Urethane Synthesis in the Presence of Organic Acid Catalysts—A Computational Study
Abstract
:1. Introduction
2. Results and Discussion
3. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanamori, T.; Sakai, K. Introduction to Polymer Science Involved in Membrane Preparation Technology. Nihon Rinsho Jpn. J. Clin. Med. 1991, 49, 44–52. [Google Scholar]
- Saldívar-Guerra, E.; Vivaldo-Lima, E. Handbook of Polymer Synthesis, Characterization, and Processing; Wiley: Hoboken, NJ, USA, 2013; pp. 1–622. [Google Scholar] [CrossRef]
- Szycher, M. Structure–property relations in polyurethanes. In Szycher’s Handbook of Polyurethanes, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012; ISBN 9781439863138. [Google Scholar]
- Yanping, Y. The Development of Polyurethane. Mater. Sci. Mater. Rev. 2018, 1, 1–8. [Google Scholar] [CrossRef]
- Bayer, O. Das Di-Lsocganat-Poluadditionsverfahren (Polyurethane). Angew. Chem. 1947, 59, 257–288. [Google Scholar] [CrossRef]
- Das, A.; Mahanwar, P. A Brief Discussion on Advances in Polyurethane Applications. Adv. Ind. Eng. Polym. Res. 2020, 3, 93–101. [Google Scholar] [CrossRef]
- Brzeska, J.; Piotrowska-Kirschling, A. A Brief Introduction to the Polyurethanes According to the Principles of Green Chemistry. Processes 2021, 9, 1929. [Google Scholar] [CrossRef]
- Matsumura, S.; Soeda, Y.; Toshima, K. Perspectives for Synthesis and Production of Polyurethanes and Related Polymers by Enzymes Directed toward Green and Sustainable Chemistry. Appl. Microbiol. Biotechnol. 2006, 70, 12–20. [Google Scholar] [CrossRef]
- Polyurethanes Market Statistics, PU Share 2026 PDF Report. Available online: https://www.gminsights.com/industry-analysis/polyurethane-PU-market-report (accessed on 8 September 2021).
- Polyurethane Foam Market: Trends, Opportunities and Competitive Analysis. Available online: https://www.lucintel.com/polyurethane-foam-market.aspx (accessed on 11 July 2022).
- Sabrina, S.S.A.; Denilson, A.S.; Danielle, M.A. Physico-Chemical Analysis of Flexible Polyurethane Foams Containing Commercial Calcium Carbonate. Mater. Res. 2008, 11, 433–438. [Google Scholar] [CrossRef]
- Sonnenschein, M.F. Polyurethanes: Science, Technology, Markets, and Trends; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; ISBN 978-1-118-73783-5. [Google Scholar]
- Suleman, S.; Khan, S.M.; Gull, N.; Aleem, W.; Shafiq, M.; Jamil, T. Comprehensive Short Review on Polyurethane Foam. Int. J. Innov. Appl. Stud. 2014, 12, 165–169. [Google Scholar]
- Ionescu, M. Chemistry and Technology of Polyols for Polyurethanes, 2nd ed.; A Smithers Group Company Shawbury: Shrewsbury, UK, 2016; Volume 1, ISBN 9781910242988. [Google Scholar]
- Zhang, X.D.; Neff, R.A.; Macosko, C.W. Foam Stability in Flexible Polyurethane Foam Systems. In Polymeric Foams: Mechanisms and Materials; CRC Press: Boca Raton, FL, USA, 2004; pp. 139–172. ISBN 9780203506141. [Google Scholar]
- Aqilahhamuzan, H.; Badri, K.H. The Role of Isocyanates in Determining the Viscoelastic Properties of Polyurethane. In AIP Conference Proceedings; AIP Publishing: College Park, MD, USA, 2016; Volume 1784. [Google Scholar] [CrossRef]
