Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (266)

Search Parameters:
Keywords = phospholipid fatty acid analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3121 KiB  
Article
Seasonal Changes in the Soil Microbiome on Chernozem Soil in Response to Tillage, Fertilization, and Cropping System
by Andrea Balla Kovács, Evelin Kármen Juhász, Áron Béni, Costa Gumisiriya, Magdolna Tállai, Anita Szabó, Ida Kincses, Tibor Novák, András Tamás and Rita Kremper
Agronomy 2025, 15(8), 1887; https://doi.org/10.3390/agronomy15081887 - 5 Aug 2025
Abstract
Soil microbial communities are crucial for ecosystem services, soil fertility, and the resilience of agroecosystems. This study investigated how long-term (31 years) agronomic practices—tillage, NPK fertilization, and cropping system—along with measured environmental variables influence the microbial biomass and its community composition in Chernozem [...] Read more.
Soil microbial communities are crucial for ecosystem services, soil fertility, and the resilience of agroecosystems. This study investigated how long-term (31 years) agronomic practices—tillage, NPK fertilization, and cropping system—along with measured environmental variables influence the microbial biomass and its community composition in Chernozem soil under corn cultivation. The polyfactorial field experiment included three tillage treatments ((moldboard (MT), ripped (RT), strip (ST)), two fertilization regimes (NPK (N: 160; P: 26; K: 74 kg/ha), and unfertilized control) and two cropping systems (corn monoculture and corn–wheat biculture). The soil samples (0–30 cm) were collected in June and September 2023. Microbial biomass and community structure were quantified using phospholipid fatty acid (PLFA) analysis, which allowed the estimation of total microbial biomass and community composition (arbuscular mycorrhizal (AM) fungi, fungi, Gram-negative (GN) and Gram-positive (GP) bacteria, actinomycetes). Our results showed that microbial biomass increased from June to September, rising by 270% in unfertilized plots and by 135% in NPK-fertilized plots, due to higher soil moisture. Reduced tillage, especially ST, promoted significantly higher microbial biomass, with biomass reaching 290% and 182% of that in MT plots in June and September, respectively. MT had a higher ratio of bacteria-to-fungi compared to RT and ST, indicating a greater sensitivity of fungi to disturbance. NPK fertilization lowered soil pH by about one unit (to 4.1–4.8) and reduced microbial biomass—by 2% in June and 48% in September—compared to the control, with the particular suppression of AM fungi. The cropping system had a smaller overall effect on microbial biomass. Full article
Show Figures

Figure 1

20 pages, 1379 KiB  
Article
Combined Effects of Polyethylene and Bordeaux Mixture on the Soil–Plant System: Phytotoxicity, Copper Accumulation and Changes in Microbial Abundance
by Silvia Romeo-Río, Huguette Meta Foguieng, Antía Gómez-Armesto, Manuel Conde-Cid, David Fernández-Calviño and Andrés Rodríguez-Seijo
Agriculture 2025, 15(15), 1657; https://doi.org/10.3390/agriculture15151657 - 1 Aug 2025
Viewed by 271
Abstract
Greenhouses have positively impacted plant production by allowing the cultivation of different crops per year. However, the accumulation of agricultural plastics, potentially contaminated with agrochemicals, raises environmental concerns. This work evaluates the combined effect of Bordeaux mixture and low-density polyethylene (LDPE) microplastics (<5 [...] Read more.
Greenhouses have positively impacted plant production by allowing the cultivation of different crops per year. However, the accumulation of agricultural plastics, potentially contaminated with agrochemicals, raises environmental concerns. This work evaluates the combined effect of Bordeaux mixture and low-density polyethylene (LDPE) microplastics (<5 mm) on the growth of lettuce (Lactuca sativa L.) and soil microbial communities. Different levels of Bordeaux mixture (0, 100 and 500 mg kg−1), equivalent to Cu(II) concentrations (0, 17 and 83 mg kg−1), LDPE microplastics (0, 1% and 5%) and their combination were selected. After 28 days of growth, biometric and photosynthetic parameters, Cu uptake, and soil microbial responses were evaluated. Plant germination and growth were not significantly affected by the combination of Cu and plastics. However, individual Cu treatments influenced root and shoot length and biomass. Chlorophyll and carotenoid concentrations increased with Cu addition, although the differences were not statistically significant. Phospholipid fatty acid (PLFA) analysis revealed a reduction in microbial biomass at the highest Cu dose, whereas LDPE alone showed limited effects and may reduce Cu bioavailability. These results suggest that even at the highest concentration added, Cu can act as a plant nutrient, while the combination of Cu–plastics showed varying effects on plant growth and soil microbial communities. Full article
(This article belongs to the Special Issue Impacts of Emerging Agricultural Pollutants on Environmental Health)
Show Figures

