Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = phenyl-isocyanate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7771 KB  
Article
Kinetic and Mechanistic Study of Polycarbodiimide Formation from 4,4′-Methylenediphenyl Diisocyanate
by Marcell D. Csécsi, R. Zsanett Boros, Péter Tóth, László Farkas and Béla Viskolcz
Int. J. Mol. Sci. 2025, 26(17), 8570; https://doi.org/10.3390/ijms26178570 - 3 Sep 2025
Viewed by 1065
Abstract
In the polyurethane industry, catalytically generated carbodiimides can modify the properties of isocyanate and, thus, the resulting foams. In this work, a kinetic reaction study was carried out to investigate the formation of a simple, bifunctional carbodiimide from a widely used polyurethane raw [...] Read more.
In the polyurethane industry, catalytically generated carbodiimides can modify the properties of isocyanate and, thus, the resulting foams. In this work, a kinetic reaction study was carried out to investigate the formation of a simple, bifunctional carbodiimide from a widely used polyurethane raw material: 4,4′-methylenediphenyl diisocyanate (MDI). The experimental section outlines a catalytic process, using a 3-methyl-1-phenyl-2-phospholene-1-oxide (MPPO) catalyst in ortho-dichlorobenzene (ODCB) solvent, to model industrial circumstances. The reaction produces carbon dioxide, which was observed using gas volumetry at between 50 and 80 °C to obtain kinetic data. A detailed regression analysis with linear and novel nonlinear fits showed that the initial stage of the reaction is second-order, and the temperature dependence of the rate constant is k(T)=(3.4±3.8)106e7192±389T. However, the other isocyanate group of MDI reacts with new isocyanate groups and the reaction deviates from the second-order due to oligomer (polycarbodiimide) formation and other side reactions. A linearized Arrhenius equation was used to determine the activation energy of the reaction, which was Ea = 60.4 ± 3.0 kJ mol−1 at the applied temperature range, differing by only 4.6 kJ mol−1 from a monoisocyanate-based carbodiimide. In addition to experimental results, computationally derived thermochemical data (from simplified DFT and IRC calculations) were applied in transition state theory (TST) for a comprehensive prediction of rate constants and Arrhenius parameters. As a result, it was found that the activation energy of the carbodiimide bond formation reaction from theoretical and experimental results was independent of the number and position of isocyanate groups, which is consistent with the principle of equal reactivity of functional groups. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

12 pages, 739 KB  
Article
Influence of Electron Transfer Mediators in the Pd(II)-Catalyzed Oxidative Carbonylation of Aniline
by Andrea Vavasori, Lucio Ronchin, Luca Pietrobon and Sara Bravo
Molecules 2025, 30(9), 2027; https://doi.org/10.3390/molecules30092027 - 2 May 2025
Viewed by 745
Abstract
Currently, the most promising alternative to the use of the phosgenation reaction, for large-scale production of isocyanates, ureas, and carbamates, appears to be the Pd-catalyzed oxidative carbonylation of arylamines. During the reaction, the Pd(II) catalytic species are reduced to Pd(0) and the addition [...] Read more.
Currently, the most promising alternative to the use of the phosgenation reaction, for large-scale production of isocyanates, ureas, and carbamates, appears to be the Pd-catalyzed oxidative carbonylation of arylamines. During the reaction, the Pd(II) catalytic species are reduced to Pd(0) and the addition of sacrificial oxidizing agents is usually necessary to restart the catalytic cycle. Among these oxidizing agents, molecular oxygen is undoubtedly the more appealing, from an economical and green point of view, but it is not so efficient, whereas several metal salts (named cocatalysts) can be used, able to form redox couples with Pd(0) or to act as electron transfer mediators with oxygen itself. Testing several Pd(II) complexes, metal cocatalysts, and promoters, we have found that the [PdCl2(dppf)]/FeCl3/LiBr = 1/1200/200 (mol/mol) system efficiently catalyzes the carbonylation of aniline to form 1,3–diphenylurea selectively (100%) with a TOF of ca. 1177 h−1. On the other hand, the addition of oxygen to such a system strongly increases the aniline conversion (0.3 MPa of O2 increases the TOF at ca. 3930 h−1), but it moves the selectivity towards the phenyl isocyanate (65%, mol/mol). Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Graphical abstract