- Radeloff, M.A.; Beck, R.H.F. Polyols-More than Sweeteners. Sugar Ind. 2013, 226–234. [Google Scholar] [CrossRef]
- Echeverria-Altuna, O.; Ollo, O.; Calvo-Correas, T.; Harismendy, I.; Eceiza, A. Effect of the Catalyst System on the Reactivity of a Polyurethane Resin System for RTM Manufacturing of Structural Composites. Express Polym. Lett. 2022, 16, 234–247. [Google Scholar] [CrossRef]
- Touchet, T.J.; Cosgriff-Hernandez, E.M. Hierarchal Structure-Property Relationships of Segmented Polyurethanes; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; ISBN 9780081006221. [Google Scholar]
- Gao, Z.; Wang, Z.; Liu, Z.; Fu, L.; Li, X.; Eling, B.; Pöselt, E.; Schander, E.; Wang, Z. Hard Block Length Distribution of Thermoplastic Polyurethane Determined by Polymerization-Induced Phase Separation. Polymer 2022, 256, 125236. [Google Scholar] [CrossRef]
- De Souza, F.M.; Kahol, P.K.; Gupta, R.K. Introduction to Polyurethane Chemistry. In Polyurethane Chemistry: Renewable Polyols and Isocyanates; American Chemical Society: Washington, DC, USA, 2021; Volume 1380, pp. 1–24. [Google Scholar] [CrossRef]
- Rao, R.R.; Mondy, L.A.; Long, K.N.; Celina, M.C.; Wyatt, N.; Roberts, C.C.; Soehnel, M.M.; Brunini, V.E. The Kinetics of Polyurethane Structural Foam Formation: Foaming and Polymerization. AIChE J. 2012, 59, 215–228. [Google Scholar]
- Ruiduan, L.; Ling, L.; Yanjie, L.; Ben, W.; Jun, Y.J.; Jibo, Z. Research Progress of Amine Catalysts for Polyurethane. New Mater. Intell. Manuf.(NMIM) 2018, 1, 54–57. [Google Scholar] [CrossRef]
- Sardon, H.; Chan, J.M.; Ono, R.J.; Mecerreyes, D.; Hedrick, J.L. Highly Tunable Polyurethanes: Organocatalyzed Polyaddition and Subsequent Post-Polymerization Modification of Pentafluorophenyl Ester Sidechains. Polym. Chem. 2014, 5, 3547–3550. [Google Scholar] [CrossRef]
- Malwitz, N.; Wong, S.W.; Frisch, K.C.; Manis, P.A. Amine Catalysis of Polyurethane Foams. J. Cell. Plast. 1987, 23, 461–502. [Google Scholar] [CrossRef]
- Rad, A.S.; Ardjmand, M. Studying on the Mechanism and Raw Materials Used to Manufacturing Polyurethane. Transportation 2008, 3, 60–71. [Google Scholar]
- Sardon, H.; Engler, A.C.; Chan, J.M.; García, J.M.; Coady, D.J.; Pascual, A.; Mecerreyes, D.; Jones, G.O.; Rice, J.E.; Horn, H.W.; et al. Organic Acid-Catalyzed Polyurethane Formation via a Dual-Activated Mechanism: Unexpected Preference of n-Activation over o-Activation of Isocyanates. J. Am. Chem. Soc. 2013, 135, 16235–16241. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.J.; Zhong, W.Q.; Tang, D.L.; Zhang, G.Z. Preparation of Organic Nanoacid Catalyst for Urethane Formation. Chin. J. Chem. Phys. 2017, 30, 339–342. [Google Scholar] [CrossRef]
- Dove, A.P. Organic Catalysis for Ring-Opening Polymerization. ACS Macro Lett. 2012, 1, 1409–1412. [Google Scholar] [CrossRef]
- Waleed, H.Q.; Csécsi, M.; Konyhás, V.; Boros, Z.R.; Viskolcz, B.; Fejes, Z.; Fiser, B. Aliphatic Tertiary Amine Catalysed Urethane Formation—A Combined Experimental and Theoretical Study. Phys. Chem. Chem. Phys. 2022, 24, 20538. [Google Scholar] [CrossRef]