Figure 1

14 pages, 1849 KiB  
Article
Climate-Driven Microbial Communities Regulate Soil Organic Carbon Stocks Along the Elevational Gradient on Alpine Grassland over the Qinghai–Tibet Plateau
by Xiaomei Mo, Jinhong He, Guo Zheng, Xiangping Tan and Shuyan Cui
Agronomy 2025, 15(8), 1810; https://doi.org/10.3390/agronomy15081810 - 26 Jul 2025
Viewed by 320
Abstract
The Qinghai–Tibet Plateau, a region susceptible to global change, stores substantial amounts of soil organic carbon (SOC) in its alpine grassland. However, little is known about how SOC is regulated by soil microbial communities, which vary with elevation, mean annual temperature (MAT), and [...] Read more.
The Qinghai–Tibet Plateau, a region susceptible to global change, stores substantial amounts of soil organic carbon (SOC) in its alpine grassland. However, little is known about how SOC is regulated by soil microbial communities, which vary with elevation, mean annual temperature (MAT), and mean annual precipitation (MAP). This study integrates phospholipid fatty acid (PLFA) analysis to simultaneously resolve microbial biomass, community composition, and membrane lipid adaptations along an elevational gradient (2861–5090 m) on the Qinghai–Tibet Plateau. This study found that microbial PLFAs increased significantly with rising MAP, while the relationship with MAT was nonlinear. PLFAs of different microbial groups all had a positive effect on SOC storage. At higher altitudes (characterized by lower MAP and lower MAT), Gram-positive bacteria dominated bacterial communities, and fungi dominated the overall microbial community, highlighting microbial structural adaptations as key regulators of carbon storage. Saturated fatty acids with branches of soil microbial membrane dominated across sites, but their prevalence over unsaturated fatty acids decreased at high elevations. These findings establish a mechanistic link between climate-driven microbial community restructuring and SOC vulnerability on the QTP, providing a predictive framework for carbon–climate feedbacks in alpine systems under global warming. Full article
(This article belongs to the Special Issue Soil Carbon Sequestration for Mitigating Climate Change in Grasslands)
Show Figures

Figure 1

20 pages, 4729 KiB  
Article
Cis-Palmitoleic Acid Regulates Lipid Metabolism via Diacylglycerol Metabolic Shunting
by Wenwen Huang, Bei Gao, Longxiang Liu, Qi Song, Mengru Wei, Hongzhen Li, Chunlong Sun, Wang Li, Wen Du and Jinjun Shan
Foods 2025, 14(14), 2504; https://doi.org/10.3390/foods14142504 - 17 Jul 2025
Viewed by 371
Abstract
Obesity and related metabolic disorders are closely linked to dysregulated lipid metabolism, where the metabolic balance of diacylglycerol (DAG) played a pivotal role. Although cis-palmitoleic acid (cPOA) exhibits anti-obesity effects, its efficacy varies across dietary conditions, and its molecular mechanisms [...] Read more.
Obesity and related metabolic disorders are closely linked to dysregulated lipid metabolism, where the metabolic balance of diacylglycerol (DAG) played a pivotal role. Although cis-palmitoleic acid (cPOA) exhibits anti-obesity effects, its efficacy varies across dietary conditions, and its molecular mechanisms remains unclear. In this study, we investigated the dose-dependent regulatory effects of cPOA on DAG metabolic shunting in db/db mice, employing lipidomics, pathway analysis, and gene/protein expression assays. Under a basal diet, low-dose cPOA (75 mg/kg) inhibited DAG-to-triglyceride (TAG) conversion, reducing hepatic lipid accumulation, while medium-to-high doses (150–300 mg/kg) redirected DAG flux toward phospholipid metabolism pathways (e.g., phosphatidylcholine [PC] and phosphatidylethanolamine [PE]), significantly lowering body weight and adiposity index. In high-fat diet (HFD)-fed mice, cPOA failed to reduce body weight but alleviated HFD-induced hepatic pathological damage by suppressing DAG-to-TAG conversion and remodeling phospholipid metabolism (e.g., inhibiting PE-to-PC conversion). Genetic and protein analyses revealed that cPOA downregulated lipogenic genes (SREBP-1c, SCD-1, FAS) and upregulated fatty acid β-oxidation enzymes (CPT1A, ACOX1), while dose-dependently modulating DGAT1, CHPT1, and PEMT expression to drive DAG metabolic shunting. Notably, DAG(36:3, 18:1–18:2) emerged as a potential biomarker for HFD-aggravated metabolic dysregulation. This study elucidated cPOA as a bidirectional regulator of lipid synthesis and oxidation, improving lipid homeostasis through dose-dependent DAG metabolic reprogramming. These findings provide novel insights and strategies for precision intervention in obesity and related metabolic diseases. Full article
(This article belongs to the Special Issue Food Bioactive Compounds in Disease Prevention and Health Promotion)
Show Figures

