Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (759)

Search Parameters:
Keywords = phosphatidylinositol kinase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1795 KiB  
Article
Effects of Mannan Oligosaccharides on Growth, Antioxidant and Immune Performance, and mTOR Signaling Pathway in Juvenile Tilapia (Oreochromis niloticus)
by Qin Zhang, Luoqing Li, Ziyi Ma, Wenyan He, Enhao Huang, Liuqing Meng, Lan Li, Tong Tong, Huizan Yang, Yongqiang Liu and Haijuan Liu
Animals 2025, 15(16), 2459; https://doi.org/10.3390/ani15162459 - 21 Aug 2025
Abstract
Mannan oligosaccharide (MOS), a prebiotic derived from yeast cell walls, has been shown to enhance growth performance and health status in various aquatic species. As an exogenous antigen adjuvant, MOS modulates T-cell-mediated immune responses, thereby improving immune function and suppressing excessive inflammatory reactions. [...] Read more.
Mannan oligosaccharide (MOS), a prebiotic derived from yeast cell walls, has been shown to enhance growth performance and health status in various aquatic species. As an exogenous antigen adjuvant, MOS modulates T-cell-mediated immune responses, thereby improving immune function and suppressing excessive inflammatory reactions. This study aimed to evaluate the effects of dietary MOS supplementation on growth performance, serum biochemical parameters, muscle composition, digestive enzyme activity, antioxidant and immune status, and the mTOR signaling pathway in juvenile GIFT tilapia (Oreochromis niloticus). Juveniles (initial body weight: 16.17 ± 1.32 g) were randomly assigned to six treatment groups (three replicate tanks per group) and fed diets supplemented with MOS at 0, 0.2%, 0.4%, 0.6%, 0.8%, and 1% (equivalent to 0, 2, 4, 6, 8, and 10 g/kg of diet, respectively) for 60 days. Compared with the control group, fish fed MOS-supplemented diets exhibited significantly higher (p < 0.05) weight gain rates, specific growth rates, and protein efficiency ratios, along with a significantly lower (p < 0.05) feed conversion ratio. Serum albumin, high-density lipoprotein, and lysozyme levels were significantly increased (p < 0.05), whereas triglycerides, low-density lipoprotein, aspartate aminotransferase, and alanine aminotransferase levels were significantly decreased (p < 0.05). In the liver, head kidney, and spleen, the expression of pro-inflammatory genes (tumor necrosis factor α, interleukin 1β, interleukin 6, interleukin 8, and interferon γ) was significantly downregulated (p < 0.05), while the expression of antioxidant and protective genes (superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, nuclear factor erythroid 2-related factor 2, lysozyme, alkaline phosphatase, interleukin-10, transforming growth factor β, and heat shock protein 70) as well as mTOR signaling pathway-related genes (mammalian target of rapamycin, akt protein kinase B, phosphatidylinositol 3 kinase, and ribosomal protein S6 kinase polypeptide 1) was significantly upregulated (p < 0.05). Overall, MOS positively affects tilapia’s growth, health, and immunity, with 0.60% identified as the optimal dietary level based on growth performance. Full article
Show Figures

Figure 1

16 pages, 3830 KiB  
Article
5,7-Dimethoxyflavone Attenuates Sarcopenic Obesity by Enhancing PGC-1α–Mediated Mitochondrial Function in High-Fat-Diet-Induced Obese Mice
by Changhee Kim, Mi-Bo Kim, Sanggil Lee and Jae-Kwan Hwang
Nutrients 2025, 17(16), 2642; https://doi.org/10.3390/nu17162642 - 14 Aug 2025
Viewed by 281
Abstract
Background/Objectives: Sarcopenic obesity, defined by the coexistence of excessive fat accumulation and progressive muscle loss, is associated with an increased risk of metabolic dysfunction and physical disability. While 5,7-dimethoxyflavone (DMF), a bioactive flavone derived from Kaempferia parviflora, has demonstrated anti-obesity and [...] Read more.
Background/Objectives: Sarcopenic obesity, defined by the coexistence of excessive fat accumulation and progressive muscle loss, is associated with an increased risk of metabolic dysfunction and physical disability. While 5,7-dimethoxyflavone (DMF), a bioactive flavone derived from Kaempferia parviflora, has demonstrated anti-obesity and muscle-preserving properties, its effects on sarcopenic obesity remain unclear. Methods: Four-week-old male C57BL/6J mice were fed a high-fat diet (HFD) for 6 weeks to induce sarcopenic obesity, followed by 8 weeks of continued HFD with the oral administration of DMF. Muscle function was assessed through grip strength and treadmill running tests, while muscle and fat volumes were measured using micro-CT. Mechanistic analyses were performed using gene expression and Western blot analysis. Results: DMF significantly reduced body weight, fat mass, and adipocyte size while enhancing grip strength, endurance, skeletal muscle mass, and the muscle fiber cross-sectional area. In the gastrocnemius muscle, DMF increased the gene expression of peroxisome proliferator-activated receptor gamma coactivator-1α (Ppargc1a) and its isoform Ppargc1a4, thereby promoting mitochondrial biogenesis. It also improved protein turnover by modulating protein synthesis and degradation via the phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin signaling pathway. In subcutaneous and brown adipose tissues, DMF increased mitochondrial DNA content and the expression of thermogenic and beige adipocyte-related genes. These findings suggest that DMF alleviates sarcopenic obesity by improving mitochondrial function and regulating energy metabolism in both skeletal muscle and adipose tissues via PGC-1α-mediated pathways. Thus, DMF represents a promising therapeutic candidate for the integrated management of sarcopenic obesity. Full article
Show Figures

