 nanostructures and BDD into heterostructures can exhibit unexpected optical and electrical performance and transport behavior, opening up new possibilities for photoluminescence and rectifier diode devices. However, applications based on this heterostructure still face challenges, particularly in terms of photodetector, photoelectric emitter, optical modulator, and optical fiber devices under high-temperature conditions. This article explores the potential and prospects of their combined heterostructures in the field of optoelectronic devices such as photodetector, light emitting diode (LED), memory, field effect transistor (FET) and sensing. TiO2/BDD heterojunction can enhance photoresponsivity and extend the spectral detection range which enables stability in high-temperature and harsh environments due to BDD’s thermal conductivity. This article proposes future research directions and prospects to facilitate the development of TiO2 nanostructured materials and BDD-based heterostructures, providing a foundation for enhancing photoresponsivity and extending the spectral detection range enables stability in high-temperature and high-frequency optoelectronic devices field. Further research and exploration of optoelectronic devices based on TiO2-BDD heterostructures hold significant importance, offering new breakthroughs and innovations for the future development of optoelectronic technology. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Optoelectronics)
Show Figures

Graphical abstract

23 pages, 4811 KB  
Article
In2S3/C3N4 Nanocomposite and Its Photoelectric Properties in the Broadband Light Spectrum Range
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Coatings 2025, 15(6), 718; https://doi.org/10.3390/coatings15060718 - 14 Jun 2025
Viewed by 427
Abstract
To extend the spectral utilisation of In2S3, an In2S3/C3N4 nanocomposite was prepared. The effects of different sulphur sources, electrodes, and bias voltages on the optoelectronic performance were examined. Photoelectric properties in response [...] Read more.
To extend the spectral utilisation of In2S3, an In2S3/C3N4 nanocomposite was prepared. The effects of different sulphur sources, electrodes, and bias voltages on the optoelectronic performance were examined. Photoelectric properties in response to light sources with wavelengths of 405, 532, 650, 780, 808, 980, and 1064 nm were investigated using Au electrodes and the carbon electrodes with 5B pencil drawings. This study shows that the aggregation states of the In2S3/C3N4 nanocomposite possess photocurrent switching responses in the broadband region of the light spectrum. Combining two types of partially visible light-absorbing material extends utilisation to the near-infrared region. Impurities or defects embody an electron-donating effect. Since the energy levels of defects or impurities with an electron-donating effect are close to the conduction band, low-energy lights (especially NIR) can be utilised. The non-equilibrium carrier concentration (photogenerated electrons) of the nanocomposites increases significantly under NIR photoexcitation conditions. Thus, photoconductive behaviour is manifested. A good photoelectric signal was still measured when zero bias was applied. This demonstrates self-powered photoelectric response characteristics. Different sulphur sources significantly affect the photoelectric performance, suggesting that they create different defects that affect charge transport and base current noise. It is believed that interfacial interactions in the In2S3/C3N4 nanocomposite create a built-in electric field that enhances the separation and transfer of electrons and holes produced by light stimulation. The presence of the built-in electric field also leads to energy band bending, which facilitates the utilisation of the light with longer wavelengths. This study provides a reference for multidisciplinary applications. Full article
Show Figures

Figure 1

13 pages, 3594 KB  
Article
A Study on the Characterization of Novel Silicon-Based Heterojunctions for Optically Controlled Microwave Switching
by Li Li, Weidong Mu, Jun Jiang, Linglong Zhang, Xiaoxing Fang, Hang Yuan and Qunsheng Cao
Sensors 2025, 25(11), 3531; https://doi.org/10.3390/s25113531 - 4 Jun 2025
Viewed by 523
Abstract
This paper proposes a structural silicon heterojunction photosensitive element with a simple form, low manufacturing cost, and efficient performance, which has a high-intensity photoelectric effect and a high frequency range of use. It can be applied as microwave switches to active frequency selective [...] Read more.
This paper proposes a structural silicon heterojunction photosensitive element with a simple form, low manufacturing cost, and efficient performance, which has a high-intensity photoelectric effect and a high frequency range of use. It can be applied as microwave switches to active frequency selective surfaces (AFSSs) to replace PIN diodes. Meanwhile, we explore the crucial role of pentacene/silicon heterojunction in the photoelectric conversion process. It is found that due to the inherent photovoltaic effect and the built-in electric field interaction between the two materials, the insertion loss of the heterojunction formed is reduced to 4.5 dB, which is 2.5 dB lower than that of the high-resistivity silicon wafer. In order to further reduce the insertion loss, the surface of the silicon wafer is etched and then heterojunction is prepared, which can further reduce insertion loss to within 2.5 dB, and the bandwidth difference between the presence and absence of pump excitation exceeds 10 dB extends to 12 GHz, indicating that the light collecting ability of structural silicon significantly enhances its photoelectric effect. The research results demonstrate the potential of using structural silicon heterojunctions in photoelectric devices, providing new technology for high-performance microwave switches and implementing optically controlled FSSs. Full article
(This article belongs to the Special Issue Microwave Components in Sensing Design and Signal Processing)
Show Figures

