Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,665)

Search Parameters:
Keywords = phenotypic states

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3069 KiB  
Article
Inhibitory Impact of the Amino Benzoic Derivative DAB-2-28 on the Process of Epithelial–Mesenchymal Transition in Human Breast Cancer Cells
by Laurie Fortin, Julie Girouard, Yassine Oufqir, Alexis Paquin, Francis Cloutier, Isabelle Plante, Gervais Bérubé and Carlos Reyes-Moreno
Molecules 2025, 30(15), 3284; https://doi.org/10.3390/molecules30153284 - 5 Aug 2025
Abstract
Macrophage-mediated inflammation is known to be involved in the epithelial–mesenchymal transition (EMT) of various types of cancer. This makes macrophage-derived inflammatory factors prime targets for the development of new treatments. This study uncovers the therapeutic potential and action mechanism of DAB-2-28, a small-molecule [...] Read more.
Macrophage-mediated inflammation is known to be involved in the epithelial–mesenchymal transition (EMT) of various types of cancer. This makes macrophage-derived inflammatory factors prime targets for the development of new treatments. This study uncovers the therapeutic potential and action mechanism of DAB-2-28, a small-molecule derived from para-aminobenzoic acid, in the treatment of breast cancer. The luminal MCF-7 and the triple-negative MDA-MB-231 cancer cell lines used in this study represent, respectively, breast cancers in which the differentiation states are related to the epithelial phenotype of the mammary gland and breast cancers expressing a highly aggressive mesenchymal phenotype. In MCF-7 cells, soluble factors from macrophage-conditioned media (CM-MØ) induce a characteristic morphology of mesenchymal cells with an upregulated expression of Snail1, a mesenchymal marker, as opposed to a decrease in the expression of E-cadherin, an epithelial marker. DAB-2-28 does not affect the differential expression of Snail1 and E-cadherin in response to CM-MØ, but negatively impacts other hallmarks of EMT by decreasing invasion and migration capacities, in addition to MMP9 expression and gelatinase activity, in both MCF-7 and MDA-MB-231 cells. Moreover, DAB-2-28 inhibits the phosphorylation of key pro-EMT transcriptional factors, such as NFκB, STAT3, SMAD2, CREB, and/or AKT proteins, in breast cancer cells exposed to different EMT inducers. Overall, our study provides evidence suggesting that inhibition of EMT initiation or maintenance is a key mechanism by which DAB-2-28 can exert anti-tumoral effects in breast cancer cells. Full article
Show Figures

Figure 1

15 pages, 2024 KiB  
Article
Oxy210 Inhibits Hepatic Expression of Senescence-Associated, Pro-Fibrotic, and Pro-Inflammatory Genes in Mice During Development of MASH and in Hepatocytes In Vitro
by Feng Wang, Simon T. Hui, Frank Stappenbeck, Dorota Kaminska, Aldons J. Lusis and Farhad Parhami
Cells 2025, 14(15), 1191; https://doi.org/10.3390/cells14151191 - 2 Aug 2025
Viewed by 252
Abstract
Background: Senescence, a state of permanent cell cycle arrest, is a complex cellular phenomenon closely affiliated with age-related diseases and pathological fibrosis. Cellular senescence is now recognized as a significant contributor to organ fibrosis, largely driven by transforming growth factor beta (TGF-β) signaling, [...] Read more.
Background: Senescence, a state of permanent cell cycle arrest, is a complex cellular phenomenon closely affiliated with age-related diseases and pathological fibrosis. Cellular senescence is now recognized as a significant contributor to organ fibrosis, largely driven by transforming growth factor beta (TGF-β) signaling, such as in metabolic dysfunction-associated steatohepatitis (MASH), idiopathic pulmonary fibrosis (IPF), chronic kidney disease (CKD), and myocardial fibrosis, which can lead to heart failure, cystic fibrosis, and fibrosis in pancreatic tumors, to name a few. MASH is a progressive inflammatory and fibrotic liver condition that has reached pandemic proportions, now considered the largest non-viral contributor to the need for liver transplantation. Methods: We previously studied Oxy210, an anti-fibrotic and anti-inflammatory, orally bioavailable, oxysterol-based drug candidate for MASH, using APOE*3-Leiden.CETP mice, a humanized hyperlipidemic mouse model that closely recapitulates the hallmarks of human MASH. In this model, treatment of mice with Oxy210 for 16 weeks caused significant amelioration of the disease, evidenced by reduced hepatic inflammation, lipid deposition, and fibrosis, atherosclerosis and adipose tissue inflammation. Results: Here we demonstrate increased hepatic expression of senescence-associated genes and senescence-associated secretory phenotype (SASP), correlated with the expression of pro-fibrotic and pro-inflammatorygenes in these mice during the development of MASH that are significantly inhibited by Oxy210. Using the HepG2 human hepatocyte cell line, we demonstrate the induced expression of senescent-associated genes and SASP by TGF-β and inhibition by Oxy210. Conclusions: These findings further support the potential therapeutic effects of Oxy210 mediated in part through inhibition of senescence-driven hepatic fibrosis and inflammation in MASH and perhaps in other senescence-associated fibrotic diseases. Full article
Show Figures