19 pages, 4001 KB  
Article
Thermal Characterisation and Toxicity Profile of Potential Drugs from a Class of Disubstituted Heterofused Triazinones
by Małgorzata Sztanke, Renata Łyszczek, Agnieszka Ostasz, Halina Głuchowska and Krzysztof Sztanke
Molecules 2025, 30(3), 506; https://doi.org/10.3390/molecules30030506 - 23 Jan 2025
Viewed by 1412
Abstract
The thermal characterisation and toxicity profile of a class of disubstituted heterofused triazinones were revealed in this article for the first time. The thermal behaviour of molecules 112 was investigated by means of TG and DSC analyses performed in an air [...] Read more.
The thermal characterisation and toxicity profile of a class of disubstituted heterofused triazinones were revealed in this article for the first time. The thermal behaviour of molecules 112 was investigated by means of TG and DSC analyses performed in an air atmosphere and by the coupled TG/FTIR technique in a nitrogen atmosphere. The heating atmosphere affects both the stability of compounds and the degradation mechanism. A two-step degradation occurs in air, while a one-step degradation takes place in nitrogen, both preceded by a melting process. Compound 3 shows the highest thermal stability, while molecule 10—the lowest. The thermal decomposition of the studied heterocyclic molecules begins with the degradation of the bicyclic system, resulting in the formation of volatile gaseous products such as ammonia/hydrazine, hydrogen cyanide, carbon dioxide, and isocyanates. In the further stage, mainly aromatic compounds are released, and their chemical composition depends on the presence and type of substituents at the phenyl and benzyl moieties. In addition, the toxicity profiles of molecules were assessed in the animal (zebrafish) and cellular (erythrocytes) models, and the antihaemolytic activity was evaluated in the AAPH- and H2O2-induced haemolysis inhibition assays. It was found that all the tested compounds are safe for the developing zebrafish and red blood cells, and they are able to effectively protect erythrocytes from oxidative damage. These favourable properties make them promising drug candidates suitable for further in vivo studies. Full article
Show Figures

Figure 1

17 pages, 2501 KB  
Article
Evaluation of Quinazolin-2,4-Dione Derivatives as Promising Antibacterial Agents: Synthesis, In Vitro, In Silico ADMET and Molecular Docking Approaches
by Aboubakr H. Abdelmonsef, Mohamed El-Naggar, Amal O. A. Ibrahim, Asmaa S. Abdelgeliel, Ihsan A. Shehadi, Ahmed M. Mosallam and Ahmed Khodairy
Molecules 2024, 29(23), 5529; https://doi.org/10.3390/molecules29235529 - 22 Nov 2024
Viewed by 1758
Abstract
A series of new quinazolin-2,4-dione derivatives incorporating amide/eight-membered nitrogen-heterocycles 2ac, in addition, acylthiourea/amide/dithiolan-4-one and/or phenylthiazolidin-4-one 3ad and 4ad. The starting compound 1 was prepared by reaction of 4-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-yl)-benzoyl chloride with ammonium thiocyanate and [...] Read more.
A series of new quinazolin-2,4-dione derivatives incorporating amide/eight-membered nitrogen-heterocycles 2ac, in addition, acylthiourea/amide/dithiolan-4-one and/or phenylthiazolidin-4-one 3ad and 4ad. The starting compound 1 was prepared by reaction of 4-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-yl)-benzoyl chloride with ammonium thiocyanate and cyanoacetic acid hydrazide. The reaction of 1 with strong electrophiles, namely, o-aminophenol, o-amino thiophenol, and/or o-phenylene diamine, resulted in corresponding quinazolin-2,4-dione derivatives incorporating eight-membered nitrogen-heterocycles 2ad. Compounds 3ad and 4ad were synthesized in good-to-excellent yield through a one-pot multi-component reaction (MCR) of 1 with carbon disulfide and/or phenyl isocyanate under mild alkaline conditions, followed by ethyl chloroacetate, ethyl iodide, methyl iodide, and/or concentrated HCl, respectively. The obtained products were physicochemically characterized by melting points, elemental analysis, and spectroscopic techniques, such as FT-IR, 1H-NMR, 13C-NMR, and MS. The antibacterial efficacy of the obtained eleven molecules was examined in vitro against two Gram-positive bacterial strains (Staphylococcus aureus and Staphylococcus haemolyticus). Furthermore, Computer-Aided Drug Design (CADD) was performed on the synthesized derivatives, standard drug (Methotrexate), and reported antibacterial drug with the target enzymes of bacterial strains (S. aureus and S. haemolyticus) to explain their binding mode of actions. Notably, our findings highlight compounds 2b and 2c as showing both the best antibacterial activity and docking scores against the targets. Finally, according to ADMET predictions, compounds 2b and 2c possessed acceptable pharmacokinetics properties and drug-likeness properties. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