Figure 1

30 pages, 9213 KiB  
Article
Resveratrol Impairs Insulin Signaling in Hepatic Cells via Activation of PKC and PTP1B Pathways
by Karla D. Hernández-González, Monica A. Vinchira-Lamprea, Judith Hernandez-Aranda and J. Alberto Olivares-Reyes
Int. J. Mol. Sci. 2025, 26(15), 7434; https://doi.org/10.3390/ijms26157434 - 1 Aug 2025
Viewed by 669
Abstract
Resveratrol (RSV), a polyphenol found in a variety of berries and wines, is known for its anti-inflammatory, anticancer, and antioxidant properties. It has been suggested that RSV may play a role in the regulation of metabolic disorders, including diabetes and insulin resistance. However, [...] Read more.
Resveratrol (RSV), a polyphenol found in a variety of berries and wines, is known for its anti-inflammatory, anticancer, and antioxidant properties. It has been suggested that RSV may play a role in the regulation of metabolic disorders, including diabetes and insulin resistance. However, in recent years, it has been reported to completely inhibit Akt kinase function in liver cells. Akt is a central protein involved in the metabolic function of insulin and is regulated by the phosphatidylinositol-3-kinase (PI3K) pathway. In this study, we examined the effect of RSV on insulin-induced insulin receptor (IR) phosphorylation and proteins involved in the PI3K/Akt pathway in a hepatic cell model, clone 9 (C9), and in hepatoma cells, Hepa 1-6 (H1-6). In both cell lines, RSV inhibited tyrosine phosphorylation of IR and insulin-induced activation of Akt. We also evaluated the effect of RSV on the activation of protein tyrosine phosphatase 1B (PTP1B), which is associated with IR dephosphorylation, and found that RSV increased PTP1B-Tyr152 phosphorylation in a time- and concentration-dependent manner. Furthermore, we found that the protein kinase C (PKC) inhibitors BIM and Gö6976 prevented the inhibition of Akt phosphorylation by RSV and increased the phosphorylation of Ser/Thr residues in IR, suggesting that PKC is involved in the inhibition of the insulin pathway by RSV. Thus, classical PKC isoforms impair the PI3K/Akt pathway at the IR and GSK3 and GS downstream levels; however, IRS-Tyr632 phosphorylation remains unaffected. These results suggest that RSV can lead to insulin resistance by activating PTP1B and PKC, consequently affecting glucose homeostasis in hepatic cells. Full article
(This article belongs to the Special Issue The Molecular and Cellular Aspects of Insulin Resistance)
Show Figures

Figure 1

10 pages, 1460 KiB  
Article
Induction of Sustained Remissions Associated with Immune Activation by Idelalisib in Patients with Follicular Lymphoma
by Anna-Carina Hund, Jörg Larsen and Gerald G. Wulf
Lymphatics 2025, 3(3), 22; https://doi.org/10.3390/lymphatics3030022 - 1 Aug 2025
Viewed by 208
Abstract
Phosphatidylinositol-3-kinase (PI3K) inhibition has emerged as a therapeutic option against indolent lymphoma, including relapsed follicular lymphoma (FL). While inhibition of active signaling in the lymphoma cell represents the primary mode of action, PI3K inhibition also exerts immunomodulatory effects. Here we have analyzed 17 [...] Read more.
Phosphatidylinositol-3-kinase (PI3K) inhibition has emerged as a therapeutic option against indolent lymphoma, including relapsed follicular lymphoma (FL). While inhibition of active signaling in the lymphoma cell represents the primary mode of action, PI3K inhibition also exerts immunomodulatory effects. Here we have analyzed 17 consecutive advanced treatment line FL patients treated with the delta-selective PI3K inhibitor idelalisib in a retrospective single-center observational study, with a specific focus on response and immune effects. Eleven patients achieved complete remission (CR) or partial remission (PR) with median response duration of 22 (11–88) months following a median idelalisib exposure of 15 (4–88) months. Disease response persisted in three patients for a median of 37 (21–63) months following cessation of idelalisib without another therapy being initiated. Autoimmune side effects occurred in eight of the eleven patients who responded, compared to none in six patients whose disease did not respond. In conclusion, a time-limited exposure to idelalisib may induce sustained remissions in a portion of patients with recurrent and/or refractory (r/r) FL, suggesting immunomodulatory effects of PI3K inhibition to be involved in the control of the disease. Full article
(This article belongs to the Collection Lymphomas)
Show Figures