Figure 1

19 pages, 3189 KiB  
Article
Blood Metabolic Biomarkers of Occupational Stress in Healthcare Professionals: Discriminating Burnout Levels and the Impact of Night Shift Work
by Andreea Petra Ungur, Andreea-Iulia Socaciu, Maria Barsan, Armand Gabriel Rajnoveanu, Razvan Ionut, Carmen Socaciu and Lucia Maria Procopciuc
Clocks & Sleep 2025, 7(3), 36; https://doi.org/10.3390/clockssleep7030036 - 14 Jul 2025
Viewed by 382
Abstract
Burnout syndrome is characterized mainly by three criteria (emotional exhaustion, depersonalization, and low personal accomplishment), and further exacerbated by night shift work, with profound implications for individual and societal well-being. The Maslach Burnout Inventory survey applied to 97 medical care professionals (with day [...] Read more.
Burnout syndrome is characterized mainly by three criteria (emotional exhaustion, depersonalization, and low personal accomplishment), and further exacerbated by night shift work, with profound implications for individual and societal well-being. The Maslach Burnout Inventory survey applied to 97 medical care professionals (with day and night work) revealed different scores for these criteria. Blood metabolic profiles were obtained by UHPLC-QTOF-ESI+-MS untargeted metabolomics and multivariate statistics using the Metaboanalyst 6.0 platform. The Partial Least Squares Discrimination scores and VIP values, Random Forest graphs, and Heatmaps, based on 99 identified metabolites, were complemented with Biomarker Analysis (AUC ranking) and Pathway Analysis of metabolic networks. The data obtained reflected the biochemical implications of night shift work and correlated with each criterion’s burnout scores. Four main metabolic pathways with important consequences in burnout were affected, namely lipid metabolism, especially steroid hormone synthesis and cortisol, the energetic mitochondrial metabolism involving acylated carnitines, fatty acids, and phospholipids as well polar metabolites’ metabolism, e.g., catecholamines (noradrenaline, acetyl serotonin), and some amino acids (tryptophan, tyrosine, aspartate, arginine, valine, lysine). These metabolic profiles suggest potential strategies for managing burnout levels in healthcare professionals, based on validated criteria, including night shift work management. Full article
(This article belongs to the Special Issue New Advances in Shift Work)
Show Figures

Figure 1

18 pages, 4846 KiB  
Article
Formation Mechanism of Lipid and Flavor of Lard Under the Intervention of Heating Temperature via UPLC-TOF-MS/MS with OPLS-DA and HS-GC-IMS Analysis
by Erlin Zhai, Jing Zhang, Jiancai Zhu, Rujuan Zhou, Yunwei Niu and Zuobing Xiao
Foods 2025, 14(14), 2441; https://doi.org/10.3390/foods14142441 - 11 Jul 2025
Viewed by 348
Abstract
Lard imparts unique organoleptic properties that underpin its essential role in Chinese gastronomy; however, the specific lipid precursors contributing to its aroma remain unclear. This study explores the flavor formation mechanism of lard by comparing its texture and aroma at two preparation temperatures, [...] Read more.
Lard imparts unique organoleptic properties that underpin its essential role in Chinese gastronomy; however, the specific lipid precursors contributing to its aroma remain unclear. This study explores the flavor formation mechanism of lard by comparing its texture and aroma at two preparation temperatures, 130 °C and 100 °C. We identified a total of 256 and 253 lipids at these temperatures, respectively, with triacylglycerols (TGs) and diacylglycerols (DGs) being the predominant lipid species. An HS-GC-IMS analysis detected 67 volatile compounds, predominantly aldehydes, acids, and alcohols. A subsequent Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) identified 49 discriminatory lipids and 20 differential volatiles. A correlation analysis showed a positive relationship between aldehydes and unsaturated triglycerides in lard, with TG (16:1-16:1-18:0), TG (17:2-18:1-18:1), TG (16:1-17:1-18:1), and TG (18:1-18:1-20:1) identified as characteristic markers at both temperatures. Furthermore, there was a positive correlation between ketones and alcohols and phospholipids and sphingolipids containing unsaturated fatty acid chains. TGs and glycerophospholipids (GPs), rich in polyunsaturated fatty acids, are likely key precursors driving the formation of distinct flavors during lard processing. This study elucidates the mechanistic interactions between lipids and volatile organic compounds, providing a framework for optimizing lard processing protocols and flavor modulation. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