Graphical abstract

14 pages, 1813 KiB  
Article
Elevated Antigen-Presenting-Cell Signature Genes Predict Stemness and Metabolic Reprogramming States in Glioblastoma
by Ji-Yong Sung and Kihwan Hwang
Int. J. Mol. Sci. 2025, 26(15), 7411; https://doi.org/10.3390/ijms26157411 - 1 Aug 2025
Viewed by 252
Abstract
Glioblastoma (GBM) is a highly aggressive and heterogeneous brain tumor. Glioma stem-like cells (GSCs) play a central role in tumor progression, therapeutic resistance, and recurrence. Although immune cells are known to shape the GBM microenvironment, the impact of antigen-presenting-cell (APC) signature genes on [...] Read more.
Glioblastoma (GBM) is a highly aggressive and heterogeneous brain tumor. Glioma stem-like cells (GSCs) play a central role in tumor progression, therapeutic resistance, and recurrence. Although immune cells are known to shape the GBM microenvironment, the impact of antigen-presenting-cell (APC) signature genes on tumor-intrinsic phenotypes remains underexplored. We analyzed both bulk- and single-cell RNA sequencing datasets of GBM to investigate the association between APC gene expression and tumor-cell states, including stemness and metabolic reprogramming. Signature scores were computed using curated gene sets related to APC activity, KEGG metabolic pathways, and cancer hallmark pathways. Protein–protein interaction (PPI) networks were constructed to examine the links between immune regulators and metabolic programs. The high expression of APC-related genes, such as HLA-DRA, CD74, CD80, CD86, and CIITA, was associated with lower stemness signatures and enhanced inflammatory signaling. These APC-high states (mean difference = –0.43, adjusted p < 0.001) also showed a shift in metabolic activity, with decreased oxidative phosphorylation and increased lipid and steroid metabolism. This pattern suggests coordinated changes in immune activity and metabolic status. Furthermore, TNF-α and other inflammatory markers were more highly expressed in the less stem-like tumor cells, indicating a possible role of inflammation in promoting differentiation. Our findings revealed that elevated APC gene signatures are associated with more differentiated and metabolically specialized GBM cell states. These transcriptional features may also reflect greater immunogenicity and inflammation sensitivity. The APC metabolic signature may serve as a useful biomarker to identify GBM subpopulations with reduced stemness and increased immune engagement, offering potential therapeutic implications. Full article
(This article belongs to the Special Issue Advanced Research on Cancer Stem Cells)
Show Figures

Figure 1

15 pages, 1506 KiB  
Review
Dilated Cardiomyopathy and Sensorimotor Polyneuropathy Associated with a Homozygous ELAC2 Variant: A Case Report and Literature Review
by Francesco Ravera, Filippo Angelini, Pier Paolo Bocchino, Gianluca Marcelli, Giulia Gobello, Giuseppe Giannino, Guglielmo Merlino, Benedetta De Guidi, Andrea Destefanis, Giulia Margherita Brach Del Prever, Carla Giustetto, Guglielmo Gallone, Stefano Pidello, Antonella Barreca, Silvia Deaglio, Gaetano Maria De Ferrari, Claudia Raineri and Veronica Dusi
Cardiogenetics 2025, 15(3), 20; https://doi.org/10.3390/cardiogenetics15030020 - 31 Jul 2025
Viewed by 125
Abstract
Variants in ELAC2, a gene encoding the mitochondrial RNase Z enzyme essential for mitochondrial tRNA processing, have been associated with severe pediatric-onset mitochondrial dysfunction, primarily presenting with developmental delay, hypertrophic cardiomyopathy (HCM), and lactic-acidosis. We hereby report the case of a 25-year-old [...] Read more.
Variants in ELAC2, a gene encoding the mitochondrial RNase Z enzyme essential for mitochondrial tRNA processing, have been associated with severe pediatric-onset mitochondrial dysfunction, primarily presenting with developmental delay, hypertrophic cardiomyopathy (HCM), and lactic-acidosis. We hereby report the case of a 25-year-old young woman presenting with dilated cardiomyopathy (DCM) and peripheral sensorimotor polyneuropathy, harboring a homozygous variant in ELAC2. The same variant has been reported only once so far in a case of severe infantile-onset form of HCM and mitochondrial respiratory chain dysfunction, with in vitro data showing a moderate reduction in the RNase Z activity and supporting the current classification as C4 according to the American College of Medical Genetics (ACMG) criteria (PS3, PM2, PM3, PP4). Our extensive clinical, imaging, histological, and genetic investigations support a causal link between the identified variant and the patient’s phenotype, despite the fact that the latter might be considered atypical according to the current state of knowledge. A detailed review of the existing literature on ELAC2-related disease is also provided, highlighting the molecular mechanisms underlying tRNA maturation, mitochondrial dysfunction, and the variable phenotypic expression. Our case further expands the clinical spectrum of ELAC2-related cardiomyopathies to include a relatively late onset in young adulthood and underscores the importance of comprehensive genetic testing in unexplained cardiomyopathies with multisystem involvement. Full article
(This article belongs to the Section Rare Disease-Genetic Syndromes)
Show Figures