Figure 1

22 pages, 7421 KiB  
Article
Pristimerin Dampens Acetaminophen-Induced Hepatotoxicity; The Role of NF-κB/iNOS/COX-II/Cytokines, PI3K/AKT, and BAX/BCL-2/Caspase-3 Signaling Pathways
by Mohammed A. Altowijri, Marwa E. Abdelmageed, Randa El-Gamal, Tahani Saeedi and Dina S. El-Agamy
Pharmaceutics 2025, 17(8), 1003; https://doi.org/10.3390/pharmaceutics17081003 - 31 Jul 2025
Viewed by 437
Abstract
Background: Acetaminophen (APAP) is a popular and safe pain reliever. Due to its widespread availability, it is commonly implicated in intentional or unintentional overdoses, which result in severe liver impairment. Pristimerin (Prist) is a natural triterpenoid that has potent antioxidant and anti-inflammatory properties. [...] Read more.
Background: Acetaminophen (APAP) is a popular and safe pain reliever. Due to its widespread availability, it is commonly implicated in intentional or unintentional overdoses, which result in severe liver impairment. Pristimerin (Prist) is a natural triterpenoid that has potent antioxidant and anti-inflammatory properties. Our goal was to explore the protective effects of Prist against APAP-induced acute liver damage. Method: Mice were divided into six groups: control, Prist control, N-acetylcysteine (NAC) + APAP, APAP, and two Prist + APAP groups. Prist (0.4 and 0.8 mg/kg) was given for five days and APAP on day 5. Liver and blood samples were taken 24 h after APAP administration and submitted for different biochemical and molecular assessments. Results: Prist counteracted APAP-induced acute liver damage, as it decreased general liver dysfunction biomarkers, and attenuated APAP-induced histopathological lesions. Prist decreased oxidative stress and enforced hepatic antioxidants. Notably, Prist significantly reduced the genetic and protein expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-II), p-phosphatidylinositol-3-kinase (p-PI3K), p-protein kinase B (p-AKT), and the inflammatory cytokines: nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukins-(IL-6 and IL-1β) in hepatic tissues. Additionally, the m-RNA and protein levels of the apoptotic Bcl2-associated X protein (BAX) and caspase-3 were lowered and the anti-apoptotic B-cell leukemia/lymphoma 2 (BCL-2) was increased upon Prist administration. Conclusion: Prist ameliorated APAP-induced liver injury in mice via its potent anti-inflammatory/antioxidative and anti-apoptotic activities. These effects were mediated through modulation of NF-κB/iNOS/COX-II/cytokines, PI3K/AKT, and BAX/BCL-2/caspase-3 signaling pathways. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