13 pages, 1433 KiB  
Article
Lipid Profile Characterization of Human Micro-Fragmented Adipose Tissue via Untargeted Lipidomics
by Camillo Morano, Michele Dei Cas, Giulio Alessandri, Valentina Coccè, Francesca Paino, Monica Bignotto, Luisa Doneda, Carlo Tremolada, Augusto Pessina and Rita Paroni
Biomolecules 2025, 15(7), 964; https://doi.org/10.3390/biom15070964 - 4 Jul 2025
Viewed by 344
Abstract
Mesenchymal stem cells (MSCs) exhibit low immunogenicity, multipotency, and are abundantly present in adipose tissue, making this tissue an easily accessible resource for regenerative medicine. Different commercial procedures have been developed to micro-fragment the adipose tissue aspirate from patients before its reinjection. We [...] Read more.
Mesenchymal stem cells (MSCs) exhibit low immunogenicity, multipotency, and are abundantly present in adipose tissue, making this tissue an easily accessible resource for regenerative medicine. Different commercial procedures have been developed to micro-fragment the adipose tissue aspirate from patients before its reinjection. We explored a commercial device which mechanically micro-fragments human lipoaspirate (LA) resulting in a homogeneous micro-fragmentation of fat tissue (MFAT). This device has been successfully employed in several clinical applications involving autologous adipose tissue transplantation. Here, we compare the untargeted/targeted lipidomic profile of LA and MFAT looking for differences in terms of qualitative modifications occurring during the handling of the original LA material. In MFAT, different lipid subclasses such as diacylglycerols, triacylglycerols, phospholipids, and sphingolipids are more represented than in LA. In addition, via targeted fatty acids analysis, we found a lower abundance of monounsaturated fatty acids in MFAT. The biological implications of these findings must be better investigated to contribute to a better understanding of the clinical efficacy of MFAT and for its potential use as a scaffold for drug delivery applications. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

17 pages, 6414 KiB  
Article
Vegetation Restoration Significantly Increased Soil Organic Nitrogen Mineralization and Nitrification Rates in Karst Regions of China
by Lin Yang, Hui Yang, Lijun Liu, Shuting Yang, Dongni Wen, Xuelan Li, Lei Meng, Zhong Deng, Jian Liang, Danmei Lu and Tongbin Zhu
Forests 2025, 16(6), 1006; https://doi.org/10.3390/f16061006 - 15 Jun 2025
Viewed by 607
Abstract
Understanding the processes of organic nitrogen (N) mineralization to ammonium (NH4+) and NH4+ oxidation to nitrate (NO3), which, together, supply soil inorganic N (the sum of NH4+ and NO3), is [...] Read more.
Understanding the processes of organic nitrogen (N) mineralization to ammonium (NH4+) and NH4+ oxidation to nitrate (NO3), which, together, supply soil inorganic N (the sum of NH4+ and NO3), is of great significance for guiding the restoration of degraded ecosystems. This study used space-for-time substitution to investigate the dynamic changes in the rates of organic N mineralization (MNorg) and nitrification (ONH4) in soil at different vegetation restoration stages. Soil samples were collected from grassland (3–5 years), shrub-grassland (7–8 years), early-stage shrubland (15–20 years), late-stage shrubland (30–35 years), early-stage woodland (45–50 years), and late-stage woodland (70–80 years) in the subtropical karst region of China during the dry (December) and rainy (July) seasons. The MNorg and ONH4 were determined using the 15N labeling technique. The soil microbial community was determined using the phospholipid fatty acid method. Soil organic carbon (SOC), total nitrogen (TN), NH4+, NO3, and inorganic N contents, as well as the soil moisture content (SMC) were also measured. Our results showed that SOC and TN contents, and the SMC, as well as microbial community abundances increased markedly from grassland to the late-stage shrubland. Especially in the late-stage shrubland, the abundance of the total microbial community, bacteria, fungi, actinomycetes, and AMF in soil was significantly higher than other restoration stages. These results indicate that vegetation restoration significantly increased soil nutrient content and microbial community abundance. From grassland to the late-stage shrubland, the soil NH4+, NO3, and inorganic N contents increased significantly, and the NH4+:NO3 ratios changed from greater than 1 to less than 1, indicating that vegetation restoration significantly influenced soil inorganic N content and composition. As restoration progressed, the MNorg and ONH4 increased significantly, from 0.04 to 3.01 mg N kg−1 d−1 and 0.35 to 2.48 mg N kg−1 d−1 in the dry season, and from 3.26 to 7.20 mg N kg−1 d−1 and 1.47 to 10.7 mg N kg−1 d−1 in the rainy season. At the same vegetation restoration stage, the MNorg and ONH4 in the rainy season were markedly higher than those in the dry season. These results indicate that vegetation restoration and seasonal variations could significantly influence MNorg and ONH4. Correlation analysis showed that the increase in MNorg during vegetation restoration was mainly attributed to the increase in SOC and TN contents, as well as the total microbial community, bacterial, fungal, actinomycetes, and AMF abundances, and that the increase in ONH4 was mainly attributed to the increase in MNorg and the decrease in the F: B ratio. Moreover, the MNorg and ONH4 showed a strong positive correlation with inorganic N content. This study clarifies that vegetation restoration in karst regions could significantly increase MNorg and ONH4 through enhancing soil carbon and N contents, as well as microbial community abundances, thereby increasing the available soil N supply, which could provide a theoretical basis for soil fertility regulation in future rocky desertification management. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