14 pages, 4396 KB  
Article
Theoretical and Experimental Study on Carbodiimide Formation
by Marcell Dániel Csécsi, Virág Kondor, Edina Reizer, Renáta Zsanett Boros, Péter Tóth, László Farkas, Béla Fiser, Zoltán Mucsi, Miklós Nagy and Béla Viskolcz
Int. J. Mol. Sci. 2024, 25(14), 7991; https://doi.org/10.3390/ijms25147991 - 22 Jul 2024
Cited by 2 | Viewed by 2992
Abstract
Carbodiimides are important crosslinkers in organic synthesis and are used in the isocyanate industry as modifier additives. Therefore, the understanding of their formation is of high importance. In this work, we present a theoretical B3LYP/6-31G(d) and SMD solvent model and experimental investigation of [...] Read more.
Carbodiimides are important crosslinkers in organic synthesis and are used in the isocyanate industry as modifier additives. Therefore, the understanding of their formation is of high importance. In this work, we present a theoretical B3LYP/6-31G(d) and SMD solvent model and experimental investigation of the formation of diphenylcarbodiimide (CDI) from phenyl isocyanate using a phosphorus-based catalyst (MPPO) in ortho-dichlorobenzene (ODCB) solvent. Kinetic experiments were based on the volumetric quantitation of CO2 evolved, at different temperatures between 40 and 80 °C. Based on DFT calculations, we managed to construct a more detailed reaction mechanism compared to previous studies which is supported by experimental results. DFT calculations revealed that the mechanism is composed of two main parts, and the rate determining step of the first part, controlling the CO2 formation, is the first transition state with a 52.9 kJ mol−1 enthalpy barrier. The experimental activation energy was obtained from the Arrhenius plot (ln k vs. 1/T) using the observed second-order kinetics, and the obtained 55.8 ± 2.1 kJ mol−1 was in excellent agreement with the computational one, validating the complete mechanism, giving a better understanding of carbodiimide production from isocyanates. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

11 pages, 1513 KB  
Article
Urethane Synthesis in the Presence of Organic Acid Catalysts—A Computational Study
by Hadeer Q. Waleed, Béla Viskolcz and Béla Fiser
Molecules 2024, 29(10), 2375; https://doi.org/10.3390/molecules29102375 - 17 May 2024
Cited by 1 | Viewed by 2553
Abstract
A general mechanism for catalytic urethane formation in the presence of acid catalysts, dimethyl hydrogen phosphate (DMHP), methanesulfonic acid (MSA), and trifluoromethanesulfonic acid (TFMSA), has been studied using theoretical methods. The reaction of phenyl isocyanate (PhNCO) and butan-1-ol (BuOH) has been selected to [...] Read more.
A general mechanism for catalytic urethane formation in the presence of acid catalysts, dimethyl hydrogen phosphate (DMHP), methanesulfonic acid (MSA), and trifluoromethanesulfonic acid (TFMSA), has been studied using theoretical methods. The reaction of phenyl isocyanate (PhNCO) and butan-1-ol (BuOH) has been selected to describe the energetic and structural features of the catalyst-free urethane formation. The catalytic activities of DMHP, MSA, and TFMSA have been compared by adding them to the PhNCO–BuOH model system. The thermodynamic properties of the reactions were computed by using the G3MP2BHandHLYP composite method. It was revealed that in the presence of trifluoromethanesulfonic acid, the activation energy was the lowest within the studied set of catalysts. The achieved results indicate that acids can be successfully employed in urethane synthesis and the mechanism was described. Full article
(This article belongs to the Special Issue Feature Papers in Computational and Theoretical Chemistry)
Show Figures