39 pages, 1806 KiB  
Review
Microglia-Mediated Neuroinflammation Through Phosphatidylinositol 3-Kinase Signaling Causes Cognitive Dysfunction
by Mohammad Nazmul Hasan Maziz, Srikumar Chakravarthi, Thidar Aung, Phone Myint Htoo, Wana Hla Shwe, Sergey Gupalo, Manglesh Waran Udayah, Hardev Singh, Mohammed Shahjahan Kabir, Rajesh Thangarajan and Maheedhar Kodali
Int. J. Mol. Sci. 2025, 26(15), 7212; https://doi.org/10.3390/ijms26157212 - 25 Jul 2025
Viewed by 708
Abstract
Microglia, as the immune guardians of the central nervous system (CNS), have the ability to maintain neural homeostasis, respond to environmental changes, and remodel the synaptic landscape. However, persistent microglial activation can lead to chronic neuroinflammation, which can alter neuronal signaling pathways, resulting [...] Read more.
Microglia, as the immune guardians of the central nervous system (CNS), have the ability to maintain neural homeostasis, respond to environmental changes, and remodel the synaptic landscape. However, persistent microglial activation can lead to chronic neuroinflammation, which can alter neuronal signaling pathways, resulting in accelerated cognitive decline. Phosphoinositol 3-kinase (PI3K) has emerged as a critical driver, connecting inflammation to neurodegeneration, serving as the nexus of numerous intracellular processes that govern microglial activation. This review focuses on the relationship between PI3K signaling and microglial activation, which might lead to cognitive impairment, inflammation, or even neurodegeneration. The review delves into the components of the PI3K signaling cascade, isoforms, and receptors of PI3K, as well as the downstream effects of PI3K signaling, including its effectors such as protein kinase B (Akt) and mammalian target of rapamycin (mTOR) and the negative regulator phosphatase and tensin homolog (PTEN). Experiments have shown that the overproduction of certain cytokines, coupled with abnormal oxidative stress, is a consequence of poor PI3K regulation, resulting in excessive synapse pruning and, consequently, impacting learning and memory functions. The review also highlights the implications of autonomously activated microglia exhibiting M1/M2 polarization driven by PI3K on hippocampal, cortical, and subcortical circuits. Conclusions from behavioral studies, electrophysiology, and neuroimaging linking cognitive performance and PI3K activity were evaluated, along with new approaches to therapy using selective inhibitors or gene editing. The review concludes by highlighting important knowledge gaps, including the specific effects of different isoforms, the risks associated with long-term pathway modulation, and the limitations of translational potential, underscoring the crucial role of PI3K in mitigating cognitive impairment driven by neuroinflammation. Full article
(This article belongs to the Special Issue Therapeutics and Pathophysiology of Cognitive Dysfunction)
Show Figures

Figure 1

32 pages, 10235 KiB  
Article
Estradiol Downregulates MicroRNA-193a to Mediate Its Anti-Mitogenic Actions on Human Coronary Artery Smooth Muscle Cell Growth
by Lisa Rigassi, Marinella Rosselli, Brigitte Leeners, Mirel Adrian Popa and Raghvendra Krishna Dubey
Cells 2025, 14(15), 1132; https://doi.org/10.3390/cells14151132 - 23 Jul 2025
Viewed by 411
Abstract
The abnormal growth of smooth muscle cells (SMCs) contributes to the vascular remodeling associated with coronary artery disease, a leading cause of death in women. Estradiol (E2) mediates cardiovascular protective actions, in part, by inhibiting the abnormal growth (proliferation and migration) of SMCs [...] Read more.
The abnormal growth of smooth muscle cells (SMCs) contributes to the vascular remodeling associated with coronary artery disease, a leading cause of death in women. Estradiol (E2) mediates cardiovascular protective actions, in part, by inhibiting the abnormal growth (proliferation and migration) of SMCs through various mechanism. Since microRNAs (miRNAs) play a major role in regulating cell growth and vascular remodeling, we hypothesize that miRNAs may mediate the protective actions of E2. Following preliminary leads from E2-regulated miRNAs, we found that platelet-derived growth factor (PDGF)-BB-induced miR-193a in SMCs is downregulated by E2 via estrogen receptor (ER)α, but not the ERβ or G-protein-coupled estrogen receptor (GPER). Importantly, miR-193a is actively involved in regulating SMC functions. The ectopic expression of miR-193a induced vascular SMC proliferation and migration, while its suppression with antimir abrogated PDGF-BB-induced growth, effects that were similar to E2. Importantly, the restoration of miR-193a abrogated the anti-mitogenic actions of E2 on PDGF-BB-induced growth, suggesting a key role of miR-193a in mediating the growth inhibitory actions of E2 in vascular SMCs. E2-abrogated PDGF-BB, but not miR-193a, induced SMC growth, suggesting that E2 blocks the PDGF-BB-induced miR-193a formation to mediate its anti-mitogenic actions. Interestingly, the PDGF-BB-induced miR-193a formation in SMCs was also abrogated by 2-methoxyestradiol (2ME), an endogenous E2 metabolite that inhibits SMC growth via an ER-independent mechanism. Furthermore, we found that miR-193a induces SMC growth by activating the phosphatidylinositol 3-kinases (PI3K)/Akt signaling pathway and promoting the G1 to S phase progression of the cell cycle, by inducing Cyclin D1, Cyclin Dependent Kinase 4 (CDK4), Cyclin E, and proliferating-cell-nuclear-antigen (PCNA) expression and Retinoblastoma-protein (RB) phosphorylation. Importantly, in mice, treatment with miR-193a antimir, but not its control, prevented cuff-induced vascular remodeling and significantly reducing the vessel-wall-to-lumen ratio in animal models. Taken together, our findings provide the first evidence that miR-193a promotes SMC proliferation and migration and may play a key role in PDGF-BB-induced vascular remodeling/occlusion. Importantly, E2 prevents PDGF-BB-induced SMC growth by downregulating miR-193a formation in SMCs. Since, miR-193a antimir prevents SMC growth as well as cuff-induced vascular remodeling, it may represent a promising therapeutic molecule against cardiovascular disease. Full article
Show Figures

