Recent Progress and Future Opportunities for Optical Manipulation in Halide Perovskite Photodetectors
Abstract
:1. Introduction
2. Disperse Optical Nanostructures
3. Periodic Optical Nanostructures
4. Polarization Sensitive Photodetector
5. Conclusions and Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Guo, F.-H.; Hao, L.-Z.; Yu, W.-Z.; Li, S.-Q.; Liu, G.-C.; Hao, J.-Y.; Liu, Y.-J. High-performance Si/VO2-nanorod heterojunction photodetector based on photothermoelectric effect for detecting human radiation. Rare Met. 2024, 43, 1177–1185. [Google Scholar] [CrossRef]
- Deng, X.; Li, Z.; Cao, F.; Hong, E.; Fang, X. Woven Fibrous Photodetectors for Scalable UV Optical Communication Device. Adv. Funct. Mater. 2023, 33, 2213334. [Google Scholar] [CrossRef]
- Ouyang, W.; Teng, F.; Fang, X. High Performance BiOCl Nanosheets/TiO2 Nanotube Arrays Heterojunction UV Photodetector: The Influences of Self-Induced Inner Electric Fields in the BiOCl Nanosheets. Adv. Funct. Mater. 2018, 28, 1707178. [Google Scholar] [CrossRef]
- Goldschmidt, V.M. Die Gesetze der Krystallochemie. Naturwissenschaften 1926, 14, 477–485. [Google Scholar] [CrossRef]
- Fu, X.; Cheng, J.; Huang, Q.; Hu, Y.; Xie, W.; Tassaert, M.; Verbist, J.; Ma, K.; Zhang, J.; Chen, K.; et al. 5 × 20 Gb/s heterogeneously integrated III-V on silicon electro-absorption modulator array with arrayed waveguide grating multiplexer. Opt. Express 2015, 23, 18686–18693. [Google Scholar] [CrossRef]
- Akinwande, D.; Huyghebaert, C.; Wang, C.-H.; Serna, M.I.; Goossens, S.; Li, L.-J.; Wong, H.S.P.; Koppens, F.H.L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518. [Google Scholar] [CrossRef]
- Li, J.; Liu, C.; Chen, H.; Guo, J.; Zhang, M.; Dai, D. Hybrid silicon photonic devices with two-dimensional materials. Nanophotonics 2020, 9, 2295–2314. [Google Scholar] [CrossRef]
- Chen, G.; Gallo, E.M.; Burger, J.; Nabet, B.; Cola, A.; Prete, P.; Lovergine, N.; Spanier, J.E. On direct-writing methods for electrically contacting GaAs and Ge nanowire devices. Appl. Phys. Lett. 2010, 96, 223107. [Google Scholar] [CrossRef]
- Chen, G.; Sun, G.; Ding, Y.J.; Prete, P.; Miccoli, I.; Lovergine, N.; Shtrikman, H.; Kung, P.; Livneh, T.; Spanier, J.E. Direct Measurement of Band Edge Discontinuity in Individual Core–Shell Nanowires by Photocurrent Spectroscopy. Nano Lett. 2013, 13, 4152–4157. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, R.; Di Dio, M.; Lomascolo, M.; Rinaldi, R.; Prete, P.; Vasanelli, L.; Vanzetti, L.; Bassani, F.; Bonanni, A.; Sorba, L.; et al. Photocurrent spectroscopy of Zn1−xCdxSe/ZnSe quantum wells in p-i-n heterostructures. Phys. Rev. B 1994, 50, 12179–12182. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.K.; Syed, N.; Balendhran, S.; Abbas, S.A.T.; Ako, R.T.; Low, M.X.; Lobo, C.; Zavabeti, A.; Murdoch, B.J.; Gupta, G.; et al. Atomically Thin Gallium Nitride for High-Performance Photodetection. Adv. Opt. Mater. 2023, 11, 2300438. [Google Scholar] [CrossRef]
- Gao, F.; Reichmanis, E. Introduction: Emerging Materials for Optoelectronics. Chem. Rev. 2023, 123, 10835–10837. [Google Scholar] [CrossRef]
- Wang, H.; Gao, C.; Yan, X. High-Performance and Multifunctional Devices-Based Optoelectronic Memory With the 2D Narrow Bandgap Bi2Te2.7Se0.3. IEEE Electron Device Lett. 2020, 41, 1504–1507. [Google Scholar] [CrossRef]
- Pan, Y.; Hu, H.; Yang, K.; Chen, W.; Lin, L.; Guo, T.; Li, F. Efficient Dual-Functional Quantum Dot Light-Emitting Diodes with UV-Vis-NIR Broad-Spectrum Photosensitivity. Adv. Opt. Mater. 2024, 12, 2400946. [Google Scholar] [CrossRef]