Figure 1

16 pages, 5301 KiB  
Article
TSINet: A Semantic and Instance Segmentation Network for 3D Tomato Plant Point Clouds
by Shanshan Ma, Xu Lu and Liang Zhang
Appl. Sci. 2025, 15(15), 8406; https://doi.org/10.3390/app15158406 - 29 Jul 2025
Viewed by 155
Abstract
Accurate organ-level segmentation is essential for achieving high-throughput, non-destructive, and automated plant phenotyping. To address the challenge of intelligent acquisition of phenotypic parameters in tomato plants, we propose TSINet, an end-to-end dual-task segmentation network designed for effective and precise semantic labeling and instance [...] Read more.
Accurate organ-level segmentation is essential for achieving high-throughput, non-destructive, and automated plant phenotyping. To address the challenge of intelligent acquisition of phenotypic parameters in tomato plants, we propose TSINet, an end-to-end dual-task segmentation network designed for effective and precise semantic labeling and instance recognition of tomato point clouds, based on the Pheno4D dataset. TSINet adopts an encoder–decoder architecture, where a shared encoder incorporates four Geometry-Aware Adaptive Feature Extraction Blocks (GAFEBs) to effectively capture local structures and geometric relationships in raw point clouds. Two parallel decoder branches are employed to independently decode shared high-level features for the respective segmentation tasks. Additionally, a Dual Attention-Based Feature Enhancement Module (DAFEM) is introduced to further enrich feature representations. The experimental results demonstrate that TSINet achieves superior performance in both semantic and instance segmentation, particularly excelling in challenging categories such as stems and large-scale instances. Specifically, TSINet achieves 97.00% mean precision, 96.17% recall, 96.57% F1-score, and 93.43% IoU in semantic segmentation and 81.54% mPrec, 81.69% mRec, 81.60% mCov, and 86.40% mWCov in instance segmentation. Compared with state-of-the-art methods, TSINet achieves balanced improvements across all metrics, significantly reducing false positives and false negatives while enhancing spatial completeness and segmentation accuracy. Furthermore, we conducted ablation studies and generalization tests to systematically validate the effectiveness of each TSINet component and the overall robustness of the model. This study provides an effective technological approach for high-throughput automated phenotyping of tomato plants, contributing to the advancement of intelligent agricultural management. Full article
Show Figures

Figure 1

31 pages, 23068 KiB  
Article
Heparan Sulfate Proteoglycans as Potential Markers for In Vitro Human Neural Lineage Specification
by Chieh Yu, Duy L. B. Nguyen, Martina Gyimesi, Ian W. Peall, Son H. Pham, Lyn R. Griffiths, Rachel K. Okolicsanyi and Larisa M. Haupt
Cells 2025, 14(15), 1158; https://doi.org/10.3390/cells14151158 - 26 Jul 2025
Viewed by 368
Abstract
Heparan sulfate proteoglycans (HSPGs) within the neuronal niche are expressed during brain development, contributing to multiple aspects of neurogenesis, yet their roles in glial lineage commitment remain elusive. This study utilised three human cell models expanded under basal culture conditions followed by media-induced [...] Read more.
Heparan sulfate proteoglycans (HSPGs) within the neuronal niche are expressed during brain development, contributing to multiple aspects of neurogenesis, yet their roles in glial lineage commitment remain elusive. This study utilised three human cell models expanded under basal culture conditions followed by media-induced lineage induction to identify a reproducible and robust model of gliogenesis. SH-SY5Y human neuroblastoma cells (neuronal control), ReNcell CX human neural progenitor cells (astrocyte inductive) and ReNcell VM human neural progenitor (mixed neural induction) models were examined. The cultures were characterised during basal and inductive states via Q-PCR, Western Blotting, immunocytochemistry (ICC) and calcium signalling activity analyses. While the ReNcell lines did not produce fully mature or homogeneous astrocyte cultures, the ReNcell CX cultures most closely resembled an astrocytic phenotype with ReNcell VM cells treated with platelet-derived growth factor (PDGF) biased toward an oligodendrocyte lineage. The glycated variant of surface-bound glypican-2 (GPC2) was found to be associated with lineage commitment, with GPC6 and 6-O HS sulfation upregulated in astrocyte lineage cultures. Syndecan-3 (SDC3) emerged as a lineage-sensitive proteoglycan, with its cytoplasmic domain enriched in progenitor-like states and lost upon differentiation, supporting a role in maintaining neural plasticity. Conversely, the persistence of transmembrane-bound SDC3 in astrocyte cultures suggest continued involvement in extracellular signalling and proteoglycan secretion, demonstrated by increased membrane-bound HS aggregates. This data supports HSPGs and HS GAGs as human neural lineage differentiation and specification markers that may enable better isolation of human neural lineage-specific cell populations and improve our understanding of human neurogenesis. Full article
(This article belongs to the Collection Feature Papers in 'Cells of the Nervous System' Section)
Show Figures