Figure 1

12 pages, 1134 KB  
Communication
Polyurethane Recycling: Thermal Decomposition of 1,3-Diphenyl Urea to Isocyanates
by Shahab Zamani, Sterre H. E. van der Voort, Jean-Paul Lange, Sascha R. A. Kersten and M. Pilar Ruiz
Polymers 2023, 15(11), 2522; https://doi.org/10.3390/polym15112522 - 30 May 2023
Cited by 7 | Viewed by 4370
Abstract
Substituted urea linkages are formed during the production of polyurethane foam. To chemically recycle polyurethane toward its key monomers via depolymerization (i.e., isocyanate), it is essential to break the urea linkages to form the corresponding monomers, namely, an isocyanate and an amine. This [...] Read more.
Substituted urea linkages are formed during the production of polyurethane foam. To chemically recycle polyurethane toward its key monomers via depolymerization (i.e., isocyanate), it is essential to break the urea linkages to form the corresponding monomers, namely, an isocyanate and an amine. This work reports the thermal cracking of a model urea compound (1,3-diphenyl urea, DPU) into phenyl isocyanate and aniline in a flow reactor at different temperatures. Experiments were performed at 350–450 °C, with a continuous feed of a solution of 1 wt.% DPU in GVL. In the temperature range studied, high conversion levels of DPU are achieved (70–90 mol%), with high selectivity towards the desired products (close to 100 mol%) and high average mole balance (∼95 mol%) in all cases. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

15 pages, 3928 KB  
Article
Synthesis and Properties of 1,3-Disubstituted Ureas Containing (Adamantan-1-yl)(phenyl)methyl Fragment Based on One-Pot Direct Adamantane Moiety Inclusion
by Vladimir D’yachenko, Dmitry Danilov, Yaroslav Kuznetsov, Semyon Moiseev, Vladimir Mokhov, Vladimir Burmistrov and Gennady Butov
Molecules 2023, 28(8), 3577; https://doi.org/10.3390/molecules28083577 - 19 Apr 2023
Cited by 4 | Viewed by 3335
Abstract
A one-stage method for the preparation of 1-[isocyanato(phenyl)methyl]adamantane containing a phenylmethylene fragment located between the adamantane fragment and the isocyanate group, and 1-[isocyanato(phenyl)methyl]-3,5-dimethyladamantane with additional methyl groups at the nodal positions of adamantane, with a yield of 95% and 89%, respectively, is described. [...] Read more.
A one-stage method for the preparation of 1-[isocyanato(phenyl)methyl]adamantane containing a phenylmethylene fragment located between the adamantane fragment and the isocyanate group, and 1-[isocyanato(phenyl)methyl]-3,5-dimethyladamantane with additional methyl groups at the nodal positions of adamantane, with a yield of 95% and 89%, respectively, is described. The method includes the direct inclusion of an adamantane moiety through the reaction of phenylacetic acid ethyl ester with 1,3-dehydroadamantane or 3,5-dimethyl-1,3-dehydroadamantane followed by the hydrolysis of the obtained esters. The reaction of 1-[isocyanato(phenyl)methyl]adamantane with fluorine(chlorine)-containing anilines gave a series of 1,3-disubstituted ureas with 25–85% yield. 1-[Isocyanato(phenyl)methyl]-3,5-dimethyladamantane was involved in the reactions with fluorine(chlorine)-containing anilines and trans-4-amino-(cyclohexyloxy)benzoic acid to obtain another series of ureas with a yield of 29–74%. The resulting 1,3-disubstituted ureas are promising inhibitors of the human soluble epoxide hydrolase (hsEH). Full article
(This article belongs to the Special Issue Green and Highly Efficient One-Pot Synthesis and Catalysis)
Show Figures