- Lin, C.-H.; Kang, C.-Y.; Wu, T.-Z.; Tsai, C.-L.; Sher, C.-W.; Guan, X.; Lee, P.-T.; Wu, T.; Ho, C.-H.; Kuo, H.-C.; et al. Giant Optical Anisotropy of Perovskite Nanowire Array Films. Adv. Funct. Mater. 2020, 30, 1909275. [Google Scholar] [CrossRef]
- Lin, C.-H.; Li, T.-Y.; Zhang, J.; Chiao, Z.-Y.; Wei, P.-C.; Fu, H.-C.; Hu, L.; Yu, M.-J.; Ahmed, G.H.; Guan, X.; et al. Designed growth and patterning of perovskite nanowires for lasing and wide color gamut phosphors with long-term stability. Nano Energy 2020, 73, 104801. [Google Scholar] [CrossRef]
- Ai, B.; Fan, Z.; Wong, Z.J. Plasmonic–perovskite solar cells, light emitters, and sensors. Microsyst. Nanoeng. 2022, 8, 5. [Google Scholar] [CrossRef]
- Belusso, L.C.S.; Lenz, G.F.; Fiorini, E.E.; Pereira, A.J.; Sequinel, R.; Bini, R.A.; Felix, J.F.; Schneider, R. Synthesis of silver nanoparticles from bottom up approach on borophosphate glass and their applications as SERS, antibacterial and glass-based catalyst. Appl. Surf. Sci. 2019, 473, 303–312. [Google Scholar] [CrossRef]
- Demontis, V.; Durante, O.; Marongiu, D.; De Stefano, S.; Matta, S.; Simbula, A.; Ragazzo Capello, C.; Pennelli, G.; Quochi, F.; Saba, M.; et al. Photoconduction in 2D Single-Crystal Hybrid Perovskites. Adv. Opt. Mater. 2025, 13, 2402469. [Google Scholar] [CrossRef]
- Simbula, A.; Demontis, V.; Quochi, F.; Bongiovanni, G.; Marongiu, D. Recent Advances in Perovskite Single-Crystal Thin Film Optoelectronic Devices. ACS Omega 2024, 9, 36865–36873. [Google Scholar] [CrossRef]
- Saparov, B.; Mitzi, D.B. Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chem. Rev. 2016, 116, 4558–4596. [Google Scholar] [CrossRef]
- Dou, L. Emerging two-dimensional halide perovskite nanomaterials. J. Mater. Chem. C 2017, 5, 11165–11173. [Google Scholar] [CrossRef]
- Soe, C.M.M.; Stoumpos, C.C.; Kepenekian, M.; Traoré, B.; Tsai, H.; Nie, W.; Wang, B.; Katan, C.; Seshadri, R.; Mohite, A.D.; et al. New Type of 2D Perovskites with Alternating Cations in the Interlayer Space, (C(NH2)3)(CH3NH3)nPbnI3n+1: Structure, Properties, and Photovoltaic Performance. J. Am. Chem. Soc. 2017, 139, 16297–16309. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zou, X.; Xu, M.; Wang, H.; Wang, H.; Guo, H.; Guo, J.; Wang, P.; Peng, M.; Wang, Z.; et al. Recent Progress on Electrical and Optical Manipulations of Perovskite Photodetectors. Adv. Sci. 2021, 8, 2100569. [Google Scholar] [CrossRef]
- Min, L.; Sun, H.; Guo, L.; Zhou, Y.; Wang, M.; Cao, F.; Li, L. Pyroelectric-Accelerated Perovskite Photodetector for Picosecond Light Detection and Ranging. Adv. Mater. 2024, 36, 2400279. [Google Scholar] [CrossRef]
- Xing, R.; Li, Z.; Zhao, W.; Wang, D.; Xie, R.; Chen, Y.; Wu, L.; Fang, X. Waterproof and Flexible Perovskite Photodetector Enabled By P-type Organic Molecular Rubrene with High Moisture and Mechanical Stability. Adv. Mater. 2024, 36, 2310248. [Google Scholar] [CrossRef]
- Kim, B.G.; Jang, W.; Cho, J.S.; Wang, D.H. Tailoring solubility of methylammonium lead halide with non-stoichiometry molar ratio in perovskite solar cells: Morphological and electrical relationships for high current generation. Sol. Energy Mater. Sol. Cells 2019, 192, 24–35. [Google Scholar] [CrossRef]
- Fatima, K.; Irfan Haider, M.; Fakharuddin, A.; Akhter, Z.; Sultan, M.; Schmidt-Mende, L. Performance enhancement of CsPbI2Br perovskite solar cells via stoichiometric control and interface engineering. Sol. Energy 2020, 211, 654–660. [Google Scholar] [CrossRef]
- Lu, C.-H.; Biesold-McGee, G.V.; Liu, Y.; Kang, Z.; Lin, Z. Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chem. Soc. Rev. 2020, 49, 4953–5007. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Chen, J.; Guan, P.; Zheng, D.; Kong, Q.; Yang, S.; Zhou, P.; Yang, B.; Pullerits, T.; Han, K. Controlling Photoluminescence and Photocatalysis Activities in Lead-Free Cs2PtSn1−Cl6 Perovskites via Ion Substitution. Angew. Chem. Int. Ed. 2021, 60, 22693–22699. [Google Scholar] [CrossRef]