Graphical abstract

15 pages, 1211 KiB  
Review
Epigenetic Regulation of Neutrophils in ARDS
by Jordan E. Williams, Zannatul Mauya, Virginia Walkup, Shaquria Adderley, Colin Evans and Kiesha Wilson
Cells 2025, 14(15), 1151; https://doi.org/10.3390/cells14151151 - 25 Jul 2025
Viewed by 333
Abstract
Acute respiratory distress syndrome (ARDS) is an inflammatory pulmonary condition that remains at alarming rates of fatality, with neutrophils playing a vital role in its pathogenesis. Beyond their classical antimicrobial functions, neutrophils contribute to pulmonary injury via the release of reactive oxygen species, [...] Read more.
Acute respiratory distress syndrome (ARDS) is an inflammatory pulmonary condition that remains at alarming rates of fatality, with neutrophils playing a vital role in its pathogenesis. Beyond their classical antimicrobial functions, neutrophils contribute to pulmonary injury via the release of reactive oxygen species, proteolytic enzymes, and neutrophil extracellular traps (NETs). To identify targets for treatment, it was found that epigenetic mechanisms, including histone modifications, hypomethylation, hypermethylation, and non-coding RNAs, regulate neutrophil phenotypic plasticity, survival, and inflammatory potential. It has been identified that neutrophils in ARDS patients exhibit abnormal methylation patterns and are associated with altered gene expression and prolonged neutrophil activation, thereby contributing to sustained inflammation. Histone citrullination, particularly via PAD4, facilitates NETosis, while histone acetylation status modulates chromatin accessibility and inflammatory gene expression. MicroRNAs have also been shown to regulate neutrophil activity, with miR-223 and miR-146a potentially being biomarkers and therapeutic targets. Neutrophil heterogeneity, as evidenced by distinct subsets such as low-density neutrophils (LDNs), varies across ARDS etiologies, including COVID-19. Single-cell RNA sequencing analyses, including the use of trajectory analysis, have revealed transcriptionally distinct neutrophil clusters with differential activation states. These studies support the use of epigenetic inhibitors, including PAD4, HDAC, and DNMT modulators, in therapeutic intervention. While the field has been enlightened with new findings, challenges in translational application remain an issue due to species differences, lack of stratification tools, and heterogeneity in ARDS presentation. This review describes how targeting neutrophil epigenetic regulators could help regulate hyperinflammation, making epigenetic modulation a promising area for precision therapeutics in ARDS. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

16 pages, 938 KiB  
Article
Altered Behavior and Neuronal Activity with Paternal Snord116 Deletion
by Daniel S. Scott, Violeta Zaric, Carol A. Tamminga and Ryan K. Butler
Genes 2025, 16(8), 863; https://doi.org/10.3390/genes16080863 - 24 Jul 2025
Viewed by 302
Abstract
Background/Objectives: Prader–Willi Syndrome (PWS) is a neurodevelopmental disease associated with multiple behavioral features, including a prevalence for psychosis. The genetic causes of PWS are well characterized and involve the silencing or deletion of the paternal copy of a region of chromosome 15q11–13. One [...] Read more.
Background/Objectives: Prader–Willi Syndrome (PWS) is a neurodevelopmental disease associated with multiple behavioral features, including a prevalence for psychosis. The genetic causes of PWS are well characterized and involve the silencing or deletion of the paternal copy of a region of chromosome 15q11–13. One gene within this region, Snord116, a non-coding RNA, has been determined to have a determinant role in the manifestation of PWS. However, it remains unclear as to how the deletion of this allele can affect activity in the brain and influence psychosis-like behaviors. Methods: In this study, we assessed the effects of the microdeletion of the paternal copy of Snord116 on regional neural activity in psychosis-associated brain regions and psychosis-like behaviors in mice. Results: The results suggest that Snord116 deletion causes increased c-Fos expression in the hippocampus and anterior cingulate cortex. Snord116 deletion also results in behavioral phenotypes consistent with psychosis, most notably in stressful paradigms, with deficits in sensorimotor gating and augmented contextual as well as cued fear conditioning. Conclusions: These results implicate the targets of Snord116 in the presentation of a psychosis-like state with regional specificity. Full article
(This article belongs to the Special Issue Advances in Gene Therapy)
Show Figures

