Urethane Synthesis in the Presence of Organic Acid Catalysts—A Computational Study
Abstract
1. Introduction
2. Results and Discussion
3. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanamori, T.; Sakai, K. Introduction to Polymer Science Involved in Membrane Preparation Technology. Nihon Rinsho Jpn. J. Clin. Med. 1991, 49, 44–52. [Google Scholar]
- Saldívar-Guerra, E.; Vivaldo-Lima, E. Handbook of Polymer Synthesis, Characterization, and Processing; Wiley: Hoboken, NJ, USA, 2013; pp. 1–622. [Google Scholar] [CrossRef]
- Szycher, M. Structure–property relations in polyurethanes. In Szycher’s Handbook of Polyurethanes, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012; ISBN 9781439863138. [Google Scholar]
- Yanping, Y. The Development of Polyurethane. Mater. Sci. Mater. Rev. 2018, 1, 1–8. [Google Scholar] [CrossRef]
- Bayer, O. Das Di-Lsocganat-Poluadditionsverfahren (Polyurethane). Angew. Chem. 1947, 59, 257–288. [Google Scholar] [CrossRef]
- Das, A.; Mahanwar, P. A Brief Discussion on Advances in Polyurethane Applications. Adv. Ind. Eng. Polym. Res. 2020, 3, 93–101. [Google Scholar] [CrossRef]
- Brzeska, J.; Piotrowska-Kirschling, A. A Brief Introduction to the Polyurethanes According to the Principles of Green Chemistry. Processes 2021, 9, 1929. [Google Scholar] [CrossRef]
- Matsumura, S.; Soeda, Y.; Toshima, K. Perspectives for Synthesis and Production of Polyurethanes and Related Polymers by Enzymes Directed toward Green and Sustainable Chemistry. Appl. Microbiol. Biotechnol. 2006, 70, 12–20. [Google Scholar] [CrossRef]
- Polyurethanes Market Statistics, PU Share 2026 PDF Report. Available online: https://www.gminsights.com/industry-analysis/polyurethane-PU-market-report (accessed on 8 September 2021).
- Polyurethane Foam Market: Trends, Opportunities and Competitive Analysis. Available online: https://www.lucintel.com/polyurethane-foam-market.aspx (accessed on 11 July 2022).
- Sabrina, S.S.A.; Denilson, A.S.; Danielle, M.A. Physico-Chemical Analysis of Flexible Polyurethane Foams Containing Commercial Calcium Carbonate. Mater. Res. 2008, 11, 433–438. [Google Scholar] [CrossRef]
- Sonnenschein, M.F. Polyurethanes: Science, Technology, Markets, and Trends; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; ISBN 978-1-118-73783-5. [Google Scholar]
- Suleman, S.; Khan, S.M.; Gull, N.; Aleem, W.; Shafiq, M.; Jamil, T. Comprehensive Short Review on Polyurethane Foam. Int. J. Innov. Appl. Stud. 2014, 12, 165–169. [Google Scholar]
- Ionescu, M. Chemistry and Technology of Polyols for Polyurethanes, 2nd ed.; A Smithers Group Company Shawbury: Shrewsbury, UK, 2016; Volume 1, ISBN 9781910242988. [Google Scholar]
- Zhang, X.D.; Neff, R.A.; Macosko, C.W. Foam Stability in Flexible Polyurethane Foam Systems. In Polymeric Foams: Mechanisms and Materials; CRC Press: Boca Raton, FL, USA, 2004; pp. 139–172. ISBN 9780203506141. [Google Scholar]
- Aqilahhamuzan, H.; Badri, K.H. The Role of Isocyanates in Determining the Viscoelastic Properties of Polyurethane. In AIP Conference Proceedings; AIP Publishing: College Park, MD, USA, 2016; Volume 1784. [Google Scholar] [CrossRef]
