Cis-Palmitoleic Acid Regulates Lipid Metabolism via Diacylglycerol Metabolic Shunting
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Animal Groups and Diets
2.3. Reagents
2.4. Sample Collection
2.5. Extraction of Liver Metabolites
2.6. Lipidomics Analysis Method
2.7. RNA Extraction and Real-Time PCR Method
2.8. Protein Extraction and Western Blot
2.9. Statistical Analysis
3. Results and Discussion
3.1. cPOA and Obesity Mouse with Basal Feed
3.1.1. Mouse Body Weight and Fat Index
3.1.2. Hepatic Pathological Analysis
3.1.3. Analysis of Liver Lipidome
PLSDA
Chemical Similarity Enrichment Analysis
Pathway Analysis of Lipid Species
Lipid Reactions and Differential Lipids
3.2. cPOA and Obesity Mouse with HFD
3.2.1. Mouse Body Weight and Fat Index
3.2.2. Hepatic Pathological Analysis
3.2.3. Analysis of Liver Lipidome
PLSDA
Chemical Similarity Enrichment Analysis
Pathway Analysis of Lipid Species
Lipid Reactions and Differential Metabolites
3.3. Genetic- and Protein-Level Verification
3.3.1. cPOA Regulation of DAG Metabolic Branching Enzymes
3.3.2. Fat Synthesis Related Enzyme Genes and Protein Expression
3.3.3. Gene and Protein Expression of β-Oxidation Related Enzymes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
cPOA | Cis-palmitoleic acid |
LPC | Lysophosphatidylcholine |
PC | Phosphatidylcholine |
PE | Phosphatidylethanolamine |
LPE | Lysophosphatidylethanolamine |
DAG | Diacylglycerol |
PA | Phosphatidic Acid |
CDP-DG | CDP-diacylglycerol |
ACar | Acylcarnitine |
PI | Phosphatidylinositol |
TAG | Triacylglycerol |
FA | Fatty Acid |
PEMT | Phosphatidylethanolamine N-methyltransferase |
DGAT1 | Diacylglycerol O-Acyltransferase 1 |
CHPT1 | Choline phosphotransferase 1 |
SREBP-1c | Sterol regulatory element-binding protein 1c |
SCD-1 | Stearoyl-CoA desaturase 1 |
FAS | Fatty acid synthase |
CPT1A | Carnitine Palmitoyltransferase 1A |
ACOX1 | Acyl-CoA Oxidase 1 |
References
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Liang, K. Mitochondrial CPT1A: Insights into structure, function, and basis for drug development. Front. Pharmacol. 2023, 14, 1160440. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Human fatty liver disease: Old questions and new insights. Science 2011, 332, 1519–1523. [Google Scholar] [CrossRef] [PubMed]
- Boucher, J.; Kleinridders, A.; Kahn, C.R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 2014, 6, a009191. [Google Scholar] [CrossRef] [PubMed]
- Jornayvaz, F.R.; Samuel, V.T.; Shulman, G.I. The role of muscle insulin resistance in the pathogenesis of atherogenic dyslipidemia and nonalcoholic fatty liver disease associated with the metabolic syndrome. Annu. Rev. Nutr. 2010, 30, 273–290. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Vance, D.E. Phosphatidylcholine and choline homeostasis. J. Lipid Res. 2008, 49, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