Figure 1

20 pages, 377 KiB  
Article
Exploring the Relationship Between Brain-Derived Neurotrophic Factor Haplotype Variants, Personality, and Nicotine Usage in Women
by Dominika Borowy, Agnieszka Boroń, Jolanta Chmielowiec, Krzysztof Chmielowiec, Milena Lachowicz, Jolanta Masiak, Anna Grzywacz and Aleksandra Suchanecka
Int. J. Mol. Sci. 2025, 26(15), 7109; https://doi.org/10.3390/ijms26157109 - 23 Jul 2025
Viewed by 359
Abstract
Brain-derived neurotrophic factor (BDNF) is associated with nicotine use behaviours, the intensity of nicotine cravings, and the experience of withdrawal symptoms. Given the established influence of sex, brain-derived neurotrophic factor variants, personality traits and anxiety levels on nicotine use, this study aimed to [...] Read more.
Brain-derived neurotrophic factor (BDNF) is associated with nicotine use behaviours, the intensity of nicotine cravings, and the experience of withdrawal symptoms. Given the established influence of sex, brain-derived neurotrophic factor variants, personality traits and anxiety levels on nicotine use, this study aimed to conduct a comprehensive association analysis of these factors within a cohort of women who use nicotine. The study included 239 female participants: 112 cigarette users (mean age = 29.19, SD = 13.18) and 127 never-smokers (mean age = 28.1, SD =10.65). Study participants were examined using the NEO Five-Factor Inventory and the State–Trait Anxiety Inventory. Genotyping of rs6265, rs10767664, and rs2030323 was performed by real-time PCR using an oligonucleotide assay. We did not observe significant differences in the distribution of either genotype or allele of rs6265, rs10767664 and rs2030323 between groups. However, compared to the never-smokers, cigarette users scored significantly lower on the Agreeableness (5.446 vs. 6.315; p = 0.005767; dCohen’s = 0.363; η2 = 0.032) and the Conscientiousness (5.571 vs. 6.882; p = 0.000012; dCohen’s = 0.591; η2= 0.08) scales. There was significant linkage disequilibrium between all three analysed polymorphic variants—between rs6265 and rs10767664 (D′ = 0.9994962; p < 2.2204 × 10−16), between rs6265 and rs2030323 (D′ = 0.9994935; p < 2.2204 × 10−16) and between rs10767664 and rs20330323 (D′ = 0.9838157; p < 2.2204 × 10−16), but the haplotype association analysis revealed no significant differences. While our study did not reveal an association between the investigated brain-derived neurotrophic factor polymorphisms (rs6265, rs10767664 and rs2030323) and nicotine use, it is essential to acknowledge that nicotine dependence is a complex, multifactorial phenotype. Our study expands the current knowledge of BDNF ’s potential role in addictive behaviours by exploring the understudied variants (rs10767664 and rs2030323), offering a novel contribution to the field and paving the way for future research into their functional relevance in addiction-related phenotypes. The lower Agreeableness and Conscientiousness scores observed in women who use nicotine compared to never-smokers suggest that personality traits play a significant role in nicotine use in women. The observed relationship between personality traits and nicotine use lends support to the self-medication hypothesis, suggesting that some women may initiate or maintain nicotine use as a coping mechanism for stress and negative affect. Public health initiatives targeting women should consider personality and psychological risk factors in addition to biological risks. Full article
(This article belongs to the Special Issue Molecular Insights into Addiction)
10 pages, 327 KiB  
Article
Geographic Distribution of Phosphine Resistance and Frequency of Resistance Genes in Two Species of Grain Beetles, Tribolium castaneum and Rhyzopertha dominica, in North America
by Zhaorigetu Hubhachen, Aaron Cato, Edwin Afful, Manoj Nayak and Thomas W. Phillips
Insects 2025, 16(8), 749; https://doi.org/10.3390/insects16080749 - 22 Jul 2025
Viewed by 299
Abstract
Resistance to the fumigant phosphine (PH3) was studied for 28 populations of Rhyzopertha dominica from eight states of the USA and four provinces of Canada, as well as for 34 populations of Tribolium castaneum from twelve states of the USA and [...] Read more.
Resistance to the fumigant phosphine (PH3) was studied for 28 populations of Rhyzopertha dominica from eight states of the USA and four provinces of Canada, as well as for 34 populations of Tribolium castaneum from twelve states of the USA and four provinces of Canada, using both a discriminating dose bioassay and molecular marker analysis. We used a molecular marker analysis for a point mutation in the gene that encodes dihydrolipoamide dehydrogenase and facilitates the “strong resistance” phenotype in both species. Our results showed that PH3 resistance was correlated with higher frequencies of the strong resistance R allele in both species (R2 = 0.59 in R. dominica and R2 = 0.79 in T. castaneum). We also found that recessive R allele frequency did not correlate well with the geographic distribution of the resistant populations of these two species (R2 = 0.21 in R. dominica and R2 = 0.15 in T. castaneum). Therefore, populations of both species with higher R allele frequencies had higher resistance levels to PH3. Our results showed that the geographic distribution of PH3 resistance in both species varied and was not related geographically, but this supports the idea that the adaptive evolution of PH3 resistance in these species is caused by selection pressure for their resistance genes. Full article
(This article belongs to the Collection Integrated Management and Impact of Stored-Product Pests)
Show Figures