- Gao, Q.; Qi, J.; Chen, K.; Xia, M.; Hu, Y.; Mei, A.; Han, H. Halide Perovskite Crystallization Processes and Methods in Nanocrystals, Single Crystals, and Thin Films. Adv. Mater. 2022, 34, 2200720. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Zhang, X.; Lammar, S.; Qiu, W.; Kuang, Y.; Ruttens, B.; D’Haen, J.; Vaesen, I.; Conard, T.; Abdulraheem, Y.; et al. Critical Role of Perovskite Film Stoichiometry in Determining Solar Cell Operational Stability: A Study on the Effects of Volatile A-Cation Additives. ACS Appl. Mater. Interfaces 2022, 14, 27922–27931. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Xiong, M.; Fan, K.; Bao, C.; Xin, D.; Pan, Z.; Fei, L.; Huang, H.; Zhou, L.; Yao, K.; et al. Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nat. Photonics 2022, 16, 575–581. [Google Scholar] [CrossRef]
- Isikgor, F.H.; Zhumagali, S.; T. Merino, L.V.; De Bastiani, M.; McCulloch, I.; De Wolf, S. Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 2023, 8, 89–108. [Google Scholar] [CrossRef]
- Liu, C.; Yang, Y.; Chen, H.; Xu, J.; Liu, A.; Bati, A.S.R.; Zhu, H.; Grater, L.; Hadke, S.S.; Huang, C.; et al. Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science 2023, 382, 810–815. [Google Scholar] [CrossRef]
- Zhu, M.; Xia, Y.; Qin, L.; Zhang, K.; Liang, J.; Zhao, C.; Hong, D.; Jiang, M.; Song, X.; Wei, J.; et al. Reducing surficial and interfacial defects by thiocyanate ionic liquid additive and ammonium formate passivator for efficient and stable perovskite solar cells. Nano Res. 2023, 16, 6849–6858. [Google Scholar] [CrossRef]
- Zhao, L.; Shi, Z.; Zhou, Y.; Wang, X.; Xian, Y.; Dong, Y.; Reid, O.; Ni, Z.; Beard, M.C.; Yan, Y.; et al. Surface-defect-passivation-enabled near-unity charge collection efficiency in bromide-based perovskite gamma-ray spectrum devices. Nat. Photonics 2024, 18, 250–257. [Google Scholar] [CrossRef]
- Liu, Z.; Ono, L.K.; Qi, Y. Additives in metal halide perovskite films and their applications in solar cells. J. Energy Chem. 2020, 46, 215–228. [Google Scholar] [CrossRef]
- Talebi, H.; Emami, F. High performance ultra-thin perovskite solar cell by surface plasmon polaritons and waveguide modes. Opt. Laser Technol. 2023, 165, 109552. [Google Scholar] [CrossRef]
- Ooi, Z.Y.; Jiménez-Solano, A.; Gałkowski, K.; Sun, Y.; Ferrer Orri, J.; Frohna, K.; Salway, H.; Kahmann, S.; Nie, S.; Vega, G.; et al. Strong angular and spectral narrowing of electroluminescence in an integrated Tamm-plasmon-driven halide perovskite LED. Nat. Commun. 2024, 15, 5802. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Hu, W. Organic photodiodes and phototransistors toward infrared detection: Materials, devices, and applications. Chem. Soc. Rev. 2020, 49, 653–670. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Liu, C.-K.; Loi, H.-L.; Yan, F. Perovskite-Based Phototransistors and Hybrid Photodetectors. Adv. Funct. Mater. 2020, 30, 1903907. [Google Scholar] [CrossRef]
- Lan, Z.; Lee, M.-H.; Zhu, F. Recent Advances in Solution-Processable Organic Photodetectors and Applications in Flexible Electronics. Adv. Intell. Syst. 2022, 4, 2100167. [Google Scholar] [CrossRef]
- Ma, X.; Xu, Y.; Li, S.; Lo, T.W.; Zhang, B.; Rogach, A.L.; Lei, D. A Flexible Plasmonic-Membrane-Enhanced Broadband Tin-Based Perovskite Photodetector. Nano Lett. 2021, 21, 9195–9202. [Google Scholar] [CrossRef]
