Recent Progress and Future Opportunities for Optical Manipulation in Halide Perovskite Photodetectors
Abstract
1. Introduction
2. Disperse Optical Nanostructures
3. Periodic Optical Nanostructures
4. Polarization Sensitive Photodetector
5. Conclusions and Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Guo, F.-H.; Hao, L.-Z.; Yu, W.-Z.; Li, S.-Q.; Liu, G.-C.; Hao, J.-Y.; Liu, Y.-J. High-performance Si/VO2-nanorod heterojunction photodetector based on photothermoelectric effect for detecting human radiation. Rare Met. 2024, 43, 1177–1185. [Google Scholar] [CrossRef]
- Deng, X.; Li, Z.; Cao, F.; Hong, E.; Fang, X. Woven Fibrous Photodetectors for Scalable UV Optical Communication Device. Adv. Funct. Mater. 2023, 33, 2213334. [Google Scholar] [CrossRef]
- Ouyang, W.; Teng, F.; Fang, X. High Performance BiOCl Nanosheets/TiO2 Nanotube Arrays Heterojunction UV Photodetector: The Influences of Self-Induced Inner Electric Fields in the BiOCl Nanosheets. Adv. Funct. Mater. 2018, 28, 1707178. [Google Scholar] [CrossRef]
- Goldschmidt, V.M. Die Gesetze der Krystallochemie. Naturwissenschaften 1926, 14, 477–485. [Google Scholar] [CrossRef]
- Fu, X.; Cheng, J.; Huang, Q.; Hu, Y.; Xie, W.; Tassaert, M.; Verbist, J.; Ma, K.; Zhang, J.; Chen, K.; et al. 5 × 20 Gb/s heterogeneously integrated III-V on silicon electro-absorption modulator array with arrayed waveguide grating multiplexer. Opt. Express 2015, 23, 18686–18693. [Google Scholar] [CrossRef]
- Akinwande, D.; Huyghebaert, C.; Wang, C.-H.; Serna, M.I.; Goossens, S.; Li, L.-J.; Wong, H.S.P.; Koppens, F.H.L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518. [Google Scholar] [CrossRef]
- Li, J.; Liu, C.; Chen, H.; Guo, J.; Zhang, M.; Dai, D. Hybrid silicon photonic devices with two-dimensional materials. Nanophotonics 2020, 9, 2295–2314. [Google Scholar] [CrossRef]
- Chen, G.; Gallo, E.M.; Burger, J.; Nabet, B.; Cola, A.; Prete, P.; Lovergine, N.; Spanier, J.E. On direct-writing methods for electrically contacting GaAs and Ge nanowire devices. Appl. Phys. Lett. 2010, 96, 223107. [Google Scholar] [CrossRef]
- Chen, G.; Sun, G.; Ding, Y.J.; Prete, P.; Miccoli, I.; Lovergine, N.; Shtrikman, H.; Kung, P.; Livneh, T.; Spanier, J.E. Direct Measurement of Band Edge Discontinuity in Individual Core–Shell Nanowires by Photocurrent Spectroscopy. Nano Lett. 2013, 13, 4152–4157. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, R.; Di Dio, M.; Lomascolo, M.; Rinaldi, R.; Prete, P.; Vasanelli, L.; Vanzetti, L.; Bassani, F.; Bonanni, A.; Sorba, L.; et al. Photocurrent spectroscopy of Zn1−xCdxSe/ZnSe quantum wells in p-i-n heterostructures. Phys. Rev. B 1994, 50, 12179–12182. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.K.; Syed, N.; Balendhran, S.; Abbas, S.A.T.; Ako, R.T.; Low, M.X.; Lobo, C.; Zavabeti, A.; Murdoch, B.J.; Gupta, G.; et al. Atomically Thin Gallium Nitride for High-Performance Photodetection. Adv. Opt. Mater. 2023, 11, 2300438. [Google Scholar] [CrossRef]
- Gao, F.; Reichmanis, E. Introduction: Emerging Materials for Optoelectronics. Chem. Rev. 2023, 123, 10835–10837. [Google Scholar] [CrossRef]
- Wang, H.; Gao, C.; Yan, X. High-Performance and Multifunctional Devices-Based Optoelectronic Memory With the 2D Narrow Bandgap Bi2Te2.7Se0.3. IEEE Electron Device Lett. 2020, 41, 1504–1507. [Google Scholar] [CrossRef]
- Pan, Y.; Hu, H.; Yang, K.; Chen, W.; Lin, L.; Guo, T.; Li, F. Efficient Dual-Functional Quantum Dot Light-Emitting Diodes with UV-Vis-NIR Broad-Spectrum Photosensitivity. Adv. Opt. Mater. 2024, 12, 2400946. [Google Scholar] [CrossRef]