Graphical abstract

11 pages, 1161 KiB  
Commentary
The Role of Nuclear Phosphoinositides in the p53-MDM2 Nexus
by Jeong Hyo Lee, Muhammad Khalil Salah, Xiangqin Chen, Nickolas Vladimir Kucherenko, Vincent L. Cryns and Richard A. Anderson
Cells 2025, 14(15), 1126; https://doi.org/10.3390/cells14151126 - 22 Jul 2025
Viewed by 456
Abstract
Recent insights into the p53-MDM2 nexus have advanced deeper understanding of their regulation and potent impact on cancer heterogeneity. The roles of nuclear phosphoinositide (PIPns) in modulating this pathway are emerging as a key mechanism. Here, we dissect the molecular mechanisms [...] Read more.
Recent insights into the p53-MDM2 nexus have advanced deeper understanding of their regulation and potent impact on cancer heterogeneity. The roles of nuclear phosphoinositide (PIPns) in modulating this pathway are emerging as a key mechanism. Here, we dissect the molecular mechanisms by which nuclear PIPns stabilize p53 through the recruitment of small heat shock proteins (sHSPs), activate the nuclear phosphatidylinositol 3-kinase (PI3K)-AKT signaling cascade, and modulate MDM2 function to regulate the p53-MDM2 interaction. We propose potential mechanisms by which nuclear PIPns coordinate signaling with nuclear p53, AKT, and MDM2. Ultimately, we highlight that nuclear PIPns serve as a ‘third messenger’ within the p53-MDM2 axis, expanding the current framework of non-canonical nuclear signaling in cancer biology. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

16 pages, 2512 KiB  
Article
Optimizing PH Domain-Based Biosensors for Improved Plasma Membrane PIP3 Measurements in Mammalian Cells
by Amir Damouni, Dániel J. Tóth, Aletta Schönek, Alexander Kasbary, Adél P. Boros and Péter Várnai
Cells 2025, 14(14), 1125; https://doi.org/10.3390/cells14141125 - 21 Jul 2025
Viewed by 509
Abstract
Phosphoinositide-binding pleckstrin homology (PH) domains interact with both phospholipids and proteins, often complicating their use as specific lipid biosensors. In this study, we introduced specific mutations into the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-specific PH domains of protein kinase B (Akt) and general receptor [...] Read more.
Phosphoinositide-binding pleckstrin homology (PH) domains interact with both phospholipids and proteins, often complicating their use as specific lipid biosensors. In this study, we introduced specific mutations into the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-specific PH domains of protein kinase B (Akt) and general receptor for phosphoinositides 1 (GRP1) that disrupt protein-mediated interactions while preserving lipid binding, in order to enhance biosensor specificity for PIP3, and evaluated their impact on plasma membrane (PM) localization and lipid-tracking ability. Using bioluminescence resonance energy transfer (BRET) and confocal microscopy, we assessed the localization of PH domains in HEK293A cells under different conditions. While Akt-PH mutants showed minimal deviations from the wild type, GRP1-PH mutants exhibited significantly reduced PM localization both at baseline and after stimulation with epidermal growth factor (EGF), insulin, or vanadate. We further developed tandem mutant GRP1-PH domain constructs to enhance PM PIP3 avidity. Additionally, our investigation into the influence of ADP ribosylation factor 6 (Arf6) activity on GRP1-PH-based biosensors revealed that while the wild-type sensors were Arf6- dependent, the mutants operated independently of Arf6 activity level. These optimized GRP1-PH constructs provide a refined biosensor system for accurate and selective detection of dynamic PIP3 signaling, expanding the toolkit for dissecting phosphoinositide-mediated pathways. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