Figure 1

16 pages, 2210 KB  
Article
A Highly Sensitive Graphene-Based Terahertz Perfect Absorber Featuring Five Tunable Absorption Peaks
by Hongyu Ma, Pengcheng Shi and Zao Yi
Materials 2025, 18(11), 2601; https://doi.org/10.3390/ma18112601 - 3 Jun 2025
Viewed by 681
Abstract
In this article, we present a high-sensitivity narrow-band perfect graphene absorber that exhibits excellent tunability across multiple bands. The top layer of the absorber unit is composed of graphene material, and the shape is a square graphene layer with a ring structure and [...] Read more.
In this article, we present a high-sensitivity narrow-band perfect graphene absorber that exhibits excellent tunability across multiple bands. The top layer of the absorber unit is composed of graphene material, and the shape is a square graphene layer with a ring structure and a square structure removed from the middle. A SiO2 dielectric layer is located in the middle, and a layer of gold substrate exists at the bottom. This structure has generated five perfect absorption peaks at 6.08216 THz, 7.29058 THz, 9.34669 THz, 11.5471 THz, and 13.0441 THz, and the levels of absorption are 98.24%, 98.03%, 99.55%, 98.87%, and 99.99%, respectively. We have proved the advantages of our model by comparing the influence of different shapes of graphene on the absorption rate of the model. Then, we changed the relaxation time and Fermi energy level of graphene and other factors such as the refractive index to prove that our structure has good tunable performance. Finally, we calculated the sensitivity, and the sensitivity of this structure is as high as 4508.75 GHZ/RIU. Compared with previous articles, our article has more absorption peaks, a higher absorption efficiency, and a higher sensitivity. The absorber proposed in this paper shows great potential to contribute to high-sensitivity sensors, photoelectric detection, photoelectric communication, and other related fields. Full article
Show Figures

Figure 1

12 pages, 3151 KB  
Article
Photocurrent Generation and Collection in a WSe2-Based Composite Detector
by Yulin Zhu, Sheng Ni, Fengyi Zhu, Zhenzhi Hu, Changyi Pan, Xuhao Fan, Yuhang Ma, Shian Mi, Changlong Liu, Weiwei Tang, Guanhai Li and Xiaoshuang Chen
Coatings 2025, 15(6), 672; https://doi.org/10.3390/coatings15060672 - 31 May 2025
Viewed by 781
Abstract
Two-dimensional (2D) van der Waals materials have been actively investigated for broadband, high-sensitivity, low-power-consumption photodetection owing to their highly customizable band structures and fast interfacial charge transfers. Studying photocurrent generation mechanisms provides insights into charge carrier dynamics in WSe2-based detectors, linking [...] Read more.
Two-dimensional (2D) van der Waals materials have been actively investigated for broadband, high-sensitivity, low-power-consumption photodetection owing to their highly customizable band structures and fast interfacial charge transfers. Studying photocurrent generation mechanisms provides insights into charge carrier dynamics in WSe2-based detectors, linking spatial factors (e.g., photocurrent generation/collection) with interfacial band alignment. Here, we employ scanning photocurrent microscopy to spatially resolve the processes of photocurrent generation and collection in WSe2-based composite structures. Photocurrent polarity and magnitude at interface reflects interfacial band alignment and potential gradients at metal–WSe2 and WSe2–In2Se3 junctions. Strong electric fields at metal–WSe2 interfaces drive more efficient electron–hole separation and yield higher photocurrents, compared with WSe2–In2Se3 interfaces. The photodetector exhibits broadband detection capabilities from visible to infrared light, achieving a high responsivity of 17.7 A/W and an excellent detectivity of 3.7 × 1012 Jones, as well as fast response times of <113 µs. Furthermore, object imaging with a resolution better than 0.5 mm was successfully demonstrated, highlighting the potential of this photoresponse for practical imaging applications. This work reveals that photocurrent is distributed with a clear dependence on device configuration, offering a new avenue for optimizing 2D material-based photoelectric devices. Full article
Show Figures

Figure 1

20 pages, 7945 KB  
Review
Recent Progress and Future Opportunities for Optical Manipulation in Halide Perovskite Photodetectors
by Jiarui Zhang and Chi Ma
Nanomaterials 2025, 15(11), 816; https://doi.org/10.3390/nano15110816 - 28 May 2025
Viewed by 729
Abstract
Perovskite, as a promising class of photodetection material, demonstrates considerable potential in replacing conventional bulk light-detection materials such as silicon, III–V, or II–VI compound semiconductors and has been widely applied in various special light detection. Relying solely on the intrinsic photoelectric properties of [...] Read more.
Perovskite, as a promising class of photodetection material, demonstrates considerable potential in replacing conventional bulk light-detection materials such as silicon, III–V, or II–VI compound semiconductors and has been widely applied in various special light detection. Relying solely on the intrinsic photoelectric properties of perovskite gradually fails to meet the evolving requirements attributed to the escalating demand for low-cost, lightweight, flexible, and highly integrated photodetection. Direct manipulation of electrons and photons with differentiation of local electronic field through predesigned optical nanostructures is a promising strategy to reinforce the detectivity. This review provides a concise overview of the optical manipulation strategy in perovskite photodetector through various optical nanostructures, such as isolated metallic nanoparticles and continuous metallic gratings. Furthermore, the special light detection techniques involving more intricate nanostructure designs have been summarized and discussed. Reviewing these optical manipulation strategies could be beneficial to the next design of perovskite photodetector with high performance and special light recognition. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