- Vila-Liarte, D.; Feil, M.W.; Manzi, A.; Garcia-Pomar, J.L.; Huang, H.; Döblinger, M.; Liz-Marzán, L.M.; Feldmann, J.; Polavarapu, L.; Mihi, A. Templated-Assembly of CsPbBr3 Perovskite Nanocrystals into 2D Photonic Supercrystals with Amplified Spontaneous Emission. Angew. Chem. Int. Ed. 2020, 59, 17750–17756. [Google Scholar] [CrossRef]
- Liu, T.; Yang, C.; Fan, Z.; Chen, X.; Chen, Z.; Su, Y.; Zhu, H.; Sun, F.; Jiang, T.; Zhu, W.; et al. Spectral Narrowing and Enhancement of Directional Emission of Perovskite Light Emitting Diode by Microcavity. Laser Photonics Rev. 2022, 16, 2200091. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, B.; Meng, Z.; Zhang, S.; Wu, S. Inverse opal photonic crystal stabilized CsPbX3 perovskite quantum dots and their application in white LED. Chem. Eng. J. 2022, 432, 134409. [Google Scholar] [CrossRef]
- Di Virgilio, L.; Geuchies, J.J.; Kim, H.; Krewer, K.; Wang, H.; Grechko, M.; Bonn, M. Controlling the electro-optic response of a semiconducting perovskite coupled to a phonon-resonant cavity. Light Sci. Appl. 2023, 12, 183. [Google Scholar] [CrossRef] [PubMed]
- Hutter, E.; Fendler, J.H. Exploitation of Localized Surface Plasmon Resonance. Adv. Mater. 2004, 16, 1685–1706. [Google Scholar] [CrossRef]
- Ma, X.-C.; Dai, Y.; Yu, L.; Huang, B.-B. Energy transfer in plasmonic photocatalytic composites. Light Sci. Appl. 2016, 5, e16017. [Google Scholar] [CrossRef]
- Choi, K.; Lee, J.; Choi, H.; Kim, G.-W.; Kim, H.I.; Park, T. Heat dissipation effects on the stability of planar perovskite solar cells. Energy Environ. Sci. 2020, 13, 5059–5067. [Google Scholar] [CrossRef]
- Zhang, W.; Saliba, M.; Stranks, S.D.; Sun, Y.; Shi, X.; Wiesner, U.; Snaith, H.J. Enhancement of Perovskite-Based Solar Cells Employing Core–Shell Metal Nanoparticles. Nano Lett. 2013, 13, 4505–4510. [Google Scholar] [CrossRef]
- Sui, M.; Kunwar, S.; Pandey, P.; Lee, J. Strongly confined localized surface plasmon resonance (LSPR) bands of Pt, AgPt, AgAuPt nanoparticles. Sci. Rep. 2019, 9, 16582. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, L. Nanostructures for surface plasmons. Adv. Opt. Photon. 2012, 4, 157–321. [Google Scholar] [CrossRef]
- Erwin, W.R.; Zarick, H.F.; Talbert, E.M.; Bardhan, R. Light trapping in mesoporous solar cells with plasmonic nanostructures. Energy Environ. Sci. 2016, 9, 1577–1601. [Google Scholar] [CrossRef]
- Petryayeva, E.; Krull, U.J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Anal. Chim. Acta 2011, 706, 8–24. [Google Scholar] [CrossRef]
- Furube, A.; Hashimoto, S. Insight into plasmonic hot-electron transfer and plasmon molecular drive: New dimensions in energy conversion and nanofabrication. NPG Asia Mater. 2017, 9, e454. [Google Scholar] [CrossRef]
- Valenti, M.; Jonsson, M.P.; Biskos, G.; Schmidt-Ott, A.; Smith, W.A. Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting. J. Mater. Chem. A 2016, 4, 17891–17912. [Google Scholar] [CrossRef]
- Luo, X.; Zhao, F.; Liang, Y.; Du, L.; Lv, W.; Xu, K.; Wang, Y.; Peng, Y. Facile Nanogold–Perovskite Enabling Ultrasensitive Flexible Broadband Photodetector with pW Scale Detection Limit. Adv. Opt. Mater. 2018, 6, 1800996. [Google Scholar] [CrossRef]
- La, J.A.; Lee, S.; Hong, A.R.; Byun, J.Y.; Kang, J.; Han, I.K.; Cho, Y.; Kang, G.; Jang, H.S.; Ko, H. A Super-Boosted Hybrid Plasmonic Upconversion Process for Photodetection at 1550 nm Wavelength. Adv. Mater. 2022, 34, 2106225. [Google Scholar] [CrossRef]
- Wang, H.; Lim, J.W.; Quan, L.N.; Chung, K.; Jang, Y.J.; Ma, Y.; Kim, D.H. Perovskite–Gold Nanorod Hybrid Photodetector with High Responsivity and Low Driving Voltage. Adv. Opt. Mater. 2018, 6, 1701397. [Google Scholar] [CrossRef]