Figure 1

32 pages, 8017 KiB  
Article
Tumor Organoids Grown in Mixed-Composition Hydrogels Recapitulate the Plasticity of Pancreatic Cancers
by Ioritz Sorzabal-Bellido, Xabier Morales, Iván Cortés-Domínguez, Maider Esparza, Lucía Grande, Pedro Castillo, Silvia Larumbe, María Monteserín, Shruthi Narayanan, Mariano Ponz-Sarvise, Silve Vicent and Carlos Ortiz-de-Solórzano
Gels 2025, 11(7), 562; https://doi.org/10.3390/gels11070562 - 21 Jul 2025
Viewed by 525
Abstract
Pancreatic ductal adenocarcinoma (PDAC) tumors exhibit pronounced phenotypic plasticity, alternating between a treatment-sensitive classical phenotype and a more aggressive basal-like state associated with drug resistance and poor prognosis. The frequent coexistence of these phenotypes complicates patient stratification and the selection of effective therapies. [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) tumors exhibit pronounced phenotypic plasticity, alternating between a treatment-sensitive classical phenotype and a more aggressive basal-like state associated with drug resistance and poor prognosis. The frequent coexistence of these phenotypes complicates patient stratification and the selection of effective therapies. Tumor-derived organoids are valuable tools for drug screening; however, their clinical relevance relies on how accurately they recapitulate the phenotypic and functional characteristics of the original tumors. In this study, we present a quantitative analysis of how hydrogel composition influences the phenotype, tissue remodeling, metabolism, and drug resistance of PDAC organoids. Organoids were cultured within three types of hydrogels: Matrigel, collagen-I, and a mixture of collagen-I and Matrigel. Our results demonstrate that: (i) PDAC organoids grown in Matrigel exhibit a classical phenotype, with metabolic and drug response profiles similar to those of low-physiological two-dimensional cultures; (ii) Organoids grown in collagen-containing hydrogels, particularly those in collagen-Matrigel composites, faithfully recapitulate basal-like tumors, characterized by epithelial-to-mesenchymal transition, tissue remodeling, metabolic activity, and drug resistance; (iii) TGFβ induces an exacerbated, highly invasive basal-like phenotype. Summarizing, our findings highlight the importance of 3D hydrogel composition in modulating PDAC organoid phenotype and behavior and suggest collagen-Matrigel hydrogels as the most suitable matrix for modeling PDAC biology. Full article
(This article belongs to the Special Issue Biobased Gels for Drugs and Cells)
Show Figures