18 pages, 1816 KiB  
Article
Interactive Effects of Precipitation and Nitrogen on Soil Microbial Communities in a Desert Ecosystem
by Qianqian Dong, Zhanquan Ji, Hui Wang, Wan Duan, Wenli Cao, Wenshuo Li and Yangyang Jia
Microorganisms 2025, 13(6), 1393; https://doi.org/10.3390/microorganisms13061393 - 14 Jun 2025
Viewed by 433
Abstract
Increased precipitation and nitrogen (N) deposition critically influence ecological processes and stability in desert ecosystems. Studying how the soil microbial community responds to these climatic changes will improve our understanding of the impacts of climate changes on arid environments. Therefore, we conducted a [...] Read more.
Increased precipitation and nitrogen (N) deposition critically influence ecological processes and stability in desert ecosystems. Studying how the soil microbial community responds to these climatic changes will improve our understanding of the impacts of climate changes on arid environments. Therefore, we conducted a field experiment in the Gurbantunggut Desert, applying phospholipid fatty acid (PLFA) analysis to assess the responses of soil microbial community to climate change. We found that in years with normal precipitation, increased precipitation promoted soil bacterial growth, whereas in drought years, increased N deposition promoted soil bacterial growth more effectively. Although soil microbial diversity did not change significantly overall, it decreased with increasing N deposition. Random forest analysis and linear regression analysis indicated that soil pH and microbial biomass carbon (MBC) were the main drivers for the changes in soil microbial community. Structural equation modeling (SEM) further revealed that increased precipitation increased soil Gram-positive bacteria (G+) by raising soil MBC, while decreasing soil Actinomycetes (Act), fungi, and Dark Septate Endophyte (DSE). In contrast, increased N deposition affected soil microbial community by altering soil pH and MBC. Our results highlight the synergistic effects of increased precipitation and N deposition on soil microbial community structure. Further research should pay more attention to the effects of climate changes on soil microbial communities with long-term monitoring to confirm our findings across different ecosystems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

19 pages, 586 KiB  
Article
In Vitro Antioxidant, Antithrombotic and Anti-Inflammatory Activities of Bioactive Metabolites Extracted from Kiwi and Its By-Products
by Anastasia Maria Moysidou, Konstantina Cheimpeloglou, Spyridoula Ioanna Koutra, Vasileios Manousakis, Anna Ofrydopoulou, Katie Shiels, Sushanta Kumar Saha and Alexandros Tsoupras
Metabolites 2025, 15(6), 400; https://doi.org/10.3390/metabo15060400 - 13 Jun 2025
Viewed by 645
Abstract
Background/Objectives: Growing interest in natural, health-promoting ingredients for functional foods, nutraceuticals, and cosmetics has increased the demand for bioactive compounds from kiwi (Actinidia deliciosa). This study aimed to assess the antioxidant, anti-inflammatory, and antithrombotic properties of amphiphilic bioactives extracted from kiwi fruit and [...] Read more.
Background/Objectives: Growing interest in natural, health-promoting ingredients for functional foods, nutraceuticals, and cosmetics has increased the demand for bioactive compounds from kiwi (Actinidia deliciosa). This study aimed to assess the antioxidant, anti-inflammatory, and antithrombotic properties of amphiphilic bioactives extracted from kiwi fruit and its by-products, including peel, seeds, and pulp. Methods: Bioactive compounds were extracted and analyzed using liquid chromatography–mass spectrometry (LC–MS) and attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy. Antioxidant activity was evaluated using DPPH and ABTS radical scavenging assays. Anti-inflammatory and antithrombotic effects were assessed through inhibition of platelet aggregation induced by platelet-activating factor (PAF) and adenosine diphosphate (ADP) in human platelets. Results: All extracts showed significant antioxidant activity. FTIR and LC–MS analyses confirmed the presence of phenolics, flavonoids, carotenoids, and polar lipids. Kiwi peel extract exhibited the strongest inhibition of PAF- and ADP-induced platelet aggregation, attributed to its higher content of phenolics and unsaturated polar lipids. LC–MS data indicated a favorable fatty acid profile with high omega-9 levels and a low omega-6/omega-3 ratio. Polar lipid structural analysis revealed a predominance of phospholipids with unsaturated fatty acids at the sn-2 position. Conclusions: Kiwi by-products are valuable sources of health-promoting bioactives with antioxidant and anti-inflammatory potential. These findings support their incorporation into nutraceutical, nutricosmetic, and cosmeceutical products and lay the groundwork for further studies on safety, efficacy, and practical application. Full article
Show Figures