Graphical abstract

5 pages, 1067 KB  
Short Note
3-Cyclohexyl-6-phenyl-1-(p-tolyl)pyrimidine-2,4(1H,3H)-dione
by Francesco Messa, Serena Perrone and Antonio Salomone
Molbank 2023, 2023(2), M1611; https://doi.org/10.3390/M1611 - 28 Mar 2023
Cited by 1 | Viewed by 2819
Abstract
The synthesis of a novel uracil derivative, 3-cyclohexyl-6-phenyl-1-(p-tolyl)pyrimidine-2,4(1H,3H)-dione (4), is reported via a four-component reaction involving an α-chloroketone (1), an aliphatic isocyanate (2), a primary aromatic amine (3) [...] Read more.
The synthesis of a novel uracil derivative, 3-cyclohexyl-6-phenyl-1-(p-tolyl)pyrimidine-2,4(1H,3H)-dione (4), is reported via a four-component reaction involving an α-chloroketone (1), an aliphatic isocyanate (2), a primary aromatic amine (3) and carbon monoxide. The proposed reaction mechanism involves a Pd-catalyzed carbonylation of 2-chloro-1-phenylethan-1-one (1), leading to a β-ketoacylpalladium key intermediate, and, at the same time, in situ formation of non-symmetrical urea deriving from cyclohexyl isocyanate (2) and p-toluidine (3). After a chemo-selective acylation of the non-symmetrical urea and the subsequent cyclization of the acylated intermediate, 3-cyclohexyl-6-phenyl-1-(p-tolyl)pyrimidine-2,4(1H,3H)-dione (4) is formed. Uracil derivative 4 was isolated in good yield (73%) and fully characterized by 1H, 13C, 2D 1H-13C HSQC and 2D 1H-13C HMBC NMR, FT-IR spectroscopy and GC-MS spectrometry. Full article
(This article belongs to the Collection Molecules from Catalytic Processes)
Show Figures

Figure 1

16 pages, 2377 KB  
Article
The Role of Diisocyanate Structure to Modify Properties of Segmented Polyurethanes
by Manuel Asensio, Juan-Francisco Ferrer, Andrés Nohales, Mario Culebras and Clara M. Gómez
Materials 2023, 16(4), 1633; https://doi.org/10.3390/ma16041633 - 15 Feb 2023
Cited by 29 | Viewed by 4005
Abstract
Segmented thermoplastic polyurethanes (PU) were synthetized using a polycarbonatediol macrodiol as a flexible or soft segment with a molar mass of 2000 g/mol, and different diisocyanate molecules and 1,4-butanediol as a rigid or hard segment. The diisocyanate molecules employed are 3,3′-Dimethyl-4,4′-biphenyl diisocyanate (TODI), [...] Read more.
Segmented thermoplastic polyurethanes (PU) were synthetized using a polycarbonatediol macrodiol as a flexible or soft segment with a molar mass of 2000 g/mol, and different diisocyanate molecules and 1,4-butanediol as a rigid or hard segment. The diisocyanate molecules employed are 3,3′-Dimethyl-4,4′-biphenyl diisocyanate (TODI), 4,4′-diphenylmethane diisocyanate (MDI), 4,4′-Methylenebis(phenyl isocyanate) 1-isocyanato-4-[(4-phenylisocyanate)methyl]benzene and 1-isocyanate-4-[(2-phenylisocyanate) methyl]benzene (ratio 1:1) (MDIi), isophorone diisocyanate (IPDI), and hexamethylene diisocyanate (HDI). The polyurethanes obtained reveal a wide variation of microphase separation degree that is correlated with mechanical properties. Different techniques, such as DSC, DMA, and FTIR, have been used to determine flexible–rigid segment phase behavior. Mechanical properties, such as tensile properties, Shore D hardness, and “compression set”, have been determined. This work reveals that the structure of the hard segment is crucial to determine the degree of phase miscibility which affects the resulting mechanical properties, such as tensile properties, hardness, and “compression set”. Full article
(This article belongs to the Special Issue Feature Paper in the Section 'Polymeric Materials')
Show Figures