- Lin, C.-H.; Kang, C.-Y.; Wu, T.-Z.; Tsai, C.-L.; Sher, C.-W.; Guan, X.; Lee, P.-T.; Wu, T.; Ho, C.-H.; Kuo, H.-C.; et al. Giant Optical Anisotropy of Perovskite Nanowire Array Films. Adv. Funct. Mater. 2020, 30, 1909275. [Google Scholar] [CrossRef]
- Lin, C.-H.; Li, T.-Y.; Zhang, J.; Chiao, Z.-Y.; Wei, P.-C.; Fu, H.-C.; Hu, L.; Yu, M.-J.; Ahmed, G.H.; Guan, X.; et al. Designed growth and patterning of perovskite nanowires for lasing and wide color gamut phosphors with long-term stability. Nano Energy 2020, 73, 104801. [Google Scholar] [CrossRef]
- Ai, B.; Fan, Z.; Wong, Z.J. Plasmonic–perovskite solar cells, light emitters, and sensors. Microsyst. Nanoeng. 2022, 8, 5. [Google Scholar] [CrossRef]
- Belusso, L.C.S.; Lenz, G.F.; Fiorini, E.E.; Pereira, A.J.; Sequinel, R.; Bini, R.A.; Felix, J.F.; Schneider, R. Synthesis of silver nanoparticles from bottom up approach on borophosphate glass and their applications as SERS, antibacterial and glass-based catalyst. Appl. Surf. Sci. 2019, 473, 303–312. [Google Scholar] [CrossRef]
- Demontis, V.; Durante, O.; Marongiu, D.; De Stefano, S.; Matta, S.; Simbula, A.; Ragazzo Capello, C.; Pennelli, G.; Quochi, F.; Saba, M.; et al. Photoconduction in 2D Single-Crystal Hybrid Perovskites. Adv. Opt. Mater. 2025, 13, 2402469. [Google Scholar] [CrossRef]
- Simbula, A.; Demontis, V.; Quochi, F.; Bongiovanni, G.; Marongiu, D. Recent Advances in Perovskite Single-Crystal Thin Film Optoelectronic Devices. ACS Omega 2024, 9, 36865–36873. [Google Scholar] [CrossRef]
- Saparov, B.; Mitzi, D.B. Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chem. Rev. 2016, 116, 4558–4596. [Google Scholar] [CrossRef]
- Dou, L. Emerging two-dimensional halide perovskite nanomaterials. J. Mater. Chem. C 2017, 5, 11165–11173. [Google Scholar] [CrossRef]
- Soe, C.M.M.; Stoumpos, C.C.; Kepenekian, M.; Traoré, B.; Tsai, H.; Nie, W.; Wang, B.; Katan, C.; Seshadri, R.; Mohite, A.D.; et al. New Type of 2D Perovskites with Alternating Cations in the Interlayer Space, (C(NH2)3)(CH3NH3)nPbnI3n+1: Structure, Properties, and Photovoltaic Performance. J. Am. Chem. Soc. 2017, 139, 16297–16309. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zou, X.; Xu, M.; Wang, H.; Wang, H.; Guo, H.; Guo, J.; Wang, P.; Peng, M.; Wang, Z.; et al. Recent Progress on Electrical and Optical Manipulations of Perovskite Photodetectors. Adv. Sci. 2021, 8, 2100569. [Google Scholar] [CrossRef]
- Min, L.; Sun, H.; Guo, L.; Zhou, Y.; Wang, M.; Cao, F.; Li, L. Pyroelectric-Accelerated Perovskite Photodetector for Picosecond Light Detection and Ranging. Adv. Mater. 2024, 36, 2400279. [Google Scholar] [CrossRef]
- Xing, R.; Li, Z.; Zhao, W.; Wang, D.; Xie, R.; Chen, Y.; Wu, L.; Fang, X. Waterproof and Flexible Perovskite Photodetector Enabled By P-type Organic Molecular Rubrene with High Moisture and Mechanical Stability. Adv. Mater. 2024, 36, 2310248. [Google Scholar] [CrossRef]
- Kim, B.G.; Jang, W.; Cho, J.S.; Wang, D.H. Tailoring solubility of methylammonium lead halide with non-stoichiometry molar ratio in perovskite solar cells: Morphological and electrical relationships for high current generation. Sol. Energy Mater. Sol. Cells 2019, 192, 24–35. [Google Scholar] [CrossRef]
- Fatima, K.; Irfan Haider, M.; Fakharuddin, A.; Akhter, Z.; Sultan, M.; Schmidt-Mende, L. Performance enhancement of CsPbI2Br perovskite solar cells via stoichiometric control and interface engineering. Sol. Energy 2020, 211, 654–660. [Google Scholar] [CrossRef]
- Lu, C.-H.; Biesold-McGee, G.V.; Liu, Y.; Kang, Z.; Lin, Z. Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chem. Soc. Rev. 2020, 49, 4953–5007. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Chen, J.; Guan, P.; Zheng, D.; Kong, Q.; Yang, S.; Zhou, P.; Yang, B.; Pullerits, T.; Han, K. Controlling Photoluminescence and Photocatalysis Activities in Lead-Free Cs2PtSn1−Cl6 Perovskites via Ion Substitution. Angew. Chem. Int. Ed. 2021, 60, 22693–22699. [Google Scholar] [CrossRef]