- Waleed, H.Q.; Hadjadj, R.; Viskolcz, B.; Fiser, B. Stoichiometric Reaction and Catalytic Effect of 2-Dimethylaminoethanol in Urethane Formation. Phys. Chem. Chem. Phys. 2024, 26, 7103–7108. [Google Scholar] [CrossRef] [PubMed]
- Waleed, H.Q.; Viskolcz, B.; Fejes, Z.; Fiser, B. Urethane Formation in the Presence of 2,2-Dimorpholinodiethylether (DMDEE) and 1,4-Dimethylpiperazine (DMP)—A Combined Experimental and Theoretical Study. Comput. Theor. Chem. 2023, 1221, 114045. [Google Scholar] [CrossRef]
- Waleed, H.Q.; Hadjadj, R.; Viskolcz, B.; Fiser, B. Effect of Morpholine, and 4-Methylmorpholine on Urethane Formation: A Computational Study. Sci. Rep. 2023, 13, 17950. [Google Scholar] [CrossRef] [PubMed]
- Waleed, H.Q.; Pecsmány, D.; Csécsi, M.; Farkas, L.; Viskolcz, B.; Fejes, Z.; Fiser, B. Experimental and Theoretical Study of Cyclic Amine Catalysed Urethane Formation. Polmers 2022, 14, 2859. [Google Scholar] [CrossRef] [PubMed]
- Waleed, H.Q.; Csécsi, M.; Hadjadj, R.; Thangaraj, R.; Pecsmány, D.; Owen, M.; Szőri, M.; Fejes, Z.; Viskolcz, B.; Fiser, B. Computational Study of Catalytic Urethane Formation. Polymers 2022, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Waleed, H.Q.; Csécsi, M.; Hadjadj, R.; Thangaraj, R.; Pecsmány, D.; Owen, M.; Szőri, M.; Fejes, Z.; Viskolcz, B.; Fiser, B. The Catalytic Effect of DBU on Urethane Formation—A Computational Study. Mater. Sci. Eng. 2021, 46, 70–77. [Google Scholar]
- IARC. Dimethyl Hydrogen Phosphite. In Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans; IARC: Lyon, France, 1990; Volume 71, pp. 1437–1440. [Google Scholar]
- Nomeir, A.A.; Burka, L.T.; Matthews, H.B. Analysis of Dimethyl Hydrogen Phosphite and Its Stability under Simulated Physiological Conditions. J. Anal. Toxicol. 1988, 12, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Roitman, D.B.; McAlister, J.; Oaks, F.L. Composition Characterization of Methanesulfonic Acid. J. Chem. Eng. Data 1994, 39, 56–60. [Google Scholar] [CrossRef]
- Methanesulfonic Acid. Safety Data Sheet; No. 1907/2006 (REACH); Chemos GmbH&Co.KG: Altdorf, Germany, 2019. [Google Scholar]
- Kazakova, A.N.; Vasilyev, A.V. Trifluoromethanesulfonic Acid in Organic Synthesis. Russ. J. Org. Chem. 2017, 53, 485–509. [Google Scholar] [CrossRef]
- Marziano, N.C.; Ronchin, L.; Tortato, C.; Zingales, A.; Sheikh-Osman, A.A. Acidity and Reactivity of Trifluoromethanesulfonic Acid in Liquid and Solid Acid Catalysts. J. Mol. Catal. A Chem. 2001, 174, 265–277. [Google Scholar] [CrossRef]
- Becke, A.D. A New Mixing of Hartree-Fock and Local Density-Functional Theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 720–723. [Google Scholar] [CrossRef]
- Rassolov, V.A.; Pople, J.A.; Ratner, M.A.; Windus, T.L. 6-31G* Basis Set for Atoms K through Zn. J. Chem. Phys. 1998, 109, 1223–1229. [Google Scholar] [CrossRef]
- Petersson, G.A.; Bennett, A.; Tensfeldt, T.G.; Al-Laham, M.A.; Shirley, W.A.; Mantzaris, J. A Complete Basis Set Model Chemistry. I. The Total Energies of Closed-Shell Atoms and Hydrides of the First-Row Elements. J. Chem. Phys. 1988, 89, 2193–2218. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Da Chai, J.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [PubMed]