- Du, B.; Yang, W.; Jiang, Q.; Shan, H.; Luo, D.; Li, B.; Tang, W.; Lin, F.; Shen, B.; Gong, Q.; et al. Plasmonic-Functionalized Broadband Perovskite Photodetector. Adv. Opt. Mater. 2018, 6, 1701271. [Google Scholar] [CrossRef]
- Wang, B.; Zou, Y.; Lu, H.; Kong, W.; Singh, S.C.; Zhao, C.; Yao, C.; Xing, J.; Zheng, X.; Yu, Z.; et al. Boosting Perovskite Photodetector Performance in NIR Using Plasmonic Bowtie Nanoantenna Arrays. Small 2020, 16, 2001417. [Google Scholar] [CrossRef] [PubMed]
- Lachebi, I.; Fedala, A.; Djenizian, T.; Hadjersi, T.; Kechouane, M. Morphological and optical properties of aluminum nanoparticles deposited by thermal evaporation on heated substrates. Surf. Coat. Technol. 2018, 343, 160–165. [Google Scholar] [CrossRef]
- Das, P.K.; Dhawan, A. Plasmonic enhancement of photovoltaic characteristics of organic solar cells by employing parabola nanostructures at the back of the solar cell. RSC Adv. 2023, 13, 26780–26792. [Google Scholar] [CrossRef]
- Neuman, T.; Huck, C.; Vogt, J.; Neubrech, F.; Hillenbrand, R.; Aizpurua, J.; Pucci, A. Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas. J. Phys. Chem. C 2015, 119, 26652–26662. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, C.-H.; Debnath, T.; Wang, Y.; Pohl, D.; Besteiro, L.V.; Meira, D.M.; Huang, S.; Yang, F.; Rellinghaus, B.; et al. Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution. Nat. Commun. 2023, 14, 541. [Google Scholar] [CrossRef]
- Liu, B.; Gutha, R.R.; Kattel, B.; Alamri, M.; Gong, M.; Sadeghi, S.M.; Chan, W.-L.; Wu, J.Z. Using Silver Nanoparticles-Embedded Silica Metafilms as Substrates to Enhance the Performance of Perovskite Photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 32301–32309. [Google Scholar] [CrossRef]
- Yip, C.T.; Liu, X.; Hou, Y.; Xie, W.; He, J.; Schlücker, S.; Dang Yuan, L.; Huang, H. Strong competition between electromagnetic enhancement and surface-energy-transfer induced quenching in plasmonic dye-sensitized solar cells: A generic yet controllable effect. Nano Energy 2016, 26, 297–304. [Google Scholar] [CrossRef]
- Jennings, T.L.; Singh, M.P.; Strouse, G.F. Fluorescent Lifetime Quenching near d = 1.5 nm Gold Nanoparticles: Probing NSET Validity. J. Am. Chem. Soc. 2006, 128, 5462–5467. [Google Scholar] [CrossRef]
- Li, M.-Y.; Shen, K.; Xu, H.; Ren, A.; Lee, J.; Kunwar, S.; Liu, S.; Wu, J. Enhanced Spatial Light Confinement of All Inorganic Perovskite Photodetectors Based on Hybrid Plasmonic Nanostructures. Small 2020, 16, 2004234. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, H.; Yu, P.; Wang, Z. Engineering plasmonic hot carrier dynamics toward efficient photodetection. Appl. Phys. Rev. 2021, 8, 021305. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, L.; Zhao, Y.; Wang, S.; Song, J.; Zou, Y.; Zeng, H. The Synergy of Plasmonic Enhancement and Hot-Electron Effect on CsPbBr3 Nanosheets Photodetector. Adv. Mater. Interfaces 2021, 8, 2002053. [Google Scholar] [CrossRef]
- Yao, K.; Li, S.; Liu, Z.; Ying, Y.; Dvořák, P.; Fei, L.; Šikola, T.; Huang, H.; Nordlander, P.; Jen, A.K.Y.; et al. Plasmon-induced trap filling at grain boundaries in perovskite solar cells. Light Sci. Appl. 2021, 10, 219. [Google Scholar] [CrossRef]
- Li, F.; Lo, T.W.; Deng, X.; Li, S.; Fan, Y.; Lin, F.R.; Cheng, Y.; Zhu, Z.; Lei, D.; Jen, A.K.Y. Plasmonic Local Heating Induced Strain Modulation for Enhanced Efficiency and Stability of Perovskite Solar Cells. Adv. Energy Mater. 2022, 12, 2200186. [Google Scholar] [CrossRef]
- Suárez, I.; Ferrando, A.; Marques-Hueso, J.; Díez, A.; Abargues, R.; Rodríguez-Cantó, P.J.; Martínez-Pastor, J.P. Propagation length enhancement of surface plasmon polaritons in gold nano-/micro-waveguides by the interference with photonic modes in the surrounding active dielectrics. Nanophotonics 2017, 6, 1109–1120. [Google Scholar] [CrossRef]