24 pages, 7124 KiB  
Article
In Silico Discovery of a Novel Potential Allosteric PI3Kα Inhibitor Incorporating 3-(2-Chloro-5-fluorophenyl)isoindolin-1-one to Target Head and Neck Squamous Cell Carcinoma
by Wenqing Jia and Xianchao Cheng
Biology 2025, 14(7), 896; https://doi.org/10.3390/biology14070896 - 21 Jul 2025
Viewed by 476
Abstract
Phosphatidylinositol 3-kinase alpha (PI3Kα) is frequently mutated in head and neck squamous cell carcinoma (HNSCC), leading to the constitutive activation of the PI3K/Akt pathway, which promotes tumor cell proliferation, survival, and metastasis. PI3Kα allosteric inhibitors demonstrate therapeutic potential as both monotherapy and combination [...] Read more.
Phosphatidylinositol 3-kinase alpha (PI3Kα) is frequently mutated in head and neck squamous cell carcinoma (HNSCC), leading to the constitutive activation of the PI3K/Akt pathway, which promotes tumor cell proliferation, survival, and metastasis. PI3Kα allosteric inhibitors demonstrate therapeutic potential as both monotherapy and combination therapy, particularly in patients with PIK3CA mutations or resistance to immunotherapy, through the precise targeting of mutant PI3Kα. Compared to ATP-competitive PI3Kα inhibitors such as Alpelisib, the allosteric inhibitor RLY-2608 exhibits enhanced selectivity for mutant PI3Kα while minimizing the inhibition of wild-type PI3Kα, thereby reducing side effects such as hyperglycemia. To date, no allosteric PI3Kα inhibitors have been approved for clinical use. To develop novel PI3Kα inhibitors with improved safety and efficacy, we employed a scaffold hopping approach to structurally modify RLY-2608 and constructed a compound library. Based on the structural information of the PI3Kα allosteric site, we conducted the systematic virtual screening of 11,550 molecules from databases to identify lead compounds. Through integrated approaches, including molecular docking studies, target validation, druggability evaluation, molecular dynamics simulations, and metabolic pathway and metabolite analyses, we successfully identified a promising novel allosteric PI3Kα inhibitor, H-18 (3-(2-chloro-5-fluorophenyl)isoindolin-1-one). H-18 has not been previously reported as a PI3Kα inhibitor, and provides an excellent foundation for subsequent lead optimization, offering a significant starting point for the development of more potent PI3Kα allosteric inhibitors. Full article
(This article belongs to the Special Issue Protein Kinases: Key Players in Carcinogenesis)
Show Figures

Figure 1

20 pages, 2891 KiB  
Review
MAPK, PI3K/Akt Pathways, and GSK-3β Activity in Severe Acute Heart Failure in Intensive Care Patients: An Updated Review
by Massimo Meco, Enrico Giustiniano, Fulvio Nisi, Pierluigi Zulli and Emiliano Agosteo
J. Cardiovasc. Dev. Dis. 2025, 12(7), 266; https://doi.org/10.3390/jcdd12070266 - 10 Jul 2025
Viewed by 982
Abstract
Acute heart failure (AHF) is a clinical syndrome characterized by the sudden onset or rapid worsening of heart failure signs and symptoms, frequently triggered by myocardial ischemia, pressure overload, or cardiotoxic injury. A central component of its pathophysiology is the activation of intracellular [...] Read more.
Acute heart failure (AHF) is a clinical syndrome characterized by the sudden onset or rapid worsening of heart failure signs and symptoms, frequently triggered by myocardial ischemia, pressure overload, or cardiotoxic injury. A central component of its pathophysiology is the activation of intracellular signal transduction cascades that translate extracellular stress into cellular responses. Among these, the mitogen-activated protein kinase (MAPK) pathways have received considerable attention due to their roles in mediating inflammation, apoptosis, hypertrophy, and adverse cardiac remodeling. The canonical MAPK cascades—including extracellular signal-regulated kinases (ERK1/2), p38 MAPK, and c-Jun N-terminal kinases (JNK)—are activated by upstream stimuli such as angiotensin II (Ang II), aldosterone, endothelin-1 (ET-1), and sustained catecholamine release. Additionally, emerging evidence highlights the role of receptor-mediated signaling, cellular stress, and myeloid cell-driven coagulation events in linking MAPK activation to fibrotic remodeling following myocardial infarction. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling cascade plays a central role in regulating cardiomyocyte survival, hypertrophy, energy metabolism, and inflammation. Activation of the PI3K/Akt pathway has been shown to confer cardioprotective effects by enhancing anti-apoptotic and pro-survival signaling; however, aberrant or sustained activation may contribute to maladaptive remodeling and progressive cardiac dysfunction. In the context of AHF, understanding the dual role of this pathway is crucial, as it functions both as a marker of compensatory adaptation and as a potential therapeutic target. Recent reviews and preclinical studies have linked PI3K/Akt activation with reduced myocardial apoptosis and attenuation of pro-inflammatory cascades that exacerbate heart failure. Among the multiple signaling pathways involved, glycogen synthase kinase-3β (GSK-3β) has emerged as a key regulator of apoptosis, inflammation, metabolic homeostasis, and cardiac remodeling. Recent studies underscore its dual function as both a negative regulator of pathological hypertrophy and a modulator of cell survival, making it a compelling therapeutic candidate in acute cardiac settings. While earlier investigations focused primarily on chronic heart failure and long-term remodeling, growing evidence now supports a critical role for GSK-3β dysregulation in acute myocardial stress and injury. This comprehensive review discusses recent advances in our understanding of the MAPK signaling pathway, the PI3K/Akt cascade, and GSK-3β activity in AHF, with a particular emphasis on mechanistic insights, preclinical models, and emerging therapeutic targets. Full article
(This article belongs to the Topic Molecular and Cellular Mechanisms of Heart Disease)
Show Figures