- Szori, M.; Abou-Abdo, T.; Fittschen, C.; Csizmadia, I.G.; Viskolcz, B. Allylic Hydrogen Abstraction II. H-Abstraction from 1,4 Type Polyalkenes as a Model for Free Radical Trapping by Polyunsaturated Fatty Acids (PUFAs). Phys. Chem. Chem. Phys. 2007, 9, 1931–1940. [Google Scholar] [CrossRef] [PubMed]
- Szori, M.; Fittschen, C.; Csizmadia, I.G.; Viskolcz, B. Allylic H-Abstraction Mechanism: The Potential Energy Surface of the Reaction of Propene with OH Radical. J. Chem. Theory Comput. 2006, 2, 1575–1586. [Google Scholar] [CrossRef]
- Izsák, R.; Szori, M.; Knowles, P.J.; Viskolcz, B. High Accuracy Ab Initio Calculations on Reactions of OH with 1-Alkenes. The Case of Propene. J. Chem. Theory Comput. 2009, 5, 2313–2321. [Google Scholar] [CrossRef]
- Curtiss, L.A.; Redfern, P.C.; Raghavachari, K.; Rassolov, V.; Pople, J.A. Gaussian-3 Theory Using Reduced Møller-Plesset Order. J. Chem. Phys. 1999, 110, 4703–4709. [Google Scholar] [CrossRef]
- Janoschek, R.; Rossi, M.J. Thermochemical Properties of Free Radicals from G3MP2B3 Calculations. Int. J. Chem. Kinet. 2002, 34, 550–560. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Fox, D.J. Gaussian 09, Revision E.01; Gaussian Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Legault, C.Y. CYLview, V1.0561; Université de Sherbrooke: Sherbrooke, QC, Canada, 2009. [Google Scholar]
∆rH (kJ/mol) | ||||||
---|---|---|---|---|---|---|
R | RC1 | RC2 | TS | PC | P | |
Catalyst-free system | 0.00 | - | −8.97′ | 116.49 | - | −94.84 |
DMHP | 0.00 | −18.09 | −47.79 | −15.31 | −133.12 | −94.84 |
MSA | 0.00 | −8.66 | −41.30 | −8.44 | −125.01 | −94.84 |
TFMSA | 0.00 | −6.94 | −45.94 | −42.85 | −130.46 | −94.84 |
Catalysts | RC1 | RC2 | TS | PC | P | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
O-H* | O-H** | N-H | O-H* | O-H** | C-O | N-H | O-H* | O-H** | C-O | N-H | O-H* | O-H** | N-H | |
DMHP | 1.830 | 0.966 | 1.922 | 1.824 | 0.967 | 2.858 | 1.730 | 1.677 | 0.984 | 1.824 | 1.014 | 0.974 | 1.822 | 1.004 |
MSA | 1.971 | 0.961 | 1.867 | 1.928 | 0.961 | 2.856 | 1.640 | 1.738 | 0.967 | 1.871 | 1.008 | 0.981 | 1.775 | 1.004 |
TFMSA | 2.048 | 0.958 | 1.761 | 2.003 | 0.959 | 2.862 | 1.240 | 1.960 | 0.962 | 2.480 | 1.006 | 0.993 | 1.686 | 1.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waleed, H.Q.; Viskolcz, B.; Fiser, B. Urethane Synthesis in the Presence of Organic Acid Catalysts—A Computational Study. Molecules 2024, 29, 2375. https://doi.org/10.3390/molecules29102375
Waleed HQ, Viskolcz B, Fiser B. Urethane Synthesis in the Presence of Organic Acid Catalysts—A Computational Study. Molecules. 2024; 29(10):2375. https://doi.org/10.3390/molecules29102375
Chicago/Turabian StyleWaleed, Hadeer Q., Béla Viskolcz, and Béla Fiser. 2024. "Urethane Synthesis in the Presence of Organic Acid Catalysts—A Computational Study" Molecules 29, no. 10: 2375. https://doi.org/10.3390/molecules29102375
APA StyleWaleed, H. Q., Viskolcz, B., & Fiser, B. (2024). Urethane Synthesis in the Presence of Organic Acid Catalysts—A Computational Study. Molecules, 29(10), 2375. https://doi.org/10.3390/molecules29102375