- Gao, Q.; Qi, J.; Chen, K.; Xia, M.; Hu, Y.; Mei, A.; Han, H. Halide Perovskite Crystallization Processes and Methods in Nanocrystals, Single Crystals, and Thin Films. Adv. Mater. 2022, 34, 2200720. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Zhang, X.; Lammar, S.; Qiu, W.; Kuang, Y.; Ruttens, B.; D’Haen, J.; Vaesen, I.; Conard, T.; Abdulraheem, Y.; et al. Critical Role of Perovskite Film Stoichiometry in Determining Solar Cell Operational Stability: A Study on the Effects of Volatile A-Cation Additives. ACS Appl. Mater. Interfaces 2022, 14, 27922–27931. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Xiong, M.; Fan, K.; Bao, C.; Xin, D.; Pan, Z.; Fei, L.; Huang, H.; Zhou, L.; Yao, K.; et al. Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nat. Photonics 2022, 16, 575–581. [Google Scholar] [CrossRef]
- Isikgor, F.H.; Zhumagali, S.; T. Merino, L.V.; De Bastiani, M.; McCulloch, I.; De Wolf, S. Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 2023, 8, 89–108. [Google Scholar] [CrossRef]
- Liu, C.; Yang, Y.; Chen, H.; Xu, J.; Liu, A.; Bati, A.S.R.; Zhu, H.; Grater, L.; Hadke, S.S.; Huang, C.; et al. Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science 2023, 382, 810–815. [Google Scholar] [CrossRef]
- Zhu, M.; Xia, Y.; Qin, L.; Zhang, K.; Liang, J.; Zhao, C.; Hong, D.; Jiang, M.; Song, X.; Wei, J.; et al. Reducing surficial and interfacial defects by thiocyanate ionic liquid additive and ammonium formate passivator for efficient and stable perovskite solar cells. Nano Res. 2023, 16, 6849–6858. [Google Scholar] [CrossRef]
- Zhao, L.; Shi, Z.; Zhou, Y.; Wang, X.; Xian, Y.; Dong, Y.; Reid, O.; Ni, Z.; Beard, M.C.; Yan, Y.; et al. Surface-defect-passivation-enabled near-unity charge collection efficiency in bromide-based perovskite gamma-ray spectrum devices. Nat. Photonics 2024, 18, 250–257. [Google Scholar] [CrossRef]
- Liu, Z.; Ono, L.K.; Qi, Y. Additives in metal halide perovskite films and their applications in solar cells. J. Energy Chem. 2020, 46, 215–228. [Google Scholar] [CrossRef]
- Talebi, H.; Emami, F. High performance ultra-thin perovskite solar cell by surface plasmon polaritons and waveguide modes. Opt. Laser Technol. 2023, 165, 109552. [Google Scholar] [CrossRef]
- Ooi, Z.Y.; Jiménez-Solano, A.; Gałkowski, K.; Sun, Y.; Ferrer Orri, J.; Frohna, K.; Salway, H.; Kahmann, S.; Nie, S.; Vega, G.; et al. Strong angular and spectral narrowing of electroluminescence in an integrated Tamm-plasmon-driven halide perovskite LED. Nat. Commun. 2024, 15, 5802. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Hu, W. Organic photodiodes and phototransistors toward infrared detection: Materials, devices, and applications. Chem. Soc. Rev. 2020, 49, 653–670. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Liu, C.-K.; Loi, H.-L.; Yan, F. Perovskite-Based Phototransistors and Hybrid Photodetectors. Adv. Funct. Mater. 2020, 30, 1903907. [Google Scholar] [CrossRef]
- Lan, Z.; Lee, M.-H.; Zhu, F. Recent Advances in Solution-Processable Organic Photodetectors and Applications in Flexible Electronics. Adv. Intell. Syst. 2022, 4, 2100167. [Google Scholar] [CrossRef]
- Ma, X.; Xu, Y.; Li, S.; Lo, T.W.; Zhang, B.; Rogach, A.L.; Lei, D. A Flexible Plasmonic-Membrane-Enhanced Broadband Tin-Based Perovskite Photodetector. Nano Lett. 2021, 21, 9195–9202. [Google Scholar] [CrossRef]