24 pages, 3881 KB  
Review
Self-Powered Ultraviolet Photodetectors Based on Conductive Polymers/Ga2O3 Heterojunctions: A Review
by Zerui Xiao, Haoyan Chen, Honglong Ning, Dongxiang Luo, Xuecong Fang, Muyun Li, Guoping Su, Han He, Rihui Yao and Junbiao Peng
Polymers 2025, 17(10), 1384; https://doi.org/10.3390/polym17101384 - 17 May 2025
Viewed by 1067
Abstract
Self-powered ultraviolet photodetectors hold significant potential for diverse applications across both military and civilian fields. Owing to its wide bandgap, high electron mobility, and adaptability to various substrates, gallium oxide (Ga2O3) serves as a crucial material for fabricating self-powered [...] Read more.
Self-powered ultraviolet photodetectors hold significant potential for diverse applications across both military and civilian fields. Owing to its wide bandgap, high electron mobility, and adaptability to various substrates, gallium oxide (Ga2O3) serves as a crucial material for fabricating self-powered ultraviolet photodetectors. Photodetectors based on p-n heterojunctions of conductive polymers and gallium oxide have great application potential benefiting from unique advantages of conductive polymers. This review provides an extensive overview of typical ultraviolet photodetectors based on conductive polymer/gallium oxide heterojunctions, focusing on the physical structure, fabrication process, and photoelectric properties of heterojunction devices formed by Ga2O3 with conductive polymers like polythiophene, polyaniline, and polycarbazole, etc. Different conductive polymers yield varying performance improvements in the fabricated devices: polythiophene/Ga2O3 devices exhibit high conductivity and flexible bandgap tuning to meet diverse wavelength detection needs; PANI/Ga2O3 devices feature simple fabrication and low cost, with doping control to enhance charge carrier transport efficiency; polycarbazole/Ga2O3 devices offer high thermal stability and efficient hole transport. Among them, the polythiophene/Ga2O3 device demonstrates the most superior overall performance, making it the ideal choice for high-performance Ga2O3-based photodetectors and a representative of such research. This review identifies the existing technical challenges and provides valuable insights for designing more efficient Ga2O3/conductive polymer heterojunction photodetectors. Full article
(This article belongs to the Special Issue Advanced Electrically Conductive Polymers and Composites)
Show Figures

Figure 1

9 pages, 3426 KB  
Article
Deformation-Tailored MoS2 Optoelectronics: Fold-Induced Band Reconstruction for Programmable Polarity Switching
by Bo Zhang, Yaqian Liu, Zhen Chen and Xiaofang Wang
Nanomaterials 2025, 15(10), 727; https://doi.org/10.3390/nano15100727 - 12 May 2025
Viewed by 498
Abstract
This study proposes an innovative design strategy for molybdenum disulfide (MoS2) optoelectronic devices based on three-dimensional folded configurations. A “Z”-shaped folded MoS2 device was fabricated through mechanical exfoliation combined with a pre-strain technique on elastic substrates. Experimental investigations reveal that [...] Read more.
This study proposes an innovative design strategy for molybdenum disulfide (MoS2) optoelectronic devices based on three-dimensional folded configurations. A “Z”-shaped folded MoS2 device was fabricated through mechanical exfoliation combined with a pre-strain technique on elastic substrates. Experimental investigations reveal that the geometric folding deformation induces novel photocurrent response zones near folded regions beyond the Schottky junction area via band structure reconstruction, achieving triple polarity switching (negative–positive–negative–positive) of photocurrent. This breakthrough overcomes the single-polarity separation mechanism limitation in conventional planar devices. Scanning photocurrent microscopy demonstrates a 40-fold enhancement in photocurrent intensity at folded regions compared to flat areas, attributed to the optimization of carrier separation efficiency through a pn junction-like built-in electric field induced by the three-dimensional configuration. Voltage-modulation experiments show that negative bias (−150 mV) expands positive response regions, while +200 mV bias induces a global negative response, revealing a dynamic synergy between folding deformation and electric field regulation. Theoretical analysis identifies that the band bending and built-in electric field in folded regions constitutes the physical origin of multiple polarity reversals. This work establishes a design paradigm integrating “geometric deformation-band engineering” for regulating optoelectronic properties of two-dimensional materials, demonstrating significant application potential in programmable photoelectric sensing and neuromorphic devices. Full article
Show Figures

Graphical abstract

Back to TopTop