- Radeloff, M.A.; Beck, R.H.F. Polyols-More than Sweeteners. Sugar Ind. 2013, 226–234. [Google Scholar] [CrossRef]
- Echeverria-Altuna, O.; Ollo, O.; Calvo-Correas, T.; Harismendy, I.; Eceiza, A. Effect of the Catalyst System on the Reactivity of a Polyurethane Resin System for RTM Manufacturing of Structural Composites. Express Polym. Lett. 2022, 16, 234–247. [Google Scholar] [CrossRef]
- Touchet, T.J.; Cosgriff-Hernandez, E.M. Hierarchal Structure-Property Relationships of Segmented Polyurethanes; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; ISBN 9780081006221. [Google Scholar]
- Gao, Z.; Wang, Z.; Liu, Z.; Fu, L.; Li, X.; Eling, B.; Pöselt, E.; Schander, E.; Wang, Z. Hard Block Length Distribution of Thermoplastic Polyurethane Determined by Polymerization-Induced Phase Separation. Polymer 2022, 256, 125236. [Google Scholar] [CrossRef]
- De Souza, F.M.; Kahol, P.K.; Gupta, R.K. Introduction to Polyurethane Chemistry. In Polyurethane Chemistry: Renewable Polyols and Isocyanates; American Chemical Society: Washington, DC, USA, 2021; Volume 1380, pp. 1–24. [Google Scholar] [CrossRef]
- Rao, R.R.; Mondy, L.A.; Long, K.N.; Celina, M.C.; Wyatt, N.; Roberts, C.C.; Soehnel, M.M.; Brunini, V.E. The Kinetics of Polyurethane Structural Foam Formation: Foaming and Polymerization. AIChE J. 2012, 59, 215–228. [Google Scholar]
- Ruiduan, L.; Ling, L.; Yanjie, L.; Ben, W.; Jun, Y.J.; Jibo, Z. Research Progress of Amine Catalysts for Polyurethane. New Mater. Intell. Manuf.(NMIM) 2018, 1, 54–57. [Google Scholar] [CrossRef]
- Sardon, H.; Chan, J.M.; Ono, R.J.; Mecerreyes, D.; Hedrick, J.L. Highly Tunable Polyurethanes: Organocatalyzed Polyaddition and Subsequent Post-Polymerization Modification of Pentafluorophenyl Ester Sidechains. Polym. Chem. 2014, 5, 3547–3550. [Google Scholar] [CrossRef]
- Malwitz, N.; Wong, S.W.; Frisch, K.C.; Manis, P.A. Amine Catalysis of Polyurethane Foams. J. Cell. Plast. 1987, 23, 461–502. [Google Scholar] [CrossRef]
- Rad, A.S.; Ardjmand, M. Studying on the Mechanism and Raw Materials Used to Manufacturing Polyurethane. Transportation 2008, 3, 60–71. [Google Scholar]
- Sardon, H.; Engler, A.C.; Chan, J.M.; García, J.M.; Coady, D.J.; Pascual, A.; Mecerreyes, D.; Jones, G.O.; Rice, J.E.; Horn, H.W.; et al. Organic Acid-Catalyzed Polyurethane Formation via a Dual-Activated Mechanism: Unexpected Preference of n-Activation over o-Activation of Isocyanates. J. Am. Chem. Soc. 2013, 135, 16235–16241. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.J.; Zhong, W.Q.; Tang, D.L.; Zhang, G.Z. Preparation of Organic Nanoacid Catalyst for Urethane Formation. Chin. J. Chem. Phys. 2017, 30, 339–342. [Google Scholar] [CrossRef]
- Dove, A.P. Organic Catalysis for Ring-Opening Polymerization. ACS Macro Lett. 2012, 1, 1409–1412. [Google Scholar] [CrossRef]
- Waleed, H.Q.; Csécsi, M.; Konyhás, V.; Boros, Z.R.; Viskolcz, B.; Fejes, Z.; Fiser, B. Aliphatic Tertiary Amine Catalysed Urethane Formation—A Combined Experimental and Theoretical Study. Phys. Chem. Chem. Phys. 2022, 24, 20538. [Google Scholar] [CrossRef]