- Vila-Liarte, D.; Feil, M.W.; Manzi, A.; Garcia-Pomar, J.L.; Huang, H.; Döblinger, M.; Liz-Marzán, L.M.; Feldmann, J.; Polavarapu, L.; Mihi, A. Templated-Assembly of CsPbBr3 Perovskite Nanocrystals into 2D Photonic Supercrystals with Amplified Spontaneous Emission. Angew. Chem. Int. Ed. 2020, 59, 17750–17756. [Google Scholar] [CrossRef]
- Liu, T.; Yang, C.; Fan, Z.; Chen, X.; Chen, Z.; Su, Y.; Zhu, H.; Sun, F.; Jiang, T.; Zhu, W.; et al. Spectral Narrowing and Enhancement of Directional Emission of Perovskite Light Emitting Diode by Microcavity. Laser Photonics Rev. 2022, 16, 2200091. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, B.; Meng, Z.; Zhang, S.; Wu, S. Inverse opal photonic crystal stabilized CsPbX3 perovskite quantum dots and their application in white LED. Chem. Eng. J. 2022, 432, 134409. [Google Scholar] [CrossRef]
- Di Virgilio, L.; Geuchies, J.J.; Kim, H.; Krewer, K.; Wang, H.; Grechko, M.; Bonn, M. Controlling the electro-optic response of a semiconducting perovskite coupled to a phonon-resonant cavity. Light Sci. Appl. 2023, 12, 183. [Google Scholar] [CrossRef] [PubMed]
- Hutter, E.; Fendler, J.H. Exploitation of Localized Surface Plasmon Resonance. Adv. Mater. 2004, 16, 1685–1706. [Google Scholar] [CrossRef]
- Ma, X.-C.; Dai, Y.; Yu, L.; Huang, B.-B. Energy transfer in plasmonic photocatalytic composites. Light Sci. Appl. 2016, 5, e16017. [Google Scholar] [CrossRef]
- Choi, K.; Lee, J.; Choi, H.; Kim, G.-W.; Kim, H.I.; Park, T. Heat dissipation effects on the stability of planar perovskite solar cells. Energy Environ. Sci. 2020, 13, 5059–5067. [Google Scholar] [CrossRef]
- Zhang, W.; Saliba, M.; Stranks, S.D.; Sun, Y.; Shi, X.; Wiesner, U.; Snaith, H.J. Enhancement of Perovskite-Based Solar Cells Employing Core–Shell Metal Nanoparticles. Nano Lett. 2013, 13, 4505–4510. [Google Scholar] [CrossRef]
- Sui, M.; Kunwar, S.; Pandey, P.; Lee, J. Strongly confined localized surface plasmon resonance (LSPR) bands of Pt, AgPt, AgAuPt nanoparticles. Sci. Rep. 2019, 9, 16582. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, L. Nanostructures for surface plasmons. Adv. Opt. Photon. 2012, 4, 157–321. [Google Scholar] [CrossRef]
- Erwin, W.R.; Zarick, H.F.; Talbert, E.M.; Bardhan, R. Light trapping in mesoporous solar cells with plasmonic nanostructures. Energy Environ. Sci. 2016, 9, 1577–1601. [Google Scholar] [CrossRef]
- Petryayeva, E.; Krull, U.J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Anal. Chim. Acta 2011, 706, 8–24. [Google Scholar] [CrossRef]
- Furube, A.; Hashimoto, S. Insight into plasmonic hot-electron transfer and plasmon molecular drive: New dimensions in energy conversion and nanofabrication. NPG Asia Mater. 2017, 9, e454. [Google Scholar] [CrossRef]
- Valenti, M.; Jonsson, M.P.; Biskos, G.; Schmidt-Ott, A.; Smith, W.A. Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting. J. Mater. Chem. A 2016, 4, 17891–17912. [Google Scholar] [CrossRef]
- Luo, X.; Zhao, F.; Liang, Y.; Du, L.; Lv, W.; Xu, K.; Wang, Y.; Peng, Y. Facile Nanogold–Perovskite Enabling Ultrasensitive Flexible Broadband Photodetector with pW Scale Detection Limit. Adv. Opt. Mater. 2018, 6, 1800996. [Google Scholar] [CrossRef]
- La, J.A.; Lee, S.; Hong, A.R.; Byun, J.Y.; Kang, J.; Han, I.K.; Cho, Y.; Kang, G.; Jang, H.S.; Ko, H. A Super-Boosted Hybrid Plasmonic Upconversion Process for Photodetection at 1550 nm Wavelength. Adv. Mater. 2022, 34, 2106225. [Google Scholar] [CrossRef]
- Wang, H.; Lim, J.W.; Quan, L.N.; Chung, K.; Jang, Y.J.; Ma, Y.; Kim, D.H. Perovskite–Gold Nanorod Hybrid Photodetector with High Responsivity and Low Driving Voltage. Adv. Opt. Mater. 2018, 6, 1701397. [Google Scholar] [CrossRef]
