Phenylcarbamate-Modified Paper for Paper Chromatographic Analysis of Hydrophobic Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurements
2.3. Modification of FP with PI
2.4. Modification of FP with Acetic Anhydride
2.5. Modification of FP with Benzoyl Chloride
2.6. Paper Chromatography Analysis
3. Results
3.1. Modification of FP
3.2. Development of Dyes on FP and Modified FPs
3.3. Development of Dyes on FP and PI-FP
3.4. Separation of Dyes with PI-Modified Paper
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ettre, L.S. The predawn of paper chromatography. Chromatographia 2001, 54, 409–414. [Google Scholar] [CrossRef]
- Yang, X.X.; Forouzan, O.; Brown, T.P.; Shevkoplyas, S.S. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab A Chip 2012, 12, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Lisowski, P.; Zarzycki, P.K. Microfluidic paper-based analytical devices (μPADs) and micro total analysis systems (μTAS): Development, applications and future trends. Chromatographia 2013, 76, 1201–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Xu, H.; Dong, Z.; Wang, Z.; Yang, Z.; Yu, X.; Chang, L. Micro/nano biomedical devices for point-of-care diagnosis of infectious respiratory diseases. Med. Novel Technol. Dev. 2022, 14, 100116. [Google Scholar] [CrossRef]
- Okamoto, Y.; Kawashima, M.; Hatada, K.J. Chromatographic resolution. 7. Useful chiral packing materials for high-performance liquid chromatographic resolution of enantiomers: Phenylcarbamates of polysaccharides coated on silica gel. Am. Chem. Soc. 1984, 106, 5357–5359. [Google Scholar] [CrossRef]
- Okamoto, Y.; Yashima, E. Polysaccharide derivatives for chromatographic separation of enantiomers. Angew. Chem. Int. Ed. 1998, 37, 1020–1043. [Google Scholar] [CrossRef]
- Shen, J.; Ikai, T.; Okamoto, Y.J. Synthesis and application of immobilized polysaccharide-based chiral stationary phases for enantioseparation by high-performance liquid chromatography. J. Chromatogr. A 2014, 1363, 51–61. [Google Scholar] [CrossRef]
- Chankvetadze, B. Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. TrAC Trends Anal. Chem. 2020, 122, 115709. [Google Scholar] [CrossRef]
- Abushammala, H.; Mao, J. A review of the surface modification of cellulose and nanocellulose using aliphatic and aromatic mono- and di-isocyanates. Molecules 2019, 24, 2782. [Google Scholar] [CrossRef] [Green Version]
- Krause, K.; Girod, M.; Chankvetadze, G.; Blaschke, G.J. Enantioseparations in normal- and reversed-phase nano-high-performance liquid chromatography and capillary electrochromatography using polyacrylamide and polysaccharide derivatives as chiral stationary phases. J. Chromatogr. A 1999, 837, 51–63. [Google Scholar] [CrossRef]
- Li, S.; Yang, S.; Zhu, X.; Jiang, X.; Kong, X.Z. Easy preparation of superoleophobic membranes based on cellulose filter paper and their use for water–oil separation. Cellulose 2019, 26, 6813–6823. [Google Scholar] [CrossRef]
- Xu, D.; Gong, M.; Li, S.; Zhu, X.; Kong, X.Z. Fabrication of superhydrophobic/oleophilic membranes by chemical modification of cellulose filter paper and their application trial for oil–water separation. Cellulose 2020, 27, 6093–6101. [Google Scholar] [CrossRef]
- Saraji, M.; Farajmand, B.J. Chemically modified cellulose paper as a thin film microextraction phase. J. Chromatogr. A 2013, 1314, 24–30. [Google Scholar] [CrossRef]
- Ungerer, B.; Müller, U.; Potthast, A.; Acero, E.H.; Veigel, S. Chemical and physical interactions of regenerated cellulose yarns and isocyanate-based matrix systems. Sci. Rep. 2021, 11, 11647. [Google Scholar] [CrossRef]