Figure 1

21 pages, 3693 KiB  
Article
Non-Targeted Lipidomics Analysis of Characteristic Milk Using High-Resolution Mass Spectrometry (UHPLC-HRMS)
by Tingting Wei, Tianxiao Zhou, Shenping Zhang, Zhexue Quan and Yang Liu
Foods 2025, 14(12), 2068; https://doi.org/10.3390/foods14122068 - 12 Jun 2025
Viewed by 891
Abstract
Milk lipids are fundamental to the nutritional quality, functional properties, and processing behavior of dairy products. In this study, we employed an untargeted lipidomics approach based on ultra-high-performance liquid chromatography coupled with ultra-high-performance liquid chromatography–high-resolution mass spectrometry (UHPLC-HRMS) to systematically characterize the lipid [...] Read more.
Milk lipids are fundamental to the nutritional quality, functional properties, and processing behavior of dairy products. In this study, we employed an untargeted lipidomics approach based on ultra-high-performance liquid chromatography coupled with ultra-high-performance liquid chromatography–high-resolution mass spectrometry (UHPLC-HRMS) to systematically characterize the lipid profiles of ten milk types from eight animal species, including camel, mare, donkey, goat, buffalo, yak, Jersey, and Holstein. A total of 640 lipid species were identified, spanning triglycerides (TGs), phospholipids (PLs), sphingolipids (SPs), ceramides (Cer), wax esters (WEs), and other subclasses. A statistical analysis revealed significant differences in lipid types and abundances among the milk samples. Camel milk exhibited the highest lipid diversity, with notable enrichment in phospholipids and sphingolipids, conferring superior emulsifying properties and stability. Mare milk was rich in polyunsaturated fatty acids (PUFAs), such as linoleic acid and alpha-linolenic acid, making it ideal for developing health-focused dairy products. Despite having the lowest total lipid content, donkey milk was enriched in cholesterol esters and PUFA, suitable for low-fat functional dairy products. Goat milk featured a balanced lipid composition with higher levels of medium-chain fatty acids (MCFAs), promoting digestibility. Buffalo milk was characterized by high TG and wax ester (WE) levels, offering high energy density and suitability for rich dairy products. Yak milk contained higher levels of ceramides (Cer) and saturated fatty acids, reflecting adaptations to high-altitude environments. Jersey milk and Holstein milk displayed similar lipid profiles, with stable compositions suitable for versatile dairy product development. Principal component analysis (PCA), hierarchical clustering, and volcano plot analyses further confirmed species-specific lipidomic signatures and revealed several potential lipid biomarkers, such as LPC (O-16:0) in Hongyuan yak milk, suggesting applications in geographical indication (GI) traceability. This study offers a comprehensive lipidomic landscape across diverse milk sources, providing molecular insights to guide the development of tailored, functional, and regionally branded dairy products. Full article
Show Figures