- Du, B.; Yang, W.; Jiang, Q.; Shan, H.; Luo, D.; Li, B.; Tang, W.; Lin, F.; Shen, B.; Gong, Q.; et al. Plasmonic-Functionalized Broadband Perovskite Photodetector. Adv. Opt. Mater. 2018, 6, 1701271. [Google Scholar] [CrossRef]
- Wang, B.; Zou, Y.; Lu, H.; Kong, W.; Singh, S.C.; Zhao, C.; Yao, C.; Xing, J.; Zheng, X.; Yu, Z.; et al. Boosting Perovskite Photodetector Performance in NIR Using Plasmonic Bowtie Nanoantenna Arrays. Small 2020, 16, 2001417. [Google Scholar] [CrossRef] [PubMed]
- Lachebi, I.; Fedala, A.; Djenizian, T.; Hadjersi, T.; Kechouane, M. Morphological and optical properties of aluminum nanoparticles deposited by thermal evaporation on heated substrates. Surf. Coat. Technol. 2018, 343, 160–165. [Google Scholar] [CrossRef]
- Das, P.K.; Dhawan, A. Plasmonic enhancement of photovoltaic characteristics of organic solar cells by employing parabola nanostructures at the back of the solar cell. RSC Adv. 2023, 13, 26780–26792. [Google Scholar] [CrossRef]
- Neuman, T.; Huck, C.; Vogt, J.; Neubrech, F.; Hillenbrand, R.; Aizpurua, J.; Pucci, A. Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas. J. Phys. Chem. C 2015, 119, 26652–26662. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, C.-H.; Debnath, T.; Wang, Y.; Pohl, D.; Besteiro, L.V.; Meira, D.M.; Huang, S.; Yang, F.; Rellinghaus, B.; et al. Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution. Nat. Commun. 2023, 14, 541. [Google Scholar] [CrossRef]
- Liu, B.; Gutha, R.R.; Kattel, B.; Alamri, M.; Gong, M.; Sadeghi, S.M.; Chan, W.-L.; Wu, J.Z. Using Silver Nanoparticles-Embedded Silica Metafilms as Substrates to Enhance the Performance of Perovskite Photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 32301–32309. [Google Scholar] [CrossRef]
- Yip, C.T.; Liu, X.; Hou, Y.; Xie, W.; He, J.; Schlücker, S.; Dang Yuan, L.; Huang, H. Strong competition between electromagnetic enhancement and surface-energy-transfer induced quenching in plasmonic dye-sensitized solar cells: A generic yet controllable effect. Nano Energy 2016, 26, 297–304. [Google Scholar] [CrossRef]
- Jennings, T.L.; Singh, M.P.; Strouse, G.F. Fluorescent Lifetime Quenching near d = 1.5 nm Gold Nanoparticles: Probing NSET Validity. J. Am. Chem. Soc. 2006, 128, 5462–5467. [Google Scholar] [CrossRef]
- Li, M.-Y.; Shen, K.; Xu, H.; Ren, A.; Lee, J.; Kunwar, S.; Liu, S.; Wu, J. Enhanced Spatial Light Confinement of All Inorganic Perovskite Photodetectors Based on Hybrid Plasmonic Nanostructures. Small 2020, 16, 2004234. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, H.; Yu, P.; Wang, Z. Engineering plasmonic hot carrier dynamics toward efficient photodetection. Appl. Phys. Rev. 2021, 8, 021305. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, L.; Zhao, Y.; Wang, S.; Song, J.; Zou, Y.; Zeng, H. The Synergy of Plasmonic Enhancement and Hot-Electron Effect on CsPbBr3 Nanosheets Photodetector. Adv. Mater. Interfaces 2021, 8, 2002053. [Google Scholar] [CrossRef]
- Yao, K.; Li, S.; Liu, Z.; Ying, Y.; Dvořák, P.; Fei, L.; Šikola, T.; Huang, H.; Nordlander, P.; Jen, A.K.Y.; et al. Plasmon-induced trap filling at grain boundaries in perovskite solar cells. Light Sci. Appl. 2021, 10, 219. [Google Scholar] [CrossRef]
- Li, F.; Lo, T.W.; Deng, X.; Li, S.; Fan, Y.; Lin, F.R.; Cheng, Y.; Zhu, Z.; Lei, D.; Jen, A.K.Y. Plasmonic Local Heating Induced Strain Modulation for Enhanced Efficiency and Stability of Perovskite Solar Cells. Adv. Energy Mater. 2022, 12, 2200186. [Google Scholar] [CrossRef]
- Suárez, I.; Ferrando, A.; Marques-Hueso, J.; Díez, A.; Abargues, R.; Rodríguez-Cantó, P.J.; Martínez-Pastor, J.P. Propagation length enhancement of surface plasmon polaritons in gold nano-/micro-waveguides by the interference with photonic modes in the surrounding active dielectrics. Nanophotonics 2017, 6, 1109–1120. [Google Scholar] [CrossRef]