Graphical abstract

28 pages, 1358 KiB  
Review
Understanding the Borderline Brain: A Review of Neurobiological Findings in Borderline Personality Disorder (BPD)
by Eleni Giannoulis, Christos Nousis, Ioanna-Jonida Sula, Maria-Evangelia Georgitsi and Ioannis Malogiannis
Biomedicines 2025, 13(7), 1783; https://doi.org/10.3390/biomedicines13071783 - 21 Jul 2025
Viewed by 832
Abstract
Borderline personality disorder (BPD) is a complex and heterogeneous condition characterized by emotional instability, impulsivity, and impaired regulation of interpersonal relationships. This narrative review integrates findings from recent neuroimaging, neurochemical, and treatment studies to identify core neurobiological mechanisms and highlight translational potential. Evidence [...] Read more.
Borderline personality disorder (BPD) is a complex and heterogeneous condition characterized by emotional instability, impulsivity, and impaired regulation of interpersonal relationships. This narrative review integrates findings from recent neuroimaging, neurochemical, and treatment studies to identify core neurobiological mechanisms and highlight translational potential. Evidence from 112 studies published up to 2025 is synthesized, encompassing structural MRI, resting-state and task-based functional MRI, EEG, PET, and emerging machine learning applications. Consistent disruptions are observed across the prefrontal–amygdala circuitry, the default mode network (DMN), and mentalization-related regions. BPD shows a dominant and stable pattern of hyperconnectivity in the precuneus. Transdiagnostic comparisons with PTSD and cocaine use disorder (CUD) suggest partial overlap in DMN dysregulation, though BPD-specific traits emerge in network topology. Machine learning models achieve a classification accuracy of 70–88% and may support the tracking of early treatment responses. Longitudinal fMRI studies indicate that psychodynamic therapy facilitates the progressive normalization of dorsal anterior cingulate cortex (dACC) activity and reductions in alexithymia. We discuss the role of phenotypic heterogeneity (internalizing versus externalizing profiles), the potential of neuromodulation guided by biomarkers, and the need for standardized imaging protocols. Limitations include small sample sizes, a lack of effective connectivity analyses, and minimal multicenter cohort representation. Future research should focus on constructing multimodal biomarker panels that integrate functional connectivity, epigenetics, and computational phenotyping. This review supports the use of a precision psychiatry approach for BPD by aligning neuroscience with scalable clinical tools. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

12 pages, 246 KiB  
Article
Riboflavin Transporter Deficiency Type 2: Expanding the Phenotype of the Lebanese Founder Mutation p.Gly306Arg in the SLC52A2 Gene
by Jean-Marc T. Jreissati, Leonard Lawandos, Julien T. Jreissati and Pascale E. Karam
Metabolites 2025, 15(7), 491; https://doi.org/10.3390/metabo15070491 - 21 Jul 2025
Viewed by 382
Abstract
Background: Riboflavin transporter deficiency type 2 is an ultra-rare, yet treatable, inborn error of metabolism. This autosomal recessive disorder is caused by pathogenic mutations in the SLC52A2 gene leading to progressive ataxia, polyneuropathy, and hearing and visual impairment. The early initiation of [...] Read more.
Background: Riboflavin transporter deficiency type 2 is an ultra-rare, yet treatable, inborn error of metabolism. This autosomal recessive disorder is caused by pathogenic mutations in the SLC52A2 gene leading to progressive ataxia, polyneuropathy, and hearing and visual impairment. The early initiation of riboflavin therapy can prevent or mitigate the complications. To date, only 200 cases have been reported, mostly in consanguineous populations. The p.Gly306Arg founder mutation, identified in patients of Lebanese descent, is the most frequently reported worldwide. It was described in a homozygous state in a total of 21 patients. Therefore, studies characterizing the phenotypic spectrum of this mutation remain scarce. Methods: A retrospective review of charts of patients diagnosed with riboflavin transporter deficiency type 2 at a tertiary-care reference center in Lebanon was performed. Clinical, biochemical, and molecular profiles were analyzed and compared to reported cases in the literature. Results: A total of six patients from three unrelated families were diagnosed between 2018 and 2023. All patients exhibited the homozygous founder mutation, p.Gly306Arg, with variable phenotypes, even among family members. The median age of onset was 3 years. Diagnosis was achieved by exome sequencing at a median age of 5 years, as clinical and biochemical profiles were inconsistently suggestive. The response to riboflavin was variable. One patient treated with high-dose riboflavin recovered his motor function, while the others were stabilized. Conclusions: This study expands the current knowledge of the phenotypic spectrum associated with the p.Gly306Arg mutation in the SLC52A2 gene. Increased awareness among physicians of the common manifestations of this rare disorder is crucial for early diagnosis and treatment. In the absence of a consistent clinical or biochemical phenotype, the use of next-generation sequencing as a first-tier diagnostic test may be considered. Full article
(This article belongs to the Special Issue Research of Inborn Errors of Metabolism)
20 pages, 552 KiB  
Review
Sarcopenia in Urothelial Bladder Carcinoma: A Narrative Review
by Constantin Radu Vrabie, Andreea Ioana Parosanu and Cornelia Nitipir
Medicina 2025, 61(7), 1307; https://doi.org/10.3390/medicina61071307 - 20 Jul 2025
Viewed by 292
Abstract
Background and Objectives: Urothelial bladder carcinoma includes a spectrum of malignant lesions with heterogeneous molecular, biological, and clinical features and a variable risk of progression from non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive disease (MIBC) and ultimately to metastatic urothelial carcinoma (mUC). Sarcopenia, [...] Read more.
Background and Objectives: Urothelial bladder carcinoma includes a spectrum of malignant lesions with heterogeneous molecular, biological, and clinical features and a variable risk of progression from non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive disease (MIBC) and ultimately to metastatic urothelial carcinoma (mUC). Sarcopenia, a condition secondary to a catabolic state, is characterized by progressive loss of skeletal muscle mass and function and is highly prevalent across all stages of bladder cancer. This review aims to synthesize current evidence regarding the clinical impact of sarcopenia and its dynamic changes throughout the disease course. Materials and Methods: A narrative literature review was conducted using PubMed, Scopus, and Cochrane databases, incorporating the most relevant published sources. Search terms included “bladder carcinoma”, “sarcopenia”, “body composition”, “NMIBC”, and “MIBC”. Case reports and congress abstracts were excluded. Results: In NMIBC treated with intravesical Bacillus Calmette–Guérin (BCG), sarcopenia has been shown to have a negative predictive value in some studies. Among patients receiving neoadjuvant chemotherapy (NAC) for MIBC, sarcopenia has been associated with increased toxicity, dose reductions, and treatment delays. In the context of radical surgery, sarcopenia correlates with increased postoperative mortality and a higher rate of severe complications. In mUC, low muscle mass is a negative prognostic factor regardless of treatment type and is associated with chemotherapy-related hematologic toxicity, although it does not appear to predict immune-related adverse events (irAEs). Conclusions: Sarcopenia is a highly prevalent and clinically relevant phenotype of urothelial bladder cancer patients, impacting prognosis, treatment response, and chemotherapy toxicity. Incorporating sarcopenia with other relevant components of body composition (BC) and systemic inflammatory markers may facilitate the development of more robust risk scores. Current evidence is primarily limited by the retrospective design of most studies. Future prospective research is needed to clarify the prognostic role of sarcopenia and support its integration into routine clinical decision-making. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