Figure 1

18 pages, 1643 KiB  
Article
The Contribution of Microbial- and Plant-Derived Carbon to Soil Organic Carbon Fractions and Stability Under Manure Application Combined with Straw Incorporation
by Yunjie Wen, Xian Liu, Na Yang, Yongping Li and Jiancheng Zhang
Agronomy 2025, 15(6), 1424; https://doi.org/10.3390/agronomy15061424 - 11 Jun 2025
Viewed by 1083
Abstract
The integration of manure and straw substantially affects soil organic carbon (SOC) dynamics, transformation, and long-term stabilization in agricultural systems. Dissolved organic carbon (DOC), particulate organic carbon (POC), and mineral-associated organic carbon (MOC) are the three main components of the SOC pool, each [...] Read more.
The integration of manure and straw substantially affects soil organic carbon (SOC) dynamics, transformation, and long-term stabilization in agricultural systems. Dissolved organic carbon (DOC), particulate organic carbon (POC), and mineral-associated organic carbon (MOC) are the three main components of the SOC pool, each influencing soil carbon dynamics and nutrient cycling. Current research gaps remain regarding how combined fertilization practices affect the inputs of plant-originated and microbe-derived carbon into SOC pools and stability mechanisms. Our investigation measured SOC fractions (DOC, POC, MOC), SOC mineralization rate (SCMR), microbial necromass carbon, lignin phenols, enzyme activities, and microbial phospholipid fatty acids (PLFAs) over a long-term (17 years) field experiment with four treatments: mineral fertilization alone (CF), manure-mineral combination (CM), straw-mineral application (CS), and integrated manure-straw-mineral treatment (CMS). The CMS treatment exhibited notably elevated levels of POC (7.42 g kg−1), MOC (10.7 g kg−1), and DOC (0.108 g kg−1), as well as a lower SCMR value (1.85%), compared with other fertilization treatments. Additionally, the CMS treatment stimulated the buildup of both bacterial and fungal necromass while enhancing the concentrations of ligneous biomarkers (vanillin, syringyl, and cinnamic derivatives), which correlated strongly with the elevated contents of fungal and bacterial PLFAs and heightened activity of carbon-processing enzymes (α-glucosidase, polyphenol oxidase, cellobiohydrolase, peroxidase, N-acetyl-β-D-glucosidase). Furthermore, fungal and bacterial microbial necromass carbon, together with lignin phenols, significantly contributed to shaping the composition of SOC. Through random forest analysis, we identified that the contents of bacterial and fungal necromass carbon were the key factors influencing DOC and MOC. The concentrations of syringyl phenol and cinnamyl phenols, and the syringyl-to-cinnamyl phenols ratio were the primary determinants for POC, while the fungal-to-bacterial necromass carbon ratio, as well as the concentrations of vanillyl, syringyl, and cinnamyl phenols, played a critical role in SCMR. In conclusion, the manure combined with straw incorporation not only promoted microbial growth and enzyme activity but also enhanced plant- and microbial-derived carbon inputs. Consequently, this led to an increase in the contents and stability of SOC fractions (DOC, POC, and MOC). These results suggest that manure combined with straw is a viable strategy for soil fertility due to its improvement in SOC sequestration and stability. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

15 pages, 7279 KiB  
Article
Genome-Wide Identification of BnaPDAT Family in Brassica napus and the Effect of BnaA02.PDAT1 on Seed Oil Content
by Hu Chen, Chunyun Guan and Mei Guan
Agronomy 2025, 15(5), 1204; https://doi.org/10.3390/agronomy15051204 - 16 May 2025
Viewed by 449
Abstract
Studies in multiple species have shown that phospholipid:diacylglycerol acyltransferase (PDAT) and oil bodies are important factors affecting plant oil accumulation. Although the PDAT gene family has been extensively studied in many plants, it has not yet been systematically analyzed in Brassica napus. [...] Read more.
Studies in multiple species have shown that phospholipid:diacylglycerol acyltransferase (PDAT) and oil bodies are important factors affecting plant oil accumulation. Although the PDAT gene family has been extensively studied in many plants, it has not yet been systematically analyzed in Brassica napus. In this study, we identified four PDAT family members in B. napus, which were divided into two subfamilies based on phylogenetic analysis. These members share conserved motifs and gene structures, with multiple cis-acting elements related to plant hormones and abiotic stress in their promoter regions. Transcriptome sequencing revealed that most BnaPDAT genes are highly expressed during the late stages of seed development, with expression differences under various abiotic stresses and in materials with varying oleic acid content. To further investigate the effects of the PDAT gene on seed oil content and fatty acid composition in Brassica napus, we constructed transgenic plants overexpressing BnaA02.PDAT1 under the control of the 35S promoter. The results showed that compared to wild type (WT), the thousand-seed weight of BnaA02.PDAT1 transgenic plants increased significantly by 12.95–14.76%. Additionally, the total oil content in transgenic seeds was 1.86–2.77% higher than that of WT. Furthermore, the fatty acid composition in the seeds was also altered. This study confirms the critical role of BnaPDAT genes in B. napus seed development and their impact on oil accumulation. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