- Waleed, H.Q.; Hadjadj, R.; Viskolcz, B.; Fiser, B. Stoichiometric Reaction and Catalytic Effect of 2-Dimethylaminoethanol in Urethane Formation. Phys. Chem. Chem. Phys. 2024, 26, 7103–7108. [Google Scholar] [CrossRef] [PubMed]
- Waleed, H.Q.; Viskolcz, B.; Fejes, Z.; Fiser, B. Urethane Formation in the Presence of 2,2-Dimorpholinodiethylether (DMDEE) and 1,4-Dimethylpiperazine (DMP)—A Combined Experimental and Theoretical Study. Comput. Theor. Chem. 2023, 1221, 114045. [Google Scholar] [CrossRef]
- Waleed, H.Q.; Hadjadj, R.; Viskolcz, B.; Fiser, B. Effect of Morpholine, and 4-Methylmorpholine on Urethane Formation: A Computational Study. Sci. Rep. 2023, 13, 17950. [Google Scholar] [CrossRef] [PubMed]
- Waleed, H.Q.; Pecsmány, D.; Csécsi, M.; Farkas, L.; Viskolcz, B.; Fejes, Z.; Fiser, B. Experimental and Theoretical Study of Cyclic Amine Catalysed Urethane Formation. Polmers 2022, 14, 2859. [Google Scholar] [CrossRef] [PubMed]
- Waleed, H.Q.; Csécsi, M.; Hadjadj, R.; Thangaraj, R.; Pecsmány, D.; Owen, M.; Szőri, M.; Fejes, Z.; Viskolcz, B.; Fiser, B. Computational Study of Catalytic Urethane Formation. Polymers 2022, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Waleed, H.Q.; Csécsi, M.; Hadjadj, R.; Thangaraj, R.; Pecsmány, D.; Owen, M.; Szőri, M.; Fejes, Z.; Viskolcz, B.; Fiser, B. The Catalytic Effect of DBU on Urethane Formation—A Computational Study. Mater. Sci. Eng. 2021, 46, 70–77. [Google Scholar]
- IARC. Dimethyl Hydrogen Phosphite. In Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans; IARC: Lyon, France, 1990; Volume 71, pp. 1437–1440. [Google Scholar]
- Nomeir, A.A.; Burka, L.T.; Matthews, H.B. Analysis of Dimethyl Hydrogen Phosphite and Its Stability under Simulated Physiological Conditions. J. Anal. Toxicol. 1988, 12, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Roitman, D.B.; McAlister, J.; Oaks, F.L. Composition Characterization of Methanesulfonic Acid. J. Chem. Eng. Data 1994, 39, 56–60. [Google Scholar] [CrossRef]
- Methanesulfonic Acid. Safety Data Sheet; No. 1907/2006 (REACH); Chemos GmbH&Co.KG: Altdorf, Germany, 2019. [Google Scholar]
- Kazakova, A.N.; Vasilyev, A.V. Trifluoromethanesulfonic Acid in Organic Synthesis. Russ. J. Org. Chem. 2017, 53, 485–509. [Google Scholar] [CrossRef]
- Marziano, N.C.; Ronchin, L.; Tortato, C.; Zingales, A.; Sheikh-Osman, A.A. Acidity and Reactivity of Trifluoromethanesulfonic Acid in Liquid and Solid Acid Catalysts. J. Mol. Catal. A Chem. 2001, 174, 265–277. [Google Scholar] [CrossRef]
- Becke, A.D. A New Mixing of Hartree-Fock and Local Density-Functional Theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 720–723. [Google Scholar] [CrossRef]
- Rassolov, V.A.; Pople, J.A.; Ratner, M.A.; Windus, T.L. 6-31G* Basis Set for Atoms K through Zn. J. Chem. Phys. 1998, 109, 1223–1229. [Google Scholar] [CrossRef]
- Petersson, G.A.; Bennett, A.; Tensfeldt, T.G.; Al-Laham, M.A.; Shirley, W.A.; Mantzaris, J. A Complete Basis Set Model Chemistry. I. The Total Energies of Closed-Shell Atoms and Hydrides of the First-Row Elements. J. Chem. Phys. 1988, 89, 2193–2218. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Da Chai, J.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [PubMed]