- Zamkoye, I.I.; Lucas, B.; Vedraine, S. Synergistic Effects of LSPR, SPP, and Waveguide Plasmonic Resonance on the Same Material: A Promising Hypothesis to Enhanced Organic Solar Cells Efficiency. Nanomaterials 2023, 13, 2209. [Google Scholar] [CrossRef]
- Liu, B.; Song, K.; Xiao, J. Two-Dimensional Optical Metasurfaces: From Plasmons to Dielectrics. Adv. Condens. Matter Phys. 2019, 2019, 2329168. [Google Scholar] [CrossRef]
- Luo, G.; Xie, G.; Zhang, Y.; Zhang, G.; Zhang, Y.; Carlberg, P.; Zhu, T.; Liu, Z. Scanning probe lithography for nanoimprinting mould fabrication. Nanotechnology 2006, 17, 3018. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.-K.; Chae, B.; Ahn, J.; Lee, S. Near-field infrared nanoscopic study of EUV- and e-beam-exposed hydrogen silsesquioxane photoresist. Nano Converg. 2022, 9, 53. [Google Scholar] [CrossRef]
- Tiefenauer, R.F.; Tybrandt, K.; Aramesh, M.; Vörös, J. Fast and Versatile Multiscale Patterning by Combining Template-Stripping with Nanotransfer Printing. ACS Nano 2018, 12, 2514–2520. [Google Scholar] [CrossRef]
- Gwo, S.; Chen, H.-Y.; Lin, M.-H.; Sun, L.; Li, X. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics. Chem. Soc. Rev. 2016, 45, 5672–5716. [Google Scholar] [CrossRef]
- Zhou, L.-M.; Shi, Y.; Zhu, X.; Hu, G.; Cao, G.; Hu, J.; Qiu, C.-W. Recent Progress on Optical Micro/Nanomanipulations: Structured Forces, Structured Particles, and Synergetic Applications. ACS Nano 2022, 16, 13264–13278. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Qi, L. Light Management with Patterned Micro- and Nanostructure Arrays for Photocatalysis, Photovoltaics, and Optoelectronic and Optical Devices. Adv. Funct. Mater. 2019, 29, 1807275. [Google Scholar] [CrossRef]
- Kasani, S.; Curtin, K.; Wu, N. A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light management and sensing applications. Nanophotonics 2019, 8, 2065–2089. [Google Scholar] [CrossRef]
- Wang, H.; Haroldson, R.; Balachandran, B.; Zakhidov, A.; Sohal, S.; Chan, J.Y.; Zakhidov, A.; Hu, W. Nanoimprinted Perovskite Nanograting Photodetector with Improved Efficiency. ACS Nano 2016, 10, 10921–10928. [Google Scholar] [CrossRef]
- Chun, D.H.; Choi, Y.J.; In, Y.; Nam, J.K.; Choi, Y.J.; Yun, S.; Kim, W.; Choi, D.; Kim, D.; Shin, H.; et al. Halide Perovskite Nanopillar Photodetector. ACS Nano 2018, 12, 8564–8571. [Google Scholar] [CrossRef]
- Cao, F.; Tian, W.; Deng, K.; Wang, M.; Li, L. Self-Powered UV–Vis–NIR Photodetector Based on Conjugated-Polymer/CsPbBr3 Nanowire Array. Adv. Funct. Mater. 2019, 29, 1906756. [Google Scholar] [CrossRef]
- Jeong, B.; Han, H.; Kim, H.H.; Choi, W.K.; Park, Y.J.; Park, C. Polymer-Assisted Nanoimprinting for Environment- and Phase-Stable Perovskite Nanopatterns. ACS Nano 2020, 14, 1645–1655. [Google Scholar] [CrossRef]
- Pickering, T.; Shanks, K.; Sundaram, S. Modelling Technique and Analysis of Porous Anti-reflective Coatings for Reducing Wide Angle Reflectance of Thin-film Solar Cells. J. Opt. 2021, 23, 025901. [Google Scholar] [CrossRef]
- Song, Q.; Wang, Y.; Vogelbacher, F.; Zhan, Y.; Zhu, D.; Lan, Y.; Fang, W.; Zhang, Z.; Jiang, L.; Song, Y.; et al. Moiré Perovskite Photodetector toward High-Sensitive Digital Polarization Imaging. Adv. Energy Mater. 2021, 11, 2100742. [Google Scholar] [CrossRef]
- Li, S.-X.; Xia, H.; Liu, T.-Y.; Zhu, H.; Feng, J.-C.; An, Y.; Zhang, X.-L.; Sun, H.-B. In Situ Encapsulated Moiré Perovskite for Stable Photodetectors with Ultrahigh Polarization Sensitivity. Adv. Mater. 2023, 35, 2207771. [Google Scholar] [CrossRef]