- Zamkoye, I.I.; Lucas, B.; Vedraine, S. Synergistic Effects of LSPR, SPP, and Waveguide Plasmonic Resonance on the Same Material: A Promising Hypothesis to Enhanced Organic Solar Cells Efficiency. Nanomaterials 2023, 13, 2209. [Google Scholar] [CrossRef]
- Liu, B.; Song, K.; Xiao, J. Two-Dimensional Optical Metasurfaces: From Plasmons to Dielectrics. Adv. Condens. Matter Phys. 2019, 2019, 2329168. [Google Scholar] [CrossRef]
- Luo, G.; Xie, G.; Zhang, Y.; Zhang, G.; Zhang, Y.; Carlberg, P.; Zhu, T.; Liu, Z. Scanning probe lithography for nanoimprinting mould fabrication. Nanotechnology 2006, 17, 3018. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.-K.; Chae, B.; Ahn, J.; Lee, S. Near-field infrared nanoscopic study of EUV- and e-beam-exposed hydrogen silsesquioxane photoresist. Nano Converg. 2022, 9, 53. [Google Scholar] [CrossRef]
- Tiefenauer, R.F.; Tybrandt, K.; Aramesh, M.; Vörös, J. Fast and Versatile Multiscale Patterning by Combining Template-Stripping with Nanotransfer Printing. ACS Nano 2018, 12, 2514–2520. [Google Scholar] [CrossRef]
- Gwo, S.; Chen, H.-Y.; Lin, M.-H.; Sun, L.; Li, X. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics. Chem. Soc. Rev. 2016, 45, 5672–5716. [Google Scholar] [CrossRef]
- Zhou, L.-M.; Shi, Y.; Zhu, X.; Hu, G.; Cao, G.; Hu, J.; Qiu, C.-W. Recent Progress on Optical Micro/Nanomanipulations: Structured Forces, Structured Particles, and Synergetic Applications. ACS Nano 2022, 16, 13264–13278. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Qi, L. Light Management with Patterned Micro- and Nanostructure Arrays for Photocatalysis, Photovoltaics, and Optoelectronic and Optical Devices. Adv. Funct. Mater. 2019, 29, 1807275. [Google Scholar] [CrossRef]
- Kasani, S.; Curtin, K.; Wu, N. A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light management and sensing applications. Nanophotonics 2019, 8, 2065–2089. [Google Scholar] [CrossRef]
- Wang, H.; Haroldson, R.; Balachandran, B.; Zakhidov, A.; Sohal, S.; Chan, J.Y.; Zakhidov, A.; Hu, W. Nanoimprinted Perovskite Nanograting Photodetector with Improved Efficiency. ACS Nano 2016, 10, 10921–10928. [Google Scholar] [CrossRef]
- Chun, D.H.; Choi, Y.J.; In, Y.; Nam, J.K.; Choi, Y.J.; Yun, S.; Kim, W.; Choi, D.; Kim, D.; Shin, H.; et al. Halide Perovskite Nanopillar Photodetector. ACS Nano 2018, 12, 8564–8571. [Google Scholar] [CrossRef]
- Cao, F.; Tian, W.; Deng, K.; Wang, M.; Li, L. Self-Powered UV–Vis–NIR Photodetector Based on Conjugated-Polymer/CsPbBr3 Nanowire Array. Adv. Funct. Mater. 2019, 29, 1906756. [Google Scholar] [CrossRef]
- Jeong, B.; Han, H.; Kim, H.H.; Choi, W.K.; Park, Y.J.; Park, C. Polymer-Assisted Nanoimprinting for Environment- and Phase-Stable Perovskite Nanopatterns. ACS Nano 2020, 14, 1645–1655. [Google Scholar] [CrossRef]
- Pickering, T.; Shanks, K.; Sundaram, S. Modelling Technique and Analysis of Porous Anti-reflective Coatings for Reducing Wide Angle Reflectance of Thin-film Solar Cells. J. Opt. 2021, 23, 025901. [Google Scholar] [CrossRef]
- Song, Q.; Wang, Y.; Vogelbacher, F.; Zhan, Y.; Zhu, D.; Lan, Y.; Fang, W.; Zhang, Z.; Jiang, L.; Song, Y.; et al. Moiré Perovskite Photodetector toward High-Sensitive Digital Polarization Imaging. Adv. Energy Mater. 2021, 11, 2100742. [Google Scholar] [CrossRef]
- Li, S.-X.; Xia, H.; Liu, T.-Y.; Zhu, H.; Feng, J.-C.; An, Y.; Zhang, X.-L.; Sun, H.-B. In Situ Encapsulated Moiré Perovskite for Stable Photodetectors with Ultrahigh Polarization Sensitivity. Adv. Mater. 2023, 35, 2207771. [Google Scholar] [CrossRef]