Figure 1

9 pages, 838 KB  
Short Note
1-[2-(1H-Pyrrole-2-carbonyl)phenyl]-3-(4-methoxyphenyl)urea
by Antonia G. Sarantou and George Varvounis
Molbank 2023, 2023(1), M1531; https://doi.org/10.3390/M1531 - 22 Dec 2022
Cited by 1 | Viewed by 4188
Abstract
For the synthesis of 1-(2-(1H-pyrrole-2-carbonyl)phenyl)-3-(4-methoxyphenyl)urea, the final product, two different methods were used, in one or two steps, from (2-aminophenyl)(1H-pyrrol-2-yl)methanone. The one-step synthesis entailed a carbonylation reaction with 1/3 equivalent of triphosgene in the presence of two equivalents of [...] Read more.
For the synthesis of 1-(2-(1H-pyrrole-2-carbonyl)phenyl)-3-(4-methoxyphenyl)urea, the final product, two different methods were used, in one or two steps, from (2-aminophenyl)(1H-pyrrol-2-yl)methanone. The one-step synthesis entailed a carbonylation reaction with 1/3 equivalent of triphosgene in the presence of two equivalents of trimethylamine, followed by the addition of 4-methoxyaniline to the in situ generated aryl isocyanate. The two-step synthesis required first the preparation of phenyl(2-(1H-pyrrole-2-carbonyl)phenyl)carbamate and then a substitution reaction by 4-methoxyaniline. The first method produced the final product in 72% yield, which was the best yield. The structure of the final product was confirmed by FTIR, UV-VIS, 1H and 13C NMR spectroscopy and high resolution mass spectrometry. Full article
(This article belongs to the Collection Heterocycle Reactions)
Show Figures

Figure 1

12 pages, 27218 KB  
Article
Phenylcarbamate-Modified Paper for Paper Chromatographic Analysis of Hydrophobic Compounds
by Bungo Ochiai, Seiya Koseki and Yoshimasa Matsumura
Technologies 2023, 11(1), 1; https://doi.org/10.3390/technologies11010001 - 20 Dec 2022
Cited by 1 | Viewed by 3688
Abstract
Paper chromatography is a low-cost and facile analytical method traditionally used to analyze hydrophilic substances. For the application to substances with lower polarity, we prepared a stationary phase based on filter paper modified with phenyl isocyanate (PI-FP), bearing phenyl carbamate moieties for hydrophobic, [...] Read more.
Paper chromatography is a low-cost and facile analytical method traditionally used to analyze hydrophilic substances. For the application to substances with lower polarity, we prepared a stationary phase based on filter paper modified with phenyl isocyanate (PI-FP), bearing phenyl carbamate moieties for hydrophobic, π-π, and electrostatic interactions. The preparation and chromatographic methods were established by selecting papers, comparing different chemical structures, optimizing the modification procedure, investigating eluents, and quantitatively parameterizing the separation behavior based on the character of the analytes. PI-FP exhibited better separation performance than esterified FPs and enabled chromatographic analysis of various dyes with both positive and negative clogP (calculated water-octanol partition coefficient). We also demonstrated an application of this system for a preparative separation of dyes using thread-like paper modified with PI. Full article
(This article belongs to the Special Issue Smart Systems (SmaSys2022))
Show Figures

Figure 1

16 pages, 3355 KB  
Article
Polyurethane Recycling: Conversion of Carbamates—Catalysis, Side-Reactions and Mole Balance
by Shahab Zamani, Jean-Paul Lange, Sascha R. A. Kersten and M. Pilar Ruiz
Polymers 2022, 14(22), 4869; https://doi.org/10.3390/polym14224869 - 11 Nov 2022
Cited by 13 | Viewed by 4160
Abstract
Diisocyanates, a key monomer in polyurethane, are generally lost during recycling. Polyurethane alcoholysis to carbamate and subsequent cracking to isocyanate represents a promising, phosgene-free recycling route. This work reports the thermal and catalytic cracking of a model carbamate (Methyl N-phenyl carbamate, MPC) to [...] Read more.
Diisocyanates, a key monomer in polyurethane, are generally lost during recycling. Polyurethane alcoholysis to carbamate and subsequent cracking to isocyanate represents a promising, phosgene-free recycling route. This work reports the thermal and catalytic cracking of a model carbamate (Methyl N-phenyl carbamate, MPC) to isocyanate (Phenyl isocyanate). Multiple catalysts (ZnO, Bi2O3, Al2O3, and Montmorillonite K-10) were evaluated in a closed system (batch autoclaves) to decompose MPC at temperatures of 160–200 °C, with a thorough analysis of the products and high (≥90%) mole balance. The thermal reaction was very limited at these temperatures, whereas the catalytic reaction led mainly to aniline and urea and seemed to be dominated by water adsorbed on the catalyst surface. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Graphical abstract