21 pages, 5818 KiB  
Article
Coix Seed Oil Alleviates Hyperuricemia in Mice by Ameliorating Oxidative Stress and Intestinal Microbial Composition
by Guozhen Wu, Xinming Wang, Hongjing Dong, Jinqian Yu, Tao Li and Xiao Wang
Nutrients 2025, 17(10), 1679; https://doi.org/10.3390/nu17101679 - 15 May 2025
Viewed by 875
Abstract
Background: Coix seed oil (YRO), rich in unsaturated fatty acids, has emerged as a promising intervention for hyperuricemia (HUA) due to its potential to alleviate oxidative damage and support organ health. Methods: The fatty acid composition of YRO was determined by [...] Read more.
Background: Coix seed oil (YRO), rich in unsaturated fatty acids, has emerged as a promising intervention for hyperuricemia (HUA) due to its potential to alleviate oxidative damage and support organ health. Methods: The fatty acid composition of YRO was determined by gas chromatography–mass spectrometry (GC-MS). A HUA mouse model was established, and serum markers and hepatic enzymes were evaluated. Renal mitochondrial function was assessed using immunohistochemistry and immunofluorescence, and urate transporter expression, along with key signaling proteins, was quantified by Western blot analysis. Additionally, gut microbiota composition was analyzed, and non-targeted metabolomics was performed to observe alterations in serum lipid metabolites. Results: YRO significantly reduced serum uric acid (UA) levels and normalized hepatic enzyme activities. Histological evaluation revealed less tissue damage in both the kidney and the intestine. In the kidney, YRO improved mitochondrial function and supported antioxidant defenses via regulation of Keap1/Nrf2 signaling. In the intestine, YRO enhanced barrier integrity by increasing ZO-1, Occludin, and Claudin-1 expression. Moreover, YRO modulated gut microbiota by increasing beneficial bacteria (Muribaculaceae, Prevotellaceae UCG-001, Lachnospiraceae_ NK4A136_group, Akkermansia) while suppressing harmful species (Bacteroides, Dubosiella). Lipid metabolomics indicated a restoration of phospholipid balance through modulation of the PI3K/AKT/mTOR pathway. Conclusions: YRO supported metabolic health by promoting UA homeostasis, enhancing mitochondrial function, reinforcing antioxidant capacity, and maintaining gut integrity. These findings suggest that coix seed oil could serve as a nutritional supplement in managing HUA and related metabolic disturbances. Full article
(This article belongs to the Special Issue Food Functional Factors and Nutritional Health)
Show Figures

Graphical abstract

18 pages, 1794 KiB  
Article
Synergistic Activity of Gloeophyllum striatum-Derived AgNPs with Ciprofloxacin and Gentamicin Against Human Pathogenic Bacteria
by Aleksandra Tończyk, Katarzyna Niedziałkowska, Przemysław Bernat and Katarzyna Lisowska
Int. J. Mol. Sci. 2025, 26(8), 3529; https://doi.org/10.3390/ijms26083529 - 9 Apr 2025
Viewed by 521
Abstract
Silver nanoparticles (AgNPs) are used in a variety of different fields due to their excellent antimicrobial potential. Despite clear advantages, concerns about their toxicity have arisen, also concerning biogenic nanoparticles. Simultaneously, global healthcare is facing a problem of spreading antimicrobial resistance towards existing [...] Read more.
Silver nanoparticles (AgNPs) are used in a variety of different fields due to their excellent antimicrobial potential. Despite clear advantages, concerns about their toxicity have arisen, also concerning biogenic nanoparticles. Simultaneously, global healthcare is facing a problem of spreading antimicrobial resistance towards existing antibiotics. Using combined therapies involving AgNPs and antibiotics seems to be a promising solution to the above problems. The aim of this study was to evaluate the enhancement of the effectiveness of AgNPs, ciprofloxacin, and gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa. The research involved the assessment of antimicrobial and antibiofilm-forming activities and the analysis of phospholipid and fatty acid profiles. Our results showed that combining the tested antimicrobials can enhance their activity against the tested bacterial strains. However, no effect was observed while mixing AgNPs with ciprofloxacin against P. aeruginosa. The most significant effect was obtained by combining 3.125 µg/mL of AgNPs with 0.125 µg/mL of gentamicin against S. aureus. It was also shown that the tested antimicrobials applied in combination exhibited an increased inhibitory activity towards bacterial biofilm formation by S. aureus. Lipidomic analysis revealed that under the influence of the tested antimicrobials, the properties of the cell membrane were altered in different ways depending on the bacterial strain. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Back to TopTop