- Dakal, T.C.; Xiao, F.; Bhusal, C.K.; Sabapathy, P.C.; Segal, R.; Chen, J.; Bai, X. Lipids dysregulation in diseases: Core concepts, targets and treatment strategies. Lipids Health Dis. 2025, 24, 61. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.H.; Miyahara, H.; Hatanaka, A. Correction to: Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes. Lipids Health Dis. 2021, 20, 90. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Gerhold, K.; Mayers, J.R.; Wiest, M.M.; Watkins, S.M.; Hotamisligil, G.S. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 2008, 134, 933–944. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.W.; Hong, B.H.; Bai, K.K.; Tan, R.; Yang, T.; Sun, J.P.; Yi, R.Z.; Wu, H. Cis- and Trans-Palmitoleic Acid Isomers Regulate Cholesterol Metabolism in Different Ways. Front. Pharmacol. 2020, 11, 602115. [Google Scholar] [CrossRef] [PubMed]
- Vance, J.E. Phospholipid synthesis and transport in mammalian cells. Traffic 2015, 16, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Tauchi-Sato, K.; Ozeki, S.; Houjou, T.; Taguchi, R.; Fujimoto, T. The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition. J. Biol. Chem. 2002, 277, 44507–44512. [Google Scholar] [CrossRef] [PubMed]
- Tong, D.; Xiang, J.; Liu, W.; Sun, F.; Wang, L.; Mou, A.; Cao, T.; Zhou, Q.; You, M.; Liao, Y.; et al. Leptin receptor deficiency impedes metabolic surgery related-weight loss through inhibition of energy expenditure in db/db mice. Diabetol. Metab. Syndr. 2024, 16, 33. [Google Scholar] [CrossRef] [PubMed]
- Wua, J.; Wang, H.M.; Li, J.; Men, X.L. [The research applications of db/db mouse]. Sheng Li Ke Xue Jin Zhan 2013, 44, 12–18. [Google Scholar] [PubMed]
- Zhang, Y.; Shi, L.; Huang, W.; Fang, H.; Chen, W.; Jin, W.; Zhao, M.; Hong, Z. A Preparation Method for Methyl Palmitoleate 2023. Patent 202311553847 2023. [Google Scholar]
- Huang, W.; Zhang, Y.; Zhong, L.; Sun, C.; Zhang, Z. Simultaneous determination of cis- and trans-palmitoleic acid in rat serum by UPLC-MS/MS. Sci. Rep. 2022, 12, 16637. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Lue, H.W.; Podolak, J.; Fan, S.; Zhang, Y.; Serawat, A.; Alumkal, J.J.; Fiehn, O.; Thomas, G.V. Multi-Omics Analyses Detail Metabolic Reprogramming in Lipids, Carnitines, and Use of Glycolytic Intermediates between Prostate Small Cell Neuroendocrine Carcinoma and Prostate Adenocarcinoma. Metabolites 2019, 9, 82. [Google Scholar] [CrossRef] [PubMed]
- Barupal, D.K.; Fiehn, O. Chemical Similarity Enrichment Analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets. Sci. Rep. 2017, 7, 14567. [Google Scholar] [CrossRef] [PubMed]
- Gaud, C.; Sousa, B.C.; Nguyen, A.; Fedorova, M.; Ni, Z.; O’Donnell, V.B.; Wakelam, M.J.O.; Andrews, S.; Lopez-Clavijo, A.F. BioPAN: A web-based tool to explore mammalian lipidome metabolic pathways on LIPID MAPS. F1000Research 2021, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Wahlström, A.; Sayin, S.I.; Marschall, H.U.; Bäckhed, F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 2016, 24, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Bolsoni-Lopes, A.; Festuccia, W.T.; Farias, T.S.; Chimin, P.; Torres-Leal, F.L.; Derogis, P.B.; de Andrade, P.B.; Miyamoto, S.; Lima, F.B.; Curi, R.; et al. Palmitoleic acid (n-7) increases white adipocyte lipolysis and lipase content in a PPARα-dependent manner. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E1093–E1102. [Google Scholar] [CrossRef] [PubMed]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006, 444, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Tchernof, A.; Després, J.P. Pathophysiology of human visceral obesity: An update. Physiol. Rev. 2013, 93, 359–404. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Ross, R.; Després, J.P.; Matsuzawa, Y.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement. Lancet Diabetes Endocrinol. 2019, 7, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.A.; Mashek, D.G. Mammalian triacylglycerol metabolism: Synthesis, lipolysis, and signaling. Chem. Rev. 2011, 111, 6359–6386. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef] [PubMed]
- Julkunen, H.; Cichońska, A.; Tiainen, M.; Koskela, H.; Nybo, K.; Mäkelä, V.; Nokso-Koivisto, J.; Kristiansson, K.; Perola, M.; Salomaa, V.; et al. Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals from the UK Biobank. Nat. Commun. 2023, 14, 604. [Google Scholar] [CrossRef] [PubMed]
- Ter Horst, K.W.; Gilijamse, P.W.; Versteeg, R.I.; Ackermans, M.T.; Nederveen, A.J.; la Fleur, S.E.; Romijn, J.A.; Nieuwdorp, M.; Zhang, D.; Samuel, V.T.; et al. Hepatic Diacylglycerol-Associated Protein Kinase Cε Translocation Links Hepatic Steatosis to Hepatic Insulin Resistance in Humans. Cell Rep. 2017, 19, 1997–2004. [Google Scholar] [CrossRef] [PubMed]
- Lyu, K.; Zhang, Y.; Zhang, D.; Kahn, M.; Ter Horst, K.W.; Rodrigues, M.R.S.; Gaspar, R.C.; Hirabara, S.M.; Luukkonen, P.K.; Lee, S.; et al. A Membrane-Bound Diacylglycerol Species Induces PKCϵ-Mediated Hepatic Insulin Resistance. Cell Metab. 2020, 32, 654–664.e655. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Miao, G.; Roman, M.J.; Devereux, R.B.; Fabsitz, R.R.; Zhang, Y.; Umans, J.G.; Cole, S.A.; Fiehn, O.; Zhao, J. Longitudinal Lipidomic Profile of Subclinical Peripheral Artery Disease in American Indians: The Strong Heart Family Study. Prev. Chronic Dis. 2025, 22, E18. [Google Scholar] [CrossRef] [PubMed]
- Sinnott-Armstrong, N.; Tanigawa, Y.; Amar, D.; Mars, N.; Benner, C.; Aguirre, M.; Venkataraman, G.R.; Wainberg, M.; Ollila, H.M.; Kiiskinen, T.; et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat. Genet. 2021, 53, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Rexrode, K.M. A Review of Lipidomics of Cardiovascular Disease Highlights the Importance of Isolating Lipoproteins. Metabolites 2020, 10, 163. [Google Scholar] [CrossRef] [PubMed]
- Pietzner, M.; Stewart, I.D.; Raffler, J.; Khaw, K.T.; Michelotti, G.A.; Kastenmüller, G.; Wareham, N.J.; Langenberg, C. Plasma metabolites to profile pathways in noncommunicable disease multimorbidity. Nat. Med. 2021, 27, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Dusabimana, T.; Park, E.J.; Je, J.; Jeong, K.; Yun, S.P.; Kim, H.J.; Kim, H.; Park, S.W. P2Y2R Deficiency Ameliorates Hepatic Steatosis by Reducing Lipogenesis and Enhancing Fatty Acid β-Oxidation through AMPK and PGC-1α Induction in High-Fat Diet-Fed Mice. Int. J. Mol. Sci. 2021, 22, 5528. [Google Scholar] [CrossRef] [PubMed]