- Wang, Y.; Lan, Y.; Song, Q.; Vogelbacher, F.; Xu, T.; Zhan, Y.; Li, M.; Sha, W.E.I.; Song, Y. Colorful Efficient Moiré-Perovskite Solar Cells. Adv. Mater. 2021, 33, 2008091. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Han, S.; Ma, Y.; Li, Y.; Xu, Z.; Luo, J.; Hong, M.; Sun, Z. Ultrasensitive polarized-light photodetectors based on 2D hybrid perovskite ferroelectric crystals with a low detection limit. Sci. Bull. 2021, 66, 158–163. [Google Scholar] [CrossRef]
- Lu, J.; Ye, Q.; Ma, C.; Zheng, Z.; Yao, J.; Yang, G. Dielectric Contrast Tailoring for Polarized Photosensitivity toward Multiplexing Optical Communications and Dynamic Encrypt Technology. ACS Nano 2022, 16, 12852–12865. [Google Scholar] [CrossRef]
- Yi, H.; Ma, C.; Wang, W.; Liang, H.; Cui, R.; Cao, W.; Yang, H.; Ma, Y.; Huang, W.; Zheng, Z.; et al. Quantum tailoring for polarization-discriminating Bi2S3 nanowire photodetectors and their multiplexing optical communication and imaging applications. Mater. Horiz. 2023, 10, 3369–3381. [Google Scholar] [CrossRef]
- Duan, X.; Wang, C.; Pan, A.; Yu, R.; Duan, X. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859–8876. [Google Scholar] [CrossRef]
- Eswaraiah, V.; Zeng, Q.; Long, Y.; Liu, Z. Black Phosphorus Nanosheets: Synthesis, Characterization and Applications. Small 2016, 12, 3480–3502. [Google Scholar] [CrossRef]
- Neupane, G.P.; Zhou, K.; Chen, S.; Yildirim, T.; Zhang, P.; Lu, Y. In-Plane Isotropic/Anisotropic 2D van der Waals Heterostructures for Future Devices. Small 2019, 15, 1804733. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, J.; Zhou, Y.; Wang, Y.; Blankenagel, K.S.; Wang, X.; Tabassum, M.; Su, L. Polarization-Sensitive Photodetector Using Patterned Perovskite Single-Crystalline Thin Films. Adv. Opt. Mater. 2021, 9, 2100524. [Google Scholar] [CrossRef]
- Zhao, Y.; Dong, M.; Feng, J.; Zhao, J.; Guo, Y.; Fu, Y.; Gao, H.; Yang, J.; Jiang, L.; Wu, Y. Lead-Free Chiral 2D Double Perovskite Microwire Arrays for Circularly Polarized Light Detection. Adv. Opt. Mater. 2022, 10, 2102227. [Google Scholar] [CrossRef]
- Han, H.; Oh, J.W.; Park, J.; Lee, H.; Park, C.; Lee, S.W.; Lee, K.; Jeon, S.; Kim, S.; Park, Y.; et al. Hierarchically Ordered Perovskites with High Photo-Electronic and Environmental Stability via Nanoimprinting Guided Block Copolymer Self-Assembly. Adv. Mater. Interfaces 2022, 9, 2200082. [Google Scholar] [CrossRef]
- Kim, I.; Choi, G.E.; Mei, M.; Kim, M.W.; Kim, M.; Kwon, Y.W.; Jeong, T.-I.; Kim, S.; Hong, S.W.; Kyhm, K.; et al. Gain enhancement of perovskite nanosheets by a patterned waveguide: Excitation and temperature dependence of gain saturation. Light Sci. Appl. 2023, 12, 285. [Google Scholar] [CrossRef]
- Ma, F.; Huang, Z.; Ziółek, M.; Yue, S.; Han, X.; Rong, D.; Guo, Z.; Chu, K.; Jia, X.; Wu, Y.; et al. Template-Assisted Synthesis of a Large-Area Ordered Perovskite Nanowire Array for a High-Performance Photodetector. ACS Appl. Mater. Interfaces 2023, 15, 12024–12031. [Google Scholar] [CrossRef]
- Viola, I.; Matteocci, F.; De Marco, L.; Lo Presti, L.; Rizzato, S.; Sennato, S.; Zizzari, A.; Arima, V.; De Santis, A.; Rovelli, C.; et al. Microfluidic-Assisted Growth of Perovskite Single Crystals for Photodetectors. Adv. Mater. Technol. 2023, 8, 2300023. [Google Scholar] [CrossRef]
- Li, X.; Wu, F.; Yao, Y.; Wu, W.; Ji, C.; Li, L.; Sun, Z.; Luo, J.; Liu, X. Robust Spin-Dependent Anisotropy of Circularly Polarized Light Detection from Achiral Layered Hybrid Perovskite Ferroelectric Crystals. J. Am. Chem. Soc. 2022, 144, 14031–14036. [Google Scholar] [CrossRef]