13 pages, 2457 KB  
Article
An Ab Initio Investigation on Relevant Oligomerization Reactions of Toluene Diisocyanate (TDI)
by Ravikumar Thangaraj, Béla Fiser, Xuanbing Qiu, Chuanliang Li, Béla Viskolcz and Milán Szőri
Polymers 2022, 14(19), 4183; https://doi.org/10.3390/polym14194183 - 5 Oct 2022
Cited by 7 | Viewed by 3641
Abstract
2,4- and 2,6-isomers of toluene diisocyanates (2,4-TDI and 2,6-TDI) are important raw materials in the polyurethane industry. These reactive compounds associate even under ambient conditions to form oligomers, changing the physicochemical properties of the raw material. Kinetically and thermodynamically relevant dimerization reactions were [...] Read more.
2,4- and 2,6-isomers of toluene diisocyanates (2,4-TDI and 2,6-TDI) are important raw materials in the polyurethane industry. These reactive compounds associate even under ambient conditions to form oligomers, changing the physicochemical properties of the raw material. Kinetically and thermodynamically relevant dimerization reactions were selected based on G3MP2B3 calculations from all possible dimers of phenyl isocyanate using these isocyanates as proxies. As it turned out, only the formation of the diazetidine-2,4-dione ring (11-dimer, uretdione) resulted in a species having an exothermic enthalpy of formation (−30.4 kJ/mol at 298.15 K). The oxazetidin-2-one ring product (1-2-dimer) had a slightly endothermic standard enthalpy of formation (37.2 kJ/mol at 298.15 K). The mechanism of the relevant cyclodimerization reactions was investigated further for 2,4-TDI and 2,6-TDI species using G3MP2B3 and SMD solvent model for diazetidine as well as oxazetidin-2-one ring formation. The formation of the uretdione ring structures, from the 2,4-TDI dimer with both NCO groups in the meta position for each phenyl ring and one methyl group in the para and one in the meta position, had the lowest-lying transition state (Δ#E0 = 94.4 kJ/mol) in the gas phase. The one- and two-step mechanisms of the TDI cyclotrimerization were also studied based on the quasi-G3MP2B3 (qG3MP2B3) computational protocol. The one-step mechanism had an activation barrier as high as 149.0 kJ/mol, while the relative energies in the two-step mechanism were significantly lower for both transition states in the gas phase (94.7 and 60.5 kJ/mol) and in ODCB (87.0 and 54.0 kJ/mol). Full article
Show Figures

Graphical abstract

13 pages, 3528 KB  
Article
Construction of Bio-Based Polyurethanes via Olefin Metathesis and Their Thermal Reversible Behavior
by Zizhao Liu, Gaosheng Gu, Junwu Chen, Zhongyu Duan and Binyuan Liu
Polymers 2022, 14(17), 3597; https://doi.org/10.3390/polym14173597 - 31 Aug 2022
Cited by 3 | Viewed by 2444
Abstract
With the increase in awareness of environmental protection and the shortage of oil resources, bio-based polyurethane has attracted increasing attention due to its ecological friendliness, low cost and easy degradation. In this paper, using Eugenol (Eug) derived from plant essential oils as the [...] Read more.
With the increase in awareness of environmental protection and the shortage of oil resources, bio-based polyurethane has attracted increasing attention due to its ecological friendliness, low cost and easy degradation. In this paper, using Eugenol (Eug) derived from plant essential oils as the raw resource, syringyl ethanol (Syol) was prepared, and three monomers were obtained by the reaction of the Eug or Syol with Hexamethylene diisocyanate (HDI)or 4,4′-methylene di (phenyl isocyanate) (MDI), respectively. Then, three novel bio-based polyurethanes, P(Eug-HDI), P(Syol-HDI) and P(Syol-MDI), were synthesized by olefin metathesis polymerization. The effects of the catalyst type, reaction solvent, reaction temperature, reaction time, molar ratio of catalyst dosage and metal salts on the Eug-HDI olefin metathesis polymerization were investigated in detail. Under the optimal conditions, the yield reached 64.7%. It is worth noting that the addition of metal Ni salts could significantly promote the polymerization, in which NiI2 could increase the yield to 86.6%. Furthermore, the thermal decomposition behaviors of these bio-based polyurethanes were explored by DSC and variable temperature infrared spectroscopy. The test results showed that P(Eug-HDI) had a reversible thermal decomposition and a certain self-healing performance. This paper provided a new method for the preparation of bio-based polyurethane. Full article
(This article belongs to the Collection Polyurethanes)
Show Figures

Figure 1

Back to TopTop