- Mouskeftara, T.; Kalopitas, G.; Liapikos, T.; Arvanitakis, K.; Germanidis, G.; Gika, H. Predicting Non-Alcoholic Steatohepatitis: A Lipidomics-Driven Machine Learning Approach. Int. J. Mol. Sci. 2024, 25, 5965. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhu, M.; Gong, M.; Zheng, W.; Zeng, X.; Zheng, Q.; Li, X.; Fu, F.; Chen, Y.; Cheng, J.; et al. Comparison of the Effects of Monounsaturated Fatty Acids and Polyunsaturated Fatty Acids on Liver Lipid Disorders in Obese Mice. Nutrients 2023, 15, 3200. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Corey, K.E.; Byrne, C.D.; Roden, M. The complex link between NAFLD and type 2 diabetes mellitus—Mechanisms and treatments. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 599–612. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Hernandez-Ono, A.; Ginsberg, H.N. Dietary 1,3-diacylglycerol protects against diet-induced obesity and insulin resistance. Metabolism 2007, 56, 1566–1575. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.S.; Wang, L.; Lin, M.; Yang, H.; Li, D. BMI status influences the response of insulin sensitivity to diacylglycerol oil in Chinese type 2 diabetic patients. Asia Pac. J. Clin. Nutr. 2015, 24, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Gorden, D.L.; Myers, D.S.; Ivanova, P.T.; Fahy, E.; Maurya, M.R.; Gupta, S.; Min, J.; Spann, N.J.; McDonald, J.G.; Kelly, S.L.; et al. Biomarkers of NAFLD progression: A lipidomics approach to an epidemic. J. Lipid Res. 2015, 56, 722–736. [Google Scholar] [CrossRef] [PubMed]
- Rada, P.; González-Rodríguez, Á.; García-Monzón, C.; Valverde, Á.M. Understanding lipotoxicity in NAFLD pathogenesis: Is CD36 a key driver? Cell Death Dis. 2020, 11, 802. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.W.; Arendt, B.M.; Hillyer, L.M.; Fung, S.K.; McGilvray, I.; Guindi, M.; Allard, J.P. Plasma phospholipids and fatty acid composition differ between liver biopsy-proven nonalcoholic fatty liver disease and healthy subjects. Nutr. Diabetes 2016, 6, e220. [Google Scholar] [CrossRef] [PubMed]
- Kartsoli, S.; Kostara, C.E.; Tsimihodimos, V.; Bairaktari, E.T.; Christodoulou, D.K. Lipidomics in non-alcoholic fatty liver disease. World J. Hepatol. 2020, 12, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M. Non-alcoholic fatty liver disease—A global public health perspective. J. Hepatol. 2019, 70, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Oleszycka, E.; Kwiecień, K.; Grygier, B.; Cichy, J.; Kwiecińska, P. The many faces of DGAT1. Life Sci. 2025, 362, 123322. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, R.; Zehnder, S.V.; Watts, R.; Lian, J.; Das, C.; Nelson, R.; Lehner, R. Preferential lipolysis of DGAT1 over DGAT2 generated triacylglycerol in Huh7 hepatocytes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2023, 1868, 159376. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, S.; Zhuo, S.; Yang, M.; Zhu, T.; Yu, S.; Li, Y.; Ying, H.; Le, Y. Glycerol Kinase Drives Hepatic de novo Lipogenesis and Triglyceride Synthesis in Nonalcoholic Fatty Liver by Activating SREBP-1c Transcription, Upregulating DGAT1/2 Expression, and Promoting Glycerol Metabolism. Adv. Sci. 2024, 11, e2401311. [Google Scholar] [CrossRef] [PubMed]