- Wang, Y.; Lan, Y.; Song, Q.; Vogelbacher, F.; Xu, T.; Zhan, Y.; Li, M.; Sha, W.E.I.; Song, Y. Colorful Efficient Moiré-Perovskite Solar Cells. Adv. Mater. 2021, 33, 2008091. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Han, S.; Ma, Y.; Li, Y.; Xu, Z.; Luo, J.; Hong, M.; Sun, Z. Ultrasensitive polarized-light photodetectors based on 2D hybrid perovskite ferroelectric crystals with a low detection limit. Sci. Bull. 2021, 66, 158–163. [Google Scholar] [CrossRef]
- Lu, J.; Ye, Q.; Ma, C.; Zheng, Z.; Yao, J.; Yang, G. Dielectric Contrast Tailoring for Polarized Photosensitivity toward Multiplexing Optical Communications and Dynamic Encrypt Technology. ACS Nano 2022, 16, 12852–12865. [Google Scholar] [CrossRef]
- Yi, H.; Ma, C.; Wang, W.; Liang, H.; Cui, R.; Cao, W.; Yang, H.; Ma, Y.; Huang, W.; Zheng, Z.; et al. Quantum tailoring for polarization-discriminating Bi2S3 nanowire photodetectors and their multiplexing optical communication and imaging applications. Mater. Horiz. 2023, 10, 3369–3381. [Google Scholar] [CrossRef]
- Duan, X.; Wang, C.; Pan, A.; Yu, R.; Duan, X. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859–8876. [Google Scholar] [CrossRef]
- Eswaraiah, V.; Zeng, Q.; Long, Y.; Liu, Z. Black Phosphorus Nanosheets: Synthesis, Characterization and Applications. Small 2016, 12, 3480–3502. [Google Scholar] [CrossRef]
- Neupane, G.P.; Zhou, K.; Chen, S.; Yildirim, T.; Zhang, P.; Lu, Y. In-Plane Isotropic/Anisotropic 2D van der Waals Heterostructures for Future Devices. Small 2019, 15, 1804733. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, J.; Zhou, Y.; Wang, Y.; Blankenagel, K.S.; Wang, X.; Tabassum, M.; Su, L. Polarization-Sensitive Photodetector Using Patterned Perovskite Single-Crystalline Thin Films. Adv. Opt. Mater. 2021, 9, 2100524. [Google Scholar] [CrossRef]
- Zhao, Y.; Dong, M.; Feng, J.; Zhao, J.; Guo, Y.; Fu, Y.; Gao, H.; Yang, J.; Jiang, L.; Wu, Y. Lead-Free Chiral 2D Double Perovskite Microwire Arrays for Circularly Polarized Light Detection. Adv. Opt. Mater. 2022, 10, 2102227. [Google Scholar] [CrossRef]
- Han, H.; Oh, J.W.; Park, J.; Lee, H.; Park, C.; Lee, S.W.; Lee, K.; Jeon, S.; Kim, S.; Park, Y.; et al. Hierarchically Ordered Perovskites with High Photo-Electronic and Environmental Stability via Nanoimprinting Guided Block Copolymer Self-Assembly. Adv. Mater. Interfaces 2022, 9, 2200082. [Google Scholar] [CrossRef]
- Kim, I.; Choi, G.E.; Mei, M.; Kim, M.W.; Kim, M.; Kwon, Y.W.; Jeong, T.-I.; Kim, S.; Hong, S.W.; Kyhm, K.; et al. Gain enhancement of perovskite nanosheets by a patterned waveguide: Excitation and temperature dependence of gain saturation. Light Sci. Appl. 2023, 12, 285. [Google Scholar] [CrossRef]
- Ma, F.; Huang, Z.; Ziółek, M.; Yue, S.; Han, X.; Rong, D.; Guo, Z.; Chu, K.; Jia, X.; Wu, Y.; et al. Template-Assisted Synthesis of a Large-Area Ordered Perovskite Nanowire Array for a High-Performance Photodetector. ACS Appl. Mater. Interfaces 2023, 15, 12024–12031. [Google Scholar] [CrossRef]
- Viola, I.; Matteocci, F.; De Marco, L.; Lo Presti, L.; Rizzato, S.; Sennato, S.; Zizzari, A.; Arima, V.; De Santis, A.; Rovelli, C.; et al. Microfluidic-Assisted Growth of Perovskite Single Crystals for Photodetectors. Adv. Mater. Technol. 2023, 8, 2300023. [Google Scholar] [CrossRef]
- Li, X.; Wu, F.; Yao, Y.; Wu, W.; Ji, C.; Li, L.; Sun, Z.; Luo, J.; Liu, X. Robust Spin-Dependent Anisotropy of Circularly Polarized Light Detection from Achiral Layered Hybrid Perovskite Ferroelectric Crystals. J. Am. Chem. Soc. 2022, 144, 14031–14036. [Google Scholar] [CrossRef]