Figure 1

18 pages, 1827 KiB  
Article
A Pharmacologic Approach Against Glioblastoma—A Synergistic Combination of a Quinoxaline-Based and a PI3K/mTOR Dual Inhibitor
by Vitória Santório de São José, Bruno Marques Vieira, Camila Saggioro de Figueiredo, Luis Gabriel Valdivieso Gelves, Vivaldo Moura Neto and Lídia Moreira Lima
Int. J. Mol. Sci. 2025, 26(13), 6392; https://doi.org/10.3390/ijms26136392 - 2 Jul 2025
Viewed by 469
Abstract
Glioblastoma (GB) is the most common malignant primary CNS tumor with a fast-growing and invasive profile. As a result of the poor prognosis and limited therapy available, glioblastoma shows a high mortality rate. Given the scarcity of effective chemotherapy options, multiple studies have [...] Read more.
Glioblastoma (GB) is the most common malignant primary CNS tumor with a fast-growing and invasive profile. As a result of the poor prognosis and limited therapy available, glioblastoma shows a high mortality rate. Given the scarcity of effective chemotherapy options, multiple studies have explored the potential of tyrosine kinase inhibitors. To mitigate resistance and improve potency and selectivity, we proposed the combination of a potent irreversible epidermal growth factor receptor inhibitor—LASSBio-1971—and a potent phosphatidylinositol-3-kinase/mammalian target of rapamycin dual inhibitor—Gedatolisib—through an in vitro phenotypic study using five human GB lines. Here, we aimed to establish the cytotoxic potency, selectivity, and effect on proliferation, apoptosis, migration, and the cell cycle. Our data showed the cytotoxic potency of Gedatolisib and LASSBio-1971 and improved selectivity in the GB cell lines. They highlighted the synergistic response from their combination and its impact on migration reduction, G0/G1 cell cycle arrest, GB cytotoxicity, and apoptosis-inducing effects for different GB cell lines. The drug combination studies in phenotypic in vitro models made it possible to suggest a new potential treatment for glioblastoma that justifies further safety in in vivo phases of preclinical trials with the combination. Full article
Show Figures

Figure 1

24 pages, 3521 KiB  
Article
Ursolic Acid Suppresses Colorectal Cancer Through Autophagy–Lysosomal Degradation of β-Catenin
by Chung-Ming Lin, Min-Chih Chao, Hsin-Han Chen and Hui-Jye Chen
Int. J. Mol. Sci. 2025, 26(13), 6210; https://doi.org/10.3390/ijms26136210 - 27 Jun 2025
Viewed by 468
Abstract
Colorectal cancer remains a leading malignancy. As the aberrant activation of Wnt/β-catenin signaling causes colorectal cancer, Wnt/β-catenin signaling inhibitors are potential candidates for colorectal cancer treatment. Our drug screening platform identified ursolic acid (UA), a triterpenoid with various biological activities, as a potential [...] Read more.
Colorectal cancer remains a leading malignancy. As the aberrant activation of Wnt/β-catenin signaling causes colorectal cancer, Wnt/β-catenin signaling inhibitors are potential candidates for colorectal cancer treatment. Our drug screening platform identified ursolic acid (UA), a triterpenoid with various biological activities, as a potential anticancer drug because it inhibits the T-cell factor (TCF)/β-catenin-mediated transcriptional activity. Here, we discovered that UA inhibited Wnt signaling by reducing the Wnt reporter activity and Wnt target gene expression, leading to a delay in cell cycle progression and the suppression of cell proliferation. Stepwise epistatic analyses suggested that UA functions on β-catenin protein stability in Wnt signaling. Further studies revealed that UA reduced β-catenin protein levels by Western blotting and immunofluorescent staining and induced autophagy by microtubule-associated protein 1 light chain 3 beta (LC3B) punctate staining. The cotreatment with UA and the autophagy inhibitors chloroquine and wortmannin recovered the β-catenin protein levels. Therefore, UA was confirmed to induce β-catenin degradation by the autophagy–lysosomal degradation system through inhibition in the phosphatidylinositol 3-kinase (PI3K)/Ak strain transforming (protein kinase B; AKT)/mammalian target of rapamycin (mTOR) signaling pathway. Our results not only highlight the potential of UA in Wnt-driven colorectal cancer therapy but also provide a workable Wnt signaling termination approach for the treatment of other Wnt-related diseases. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Colorectal Cancer: 4th Edition)
Show Figures