- Celebi, H.; Ilgar, M.; Seyhan, A.T. Evaluation of the effect of isocyanate modification on the thermal and rheological properties of poly(ε-caprolactone)/cellulose composites. Polym. Bull. 2022, 79, 4941–4955. [Google Scholar] [CrossRef]
- Yu, W.W.; White, I.M. Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates. Analyst 2013, 138, 3679–3686. [Google Scholar] [CrossRef]
- Jung, H.; Park, M.; Kang, M.; Jeong, K.-H. Silver nanoislands on cellulose fibers for chromatographic separation and ultrasensitive detection of small molecules. Light Sci. Appl. 2016, 5, e16009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Ma, Z.; Fang, H.; Zhang, Q.; Zhou, Q.; Chen, Z.; Yang, H.; Wang, F. Au sputtered paper chromatography tandem Raman platform for sensitive detection of heavy metal ions. ACS Sens. 2020, 5, 1455–1464. [Google Scholar] [CrossRef]
- Takamatsu, T.; Kusakabe, R.; Yoshida, T. Analysis of metal-humic acid interaction by paper chromatography using humic acid-impregnated filter paper. Soil Sci. 1983, 136, 371–381. [Google Scholar] [CrossRef]
- Brajenović, N.; Kveder, S.; Iskrić, S.; Hadžija, O. Chromatographic mobility of some metals on paper impregnated with lignin. Chromatographia 1997, 44, 649–650. [Google Scholar] [CrossRef]
- Xu, Y.; Bonizzoni, M. Disposable paper strips for carboxylate discrimination. Analyst 2020, 145, 3505–3516. [Google Scholar] [CrossRef] [PubMed]
- Du Toit, M.H.; Eggen, P.-O.; Kvittingen, L.; Partali, V.; Schmid, R.J. Normal- and reverse-phase paper chromatography of leaf extracts of dandelions. Chem. Educ. 2012, 89, 1295–1296. [Google Scholar] [CrossRef]
- Huo, X.; Chen, Y.; Bao, N.; Shi, C. Electrochemiluminescence integrated with paper chromatography for separation and detection of environmental hormones. Sens. Actuators B Chem. 2021, 334, 129662. [Google Scholar] [CrossRef]
- Abramoff, M.D.; Magalhaes, P.J.; Ram, S.J. Image processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Howell, J.; Roesing, M.; Boucher, D.J. A functional approach to solubility parameter computations. Phys. Chem. B 2017, 121, 4191–4201. [Google Scholar] [CrossRef]
Run | Temp. (°C) | PI (mL) | Time (min) | DS (%) 1 |
---|---|---|---|---|
1 | 100 | 1 | 60 | Dissolved |
2 | 100 | 1 | 30 | Dissolved |
3 | 80 | 1 | 60 | Dissolved |
4 | 80 | 1 | 30 | 3–5 |
5 | 80 | 1.5 | 30 | Partially dissolved |
6 | 80 | 1.5 | 20 | 3–4 |
7 | 80 | 2 | 20 | 3–4 |
8 | 40 | 1 | 30 | 1 |
9 | 40 | 1 | 20 | 1 |
Run | Temp. (°C) | PI (mL) | Time (min) | DS (%) 1 |
---|---|---|---|---|
1 | 80 | 1 | 30 | Partially dissolved |
2 | 80 | 1 | 20 | Partially dissolved |
3 | 80 | 1.5 | 20 | Partially dissolved |
4 | 60 | 1 | 30 | Partially dissolved |
5 | 60 | 1 | 20 | 2 |
Eluents | Solubility Parameter |
---|---|
water | 48 |
water/methanol = 3/2 | 40 |
isopropanol/water = 3/2 | 33 |
isopropanol/water = 3/1 | 29 |
isopropanol/water = 9/1 | 26 |
acetone/water = 9/1 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochiai, B.; Koseki, S.; Matsumura, Y. Phenylcarbamate-Modified Paper for Paper Chromatographic Analysis of Hydrophobic Compounds. Technologies 2023, 11, 1. https://doi.org/10.3390/technologies11010001
Ochiai B, Koseki S, Matsumura Y. Phenylcarbamate-Modified Paper for Paper Chromatographic Analysis of Hydrophobic Compounds. Technologies. 2023; 11(1):1. https://doi.org/10.3390/technologies11010001
Chicago/Turabian StyleOchiai, Bungo, Seiya Koseki, and Yoshimasa Matsumura. 2023. "Phenylcarbamate-Modified Paper for Paper Chromatographic Analysis of Hydrophobic Compounds" Technologies 11, no. 1: 1. https://doi.org/10.3390/technologies11010001
APA StyleOchiai, B., Koseki, S., & Matsumura, Y. (2023). Phenylcarbamate-Modified Paper for Paper Chromatographic Analysis of Hydrophobic Compounds. Technologies, 11(1), 1. https://doi.org/10.3390/technologies11010001