- Zhu, T.; Weng, W.; Ji, C.; Zhang, X.; Ye, H.; Yao, Y.; Li, X.; Li, J.; Lin, W.; Luo, J. Chain-to-Layer Dimensionality Engineering of Chiral Hybrid Perovskites to Realize Passive Highly Circular-Polarization-Sensitive Photodetection. J. Am. Chem. Soc. 2022, 144, 18062–18068. [Google Scholar] [CrossRef]
- Wang, K.; Jing, L.; Yao, Q.; Zhang, J.; Cheng, X.; Yuan, Y.; Shang, C.; Ding, J.; Zhou, T.; Sun, H.; et al. Highly In-Plane Polarization-Sensitive Photodetection in CsPbBr3 Single Crystal. J. Phys. Chem. Lett. 2021, 12, 1904–1910. [Google Scholar] [CrossRef]
- Namgung, S.D.; Kim, R.M.; Lim, Y.-C.; Lee, J.W.; Cho, N.H.; Kim, H.; Huh, J.-S.; Rhee, H.; Nah, S.; Song, M.-K.; et al. Circularly polarized light-sensitive, hot electron transistor with chiral plasmonic nanoparticles. Nat. Commun. 2022, 13, 5081. [Google Scholar] [CrossRef]
- Kim, H.; Kim, R.M.; Namgung, S.D.; Cho, N.H.; Son, J.B.; Bang, K.; Choi, M.; Kim, S.K.; Nam, K.T.; Lee, J.W.; et al. Ultrasensitive Near-Infrared Circularly Polarized Light Detection Using 3D Perovskite Embedded with Chiral Plasmonic Nanoparticles. Adv. Sci. 2022, 9, 2104598. [Google Scholar] [CrossRef]
- Mendoza-Carreño, J.; Molet, P.; Otero-Martínez, C.; Alonso, M.I.; Polavarapu, L.; Mihi, A. Nanoimprinted 2D-Chiral Perovskite Nanocrystal Metasurfaces for Circularly Polarized Photoluminescence. Adv. Mater. 2023, 35, 2210477. [Google Scholar] [CrossRef]
- Liang, S.-Y.; Liu, Y.-F.; Ji, Z.-K.; Xia, H.; Sun, H.-B. High-Resolution Full-Color Quantum Dots Patterning for Display Applications Based on Femtosecond Laser-induced Forward Transfer. Laser Photonics Rev. 2024, 18, 2300388. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiu, Y.; Feng, J.; Zhao, J.; Chen, G.; Gao, H.; Zhao, Y.; Jiang, L.; Wu, Y. Chiral 2D-Perovskite Nanowires for Stokes Photodetectors. J. Am. Chem. Soc. 2021, 143, 8437–8445. [Google Scholar] [CrossRef]
- Basiri, A.; Chen, X.; Bai, J.; Amrollahi, P.; Carpenter, J.; Holman, Z.; Wang, C.; Yao, Y. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light Sci. Appl. 2019, 8, 78. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Kang, L.; Liu, W.; Yu, L.; Zheng, B.; Brongersma, M.L.; Werner, D.H.; Lan, S.; Shi, Y.; et al. Monolithic Full-Stokes Near-Infrared Polarimetry with Chiral Plasmonic Metasurface Integrated Graphene–Silicon Photodetector. ACS Nano 2020, 14, 16634–16642. [Google Scholar] [CrossRef]
- Volochanskyi, O.; Haider, G.; Alharbi, E.A.; Kakavelakis, G.; Mergl, M.; Thakur, M.K.; Krishna, A.; Graetzel, M.; Kalbáč, M. Graphene-Templated Achiral Hybrid Perovskite for Circularly Polarized Light Sensing. ACS Appl. Mater. Interfaces 2024, 16, 52789–52798. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, Z.; Liu, X.; Ren, A.; Ji, S.; Guan, Y.; Liu, Z.; Liu, H.; Li, P.; Hu, F.; et al. Chiral 2D/Quasi-2D Perovskite Heterojunction Nanowire Arrays for High-Performance Full-Stokes Polarization Detection. Adv. Opt. Mater. 2023, 11, 2301239. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Ma, C. Recent Progress and Future Opportunities for Optical Manipulation in Halide Perovskite Photodetectors. Nanomaterials 2025, 15, 816. https://doi.org/10.3390/nano15110816
Zhang J, Ma C. Recent Progress and Future Opportunities for Optical Manipulation in Halide Perovskite Photodetectors. Nanomaterials. 2025; 15(11):816. https://doi.org/10.3390/nano15110816
Chicago/Turabian StyleZhang, Jiarui, and Chi Ma. 2025. "Recent Progress and Future Opportunities for Optical Manipulation in Halide Perovskite Photodetectors" Nanomaterials 15, no. 11: 816. https://doi.org/10.3390/nano15110816
APA StyleZhang, J., & Ma, C. (2025). Recent Progress and Future Opportunities for Optical Manipulation in Halide Perovskite Photodetectors. Nanomaterials, 15(11), 816. https://doi.org/10.3390/nano15110816