37 pages, 1761 KiB  
Review
Iron–Immune Crosstalk at the Maternal–Fetal Interface: Emerging Mechanisms in the Pathogenesis of Preeclampsia
by Jieyan Zhong, Ruhe Jiang, Nan Liu, Qingqing Cai, Qi Cao, Yan Du and Hongbo Zhao
Antioxidants 2025, 14(7), 890; https://doi.org/10.3390/antiox14070890 - 19 Jul 2025
Viewed by 624
Abstract
Preeclampsia (PE) is a pregnancy-specific hypertensive disorder characterized by systemic inflammation, endothelial dysfunction, and placental insufficiency. While inadequate trophoblast invasion and impaired spiral artery remodeling have long been recognized as central to its pathogenesis, emerging evidence underscores the critical roles of dysregulated iron [...] Read more.
Preeclampsia (PE) is a pregnancy-specific hypertensive disorder characterized by systemic inflammation, endothelial dysfunction, and placental insufficiency. While inadequate trophoblast invasion and impaired spiral artery remodeling have long been recognized as central to its pathogenesis, emerging evidence underscores the critical roles of dysregulated iron metabolism and its crosstalk with immune responses, particularly macrophage-mediated inflammation, in driving PE development. This review systematically explores the dynamic changes in iron metabolism during pregnancy, including increased maternal iron demand, placental iron transport mechanisms, and the molecular regulation of placental iron homeostasis. We further explore the contribution of ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, to trophoblast dysfunction and pregnancy-related diseases, including PE. Macrophages, pivotal immune regulators at the maternal–fetal interface, exhibit distinct polarization states that shape tissue remodeling and immune tolerance. We outline their origin, distribution, and polarization in pregnancy, and emphasize their aberrant phenotype and function in PE. The bidirectional crosstalk between iron and macrophages is also dissected: iron shapes macrophage polarization and function, while macrophages reciprocally modulate iron homeostasis. Notably, excessive reactive oxygen species (ROS) and pro-inflammatory cytokines secreted by M1-polarized macrophages may exacerbate trophoblast ferroptosis, amplifying placental injury. Within the context of PE, we delineate how iron overload and macrophage dysfunction synergize to potentiate placental inflammation and oxidative stress. Key iron-responsive immune pathways, such as the HO-1/hepcidin axis and IL-6/TNF-α signaling, are discussed in relation to disease severity. Finally, we highlight promising therapeutic strategies targeting the iron–immune axis, encompassing three key modalities—iron chelation therapy, precision immunomodulation, and metabolic reprogramming interventions—which may offer novel avenues for PE prevention and treatment. Full article
Show Figures

Figure 1

Back to TopTop