Graphical abstract

31 pages, 1713 KiB  
Review
Aquatic Organisms in Response to Salinity Stress: Ecological Impacts, Adaptive Mechanisms, and Resilience Strategies
by Tariq Dildar, Wenxiao Cui, Mhd Ikhwanuddin and Hongyu Ma
Biology 2025, 14(6), 667; https://doi.org/10.3390/biology14060667 - 9 Jun 2025
Cited by 2 | Viewed by 1522
Abstract
Salinity stress presents a major ecological challenge for aquatic organisms, particularly in environments where salinity levels fluctuate. These fluctuations are becoming more pronounced due to climate change, further destabilizing aquatic ecosystems. Understanding how organisms adapt to such variability is essential for biodiversity conservation [...] Read more.
Salinity stress presents a major ecological challenge for aquatic organisms, particularly in environments where salinity levels fluctuate. These fluctuations are becoming more pronounced due to climate change, further destabilizing aquatic ecosystems. Understanding how organisms adapt to such variability is essential for biodiversity conservation and the sustainable management of aquatic resources. This review examines the physiological, molecular, and behavioral adaptations that enable aquatic organisms to survive and thrive under salinity stress. Specifically, it explores mechanisms of osmotic regulation, ion transport, and oxidative stress responses, highlighting key signaling pathways—such as AMP-activated protein kinase (AMPK), Phosphatidylinositol 3-kinase–protein kinase (PI3K-AKT), Mitogen-activated protein kinase (MAPK), and the Hippo pathway—that facilitate these adaptive processes. The review also emphasizes the genetic and epigenetic modifications that contribute to resilience, underscoring the importance of genetic diversity for species survival in fluctuating salinity conditions. Furthermore, the interactions between host organisms and their microbiomes are discussed as critical factors influencing resilience. The review addresses the impact of salinity fluctuations on species distribution and biodiversity, with a focus on the implications of climate change for aquatic ecosystems. Finally, strategies for mitigating salinity stress, such as nutritional interventions and the development of salinity-resistant varieties, are explored, particularly in aquaculture. Overall, this review consolidates current knowledge on organismal adaptations, molecular mechanisms, and environmental challenges, offering valuable insights for ecological research and aquaculture practices in the face of climate change. Full article
Show Figures

Graphical abstract

15 pages, 679 KiB  
Review
The Precision-Guided Use of PI3K Pathway Inhibitors for the Treatment of Solid Malignancies
by Alexa E. Schmitz, Shirsa Udgata, Katherine A. Johnson and Dustin A. Deming
Biomedicines 2025, 13(6), 1319; https://doi.org/10.3390/biomedicines13061319 - 28 May 2025
Cited by 1 | Viewed by 1638
Abstract
Phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (MTOR) pathway hyperactivation is seen in a multitude of malignancies. Due to the importance of this pathway in numerous critical cellular functions, preclinical and clinical investigations have aimed to target this pathway as an anti-cancer therapeutic strategy. This [...] Read more.
Phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (MTOR) pathway hyperactivation is seen in a multitude of malignancies. Due to the importance of this pathway in numerous critical cellular functions, preclinical and clinical investigations have aimed to target this pathway as an anti-cancer therapeutic strategy. This has led to the development of PI3K, AKT, and MTOR inhibitors for use in cancer patients, leading to multiple FDA approvals over the past decade. In this review, we outline therapeutic targets in PI3K/AKT/MTOR signaling in solid tumors, the current state of using inhibitors of this pathway to treat patients whose cancers possess activating mutations in PIK3CA, AKT1/2, or MTOR, and exciting new inhibitors that are entering clinical trials. Full article
(This article belongs to the Special Issue mTOR Signaling in Disease and Therapy)
Show Figures

Figure 1

Back to TopTop