- Zhu, T.; Weng, W.; Ji, C.; Zhang, X.; Ye, H.; Yao, Y.; Li, X.; Li, J.; Lin, W.; Luo, J. Chain-to-Layer Dimensionality Engineering of Chiral Hybrid Perovskites to Realize Passive Highly Circular-Polarization-Sensitive Photodetection. J. Am. Chem. Soc. 2022, 144, 18062–18068. [Google Scholar] [CrossRef]
- Wang, K.; Jing, L.; Yao, Q.; Zhang, J.; Cheng, X.; Yuan, Y.; Shang, C.; Ding, J.; Zhou, T.; Sun, H.; et al. Highly In-Plane Polarization-Sensitive Photodetection in CsPbBr3 Single Crystal. J. Phys. Chem. Lett. 2021, 12, 1904–1910. [Google Scholar] [CrossRef]
- Namgung, S.D.; Kim, R.M.; Lim, Y.-C.; Lee, J.W.; Cho, N.H.; Kim, H.; Huh, J.-S.; Rhee, H.; Nah, S.; Song, M.-K.; et al. Circularly polarized light-sensitive, hot electron transistor with chiral plasmonic nanoparticles. Nat. Commun. 2022, 13, 5081. [Google Scholar] [CrossRef]
- Kim, H.; Kim, R.M.; Namgung, S.D.; Cho, N.H.; Son, J.B.; Bang, K.; Choi, M.; Kim, S.K.; Nam, K.T.; Lee, J.W.; et al. Ultrasensitive Near-Infrared Circularly Polarized Light Detection Using 3D Perovskite Embedded with Chiral Plasmonic Nanoparticles. Adv. Sci. 2022, 9, 2104598. [Google Scholar] [CrossRef]
- Mendoza-Carreño, J.; Molet, P.; Otero-Martínez, C.; Alonso, M.I.; Polavarapu, L.; Mihi, A. Nanoimprinted 2D-Chiral Perovskite Nanocrystal Metasurfaces for Circularly Polarized Photoluminescence. Adv. Mater. 2023, 35, 2210477. [Google Scholar] [CrossRef]
- Liang, S.-Y.; Liu, Y.-F.; Ji, Z.-K.; Xia, H.; Sun, H.-B. High-Resolution Full-Color Quantum Dots Patterning for Display Applications Based on Femtosecond Laser-induced Forward Transfer. Laser Photonics Rev. 2024, 18, 2300388. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiu, Y.; Feng, J.; Zhao, J.; Chen, G.; Gao, H.; Zhao, Y.; Jiang, L.; Wu, Y. Chiral 2D-Perovskite Nanowires for Stokes Photodetectors. J. Am. Chem. Soc. 2021, 143, 8437–8445. [Google Scholar] [CrossRef]
- Basiri, A.; Chen, X.; Bai, J.; Amrollahi, P.; Carpenter, J.; Holman, Z.; Wang, C.; Yao, Y. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light Sci. Appl. 2019, 8, 78. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Kang, L.; Liu, W.; Yu, L.; Zheng, B.; Brongersma, M.L.; Werner, D.H.; Lan, S.; Shi, Y.; et al. Monolithic Full-Stokes Near-Infrared Polarimetry with Chiral Plasmonic Metasurface Integrated Graphene–Silicon Photodetector. ACS Nano 2020, 14, 16634–16642. [Google Scholar] [CrossRef]
- Volochanskyi, O.; Haider, G.; Alharbi, E.A.; Kakavelakis, G.; Mergl, M.; Thakur, M.K.; Krishna, A.; Graetzel, M.; Kalbáč, M. Graphene-Templated Achiral Hybrid Perovskite for Circularly Polarized Light Sensing. ACS Appl. Mater. Interfaces 2024, 16, 52789–52798. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, Z.; Liu, X.; Ren, A.; Ji, S.; Guan, Y.; Liu, Z.; Liu, H.; Li, P.; Hu, F.; et al. Chiral 2D/Quasi-2D Perovskite Heterojunction Nanowire Arrays for High-Performance Full-Stokes Polarization Detection. Adv. Opt. Mater. 2023, 11, 2301239. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Ma, C. Recent Progress and Future Opportunities for Optical Manipulation in Halide Perovskite Photodetectors. Nanomaterials 2025, 15, 816. https://doi.org/10.3390/nano15110816
Zhang J, Ma C. Recent Progress and Future Opportunities for Optical Manipulation in Halide Perovskite Photodetectors. Nanomaterials. 2025; 15(11):816. https://doi.org/10.3390/nano15110816
Chicago/Turabian StyleZhang, Jiarui, and Chi Ma. 2025. "Recent Progress and Future Opportunities for Optical Manipulation in Halide Perovskite Photodetectors" Nanomaterials 15, no. 11: 816. https://doi.org/10.3390/nano15110816
APA StyleZhang, J., & Ma, C. (2025). Recent Progress and Future Opportunities for Optical Manipulation in Halide Perovskite Photodetectors. Nanomaterials, 15(11), 816. https://doi.org/10.3390/nano15110816