- Szori, M.; Abou-Abdo, T.; Fittschen, C.; Csizmadia, I.G.; Viskolcz, B. Allylic Hydrogen Abstraction II. H-Abstraction from 1,4 Type Polyalkenes as a Model for Free Radical Trapping by Polyunsaturated Fatty Acids (PUFAs). Phys. Chem. Chem. Phys. 2007, 9, 1931–1940. [Google Scholar] [CrossRef] [PubMed]
- Szori, M.; Fittschen, C.; Csizmadia, I.G.; Viskolcz, B. Allylic H-Abstraction Mechanism: The Potential Energy Surface of the Reaction of Propene with OH Radical. J. Chem. Theory Comput. 2006, 2, 1575–1586. [Google Scholar] [CrossRef]
- Izsák, R.; Szori, M.; Knowles, P.J.; Viskolcz, B. High Accuracy Ab Initio Calculations on Reactions of OH with 1-Alkenes. The Case of Propene. J. Chem. Theory Comput. 2009, 5, 2313–2321. [Google Scholar] [CrossRef]
- Curtiss, L.A.; Redfern, P.C.; Raghavachari, K.; Rassolov, V.; Pople, J.A. Gaussian-3 Theory Using Reduced Møller-Plesset Order. J. Chem. Phys. 1999, 110, 4703–4709. [Google Scholar] [CrossRef]
- Janoschek, R.; Rossi, M.J. Thermochemical Properties of Free Radicals from G3MP2B3 Calculations. Int. J. Chem. Kinet. 2002, 34, 550–560. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Fox, D.J. Gaussian 09, Revision E.01; Gaussian Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Legault, C.Y. CYLview, V1.0561; Université de Sherbrooke: Sherbrooke, QC, Canada, 2009. [Google Scholar]
∆rH (kJ/mol) | ||||||
---|---|---|---|---|---|---|
R | RC1 | RC2 | TS | PC | P | |
Catalyst-free system | 0.00 | - | −8.97′ | 116.49 | - | −94.84 |
DMHP | 0.00 | −18.09 | −47.79 | −15.31 | −133.12 | −94.84 |
MSA | 0.00 | −8.66 | −41.30 | −8.44 | −125.01 | −94.84 |
TFMSA | 0.00 | −6.94 | −45.94 | −42.85 | −130.46 | −94.84 |
Catalysts | RC1 | RC2 | TS | PC | P | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
O-H* | O-H** | N-H | O-H* | O-H** | C-O | N-H | O-H* | O-H** | C-O | N-H | O-H* | O-H** | N-H | |
DMHP | 1.830 | 0.966 | 1.922 | 1.824 | 0.967 | 2.858 | 1.730 | 1.677 | 0.984 | 1.824 | 1.014 | 0.974 | 1.822 | 1.004 |
MSA | 1.971 | 0.961 | 1.867 | 1.928 | 0.961 | 2.856 | 1.640 | 1.738 | 0.967 | 1.871 | 1.008 | 0.981 | 1.775 | 1.004 |
TFMSA | 2.048 | 0.958 | 1.761 | 2.003 | 0.959 | 2.862 | 1.240 | 1.960 | 0.962 | 2.480 | 1.006 | 0.993 | 1.686 | 1.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waleed, H.Q.; Viskolcz, B.; Fiser, B. Urethane Synthesis in the Presence of Organic Acid Catalysts—A Computational Study. Molecules 2024, 29, 2375. https://doi.org/10.3390/molecules29102375
Waleed HQ, Viskolcz B, Fiser B. Urethane Synthesis in the Presence of Organic Acid Catalysts—A Computational Study. Molecules. 2024; 29(10):2375. https://doi.org/10.3390/molecules29102375
Chicago/Turabian StyleWaleed, Hadeer Q., Béla Viskolcz, and Béla Fiser. 2024. "Urethane Synthesis in the Presence of Organic Acid Catalysts—A Computational Study" Molecules 29, no. 10: 2375. https://doi.org/10.3390/molecules29102375
APA StyleWaleed, H. Q., Viskolcz, B., & Fiser, B. (2024). Urethane Synthesis in the Presence of Organic Acid Catalysts—A Computational Study. Molecules, 29(10), 2375. https://doi.org/10.3390/molecules29102375