- Dorighello, G.; McPhee, M.; Halliday, K.; Dellaire, G.; Ridgway, N.D. Differential contributions of phosphotransferases CEPT1 and CHPT1 to phosphatidylcholine homeostasis and lipid droplet biogenesis. J. Biol. Chem. 2023, 299, 104578. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sundaram, K.; Mu, J.; Dryden, G.W.; Sriwastva, M.K.; Lei, C.; Zhang, L.; Qiu, X.; Xu, F.; Yan, J.; et al. High-fat diet-induced upregulation of exosomal phosphatidylcholine contributes to insulin resistance. Nat. Commun. 2021, 12, 213. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Holstein, D.J.F.; Garcia-Cubero, N.; Moulla, Y.; Stroh, C.; Dietrich, A.; Schön, M.R.; Gärtner, D.; Lohmann, T.; Dressler, M.; et al. The Role of Phosphatidylethanolamine N-Methyltransferase (PEMT) and Its Waist-Hip-Ratio-Associated Locus rs4646404 in Obesity-Related Metabolic Traits and Liver Disease. Int. J. Mol. Sci. 2023, 24, 16850. [Google Scholar] [CrossRef] [PubMed]
- Piras, I.S.; Raju, A.; Don, J.; Schork, N.J.; Gerhard, G.S.; DiStefano, J.K. Hepatic PEMT Expression Decreases with Increasing NAFLD Severity. Int. J. Mol. Sci. 2022, 23, 9296. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, H. Lipogenesis and MASLD: Re-thinking the role of SREBPs. Arch. Toxicol. 2025, 99, 2299–2312. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Xing, X.; Wang, H.; Wan, K.; Fan, R.; Liu, C.; Wang, Y.; Wu, W.; Wang, Y.; Wang, R. SCD1 is the critical signaling hub to mediate metabolic diseases: Mechanism and the development of its inhibitors. Biomed. Pharmacother. 2024, 170, 115586. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Li, K.; Peng, X.; Kan, Y.; Li, H.; Zhu, Y.; Wang, Z.; Li, Z.; Liu, H.Y.; Cai, D. Nuclear Receptor PPARα as a Therapeutic Target in Diseases Associated with Lipid Metabolism Disorders. Nutrients 2023, 15, 4772. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer | Reverse Primer |
---|---|---|
GAPDH | 5′-ATCATCTCCGCCCCTTCTG-3′ | 5′-GTGATGGCATGGACTGTGG-3′ |
β-actin | 5′-TATGCTCTCCCTCACGCCATCC-3′ | 5′-GTCACGCACGATTTCCCTCTCAG-3′ |
DGAT1 | 5′-CTCAACTTTCCTCGGTCCCC-3′ | 5′-GATCAGCCCCACTTGAAGCT-3′ |
CHPH1 | 5′-GGAGGAGCAACAATGTGGGA-3′ | 5′-ACCCATTCTTGCCAACACCA-3′ |
PEMT | 5′-CCACTGCTTCACACAGGCTA-3′ | 5′-AACCTAGGAATGCAAGGCCC-3′ |
SREBP-1c | 5′-GAGCGAGCGTTGAACTGTAT-3′ | 5′-ATGCTGGAGCTGACAGAGAA-3′ |
SCD-1 | 5′-TTCTTGCGATACACTCTGGTGC-3′ | 5′-CGGGATTGAATGTTCTTGTCGT-3′ |
FASN | 5′-CAAGTGTCCACCAACAAGCG-3′ | 5′-GGAGCGCAGGATAGACTCAC-3′ |
ACOX1 | 5′-GGGTGCTGATGCTGTGGATGTC-3′ | 5′-GGGTGAGGTCCAACCAGAGAGG-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Gao, B.; Liu, L.; Song, Q.; Wei, M.; Li, H.; Sun, C.; Li, W.; Du, W.; Shan, J. Cis-Palmitoleic Acid Regulates Lipid Metabolism via Diacylglycerol Metabolic Shunting. Foods 2025, 14, 2504. https://doi.org/10.3390/foods14142504
Huang W, Gao B, Liu L, Song Q, Wei M, Li H, Sun C, Li W, Du W, Shan J. Cis-Palmitoleic Acid Regulates Lipid Metabolism via Diacylglycerol Metabolic Shunting. Foods. 2025; 14(14):2504. https://doi.org/10.3390/foods14142504
Chicago/Turabian StyleHuang, Wenwen, Bei Gao, Longxiang Liu, Qi Song, Mengru Wei, Hongzhen Li, Chunlong Sun, Wang Li, Wen Du, and Jinjun Shan. 2025. "Cis-Palmitoleic Acid Regulates Lipid Metabolism via Diacylglycerol Metabolic Shunting" Foods 14, no. 14: 2504. https://doi.org/10.3390/foods14142504
APA StyleHuang, W., Gao, B., Liu, L., Song, Q., Wei, M., Li, H., Sun, C., Li, W., Du, W., & Shan, J. (2025). Cis-Palmitoleic Acid Regulates Lipid Metabolism via Diacylglycerol Metabolic Shunting. Foods, 14(14), 2504. https://doi.org/10.3390/foods14142504