Exploring the Relationship Between Brain-Derived Neurotrophic Factor Haplotype Variants, Personality, and Nicotine Usage in Women
Abstract
1. Introduction
2. Results
2.1. The Hardy–Weinberg Equilibrium
2.2. Association of BDNF rs6265, rs10767664 and rs2030323 Genotypes and Alleles with Cigarette Smoking
2.3. Personality Trait Assessment by the NEO Five-Factor Inventory and State–Trait Anxiety Inventory
2.4. Linkage Disequilibrium and Haplotype Association Analysis
3. Discussion
4. Materials and Methods
4.1. Participants and Psychometric Tools
4.2. Laboratory Analysis
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BDNF | Brain-derived neurotrophic factor |
CNS | Central nervous system |
D3R | Dopamine 3 receptor |
DA | Dopamine |
DR | Dopamine receptor |
HWE | Hardy-Weinberg’s equilibrium |
LD | Linkage disequilibrium |
MDS | Mesolimbic dopaminergic system |
MINI | Mini International Neuropsychiatric Interview |
NAc | Nucleus accumbens |
nAChRs | Nicotinic acetylcholine receptors |
ND | Nicotine dependence |
NEO-FFI | NEO Five-Factor Inventory |
NMDA | N-Methyl-D-aspartate |
p75NTR | p75 neurotrophin receptor |
SD | Substance dependence |
SNP | Single-nucleotide polymorphism |
STAI | State-Trait Anxiety Inventory |
TrkB | Tyrosine kinase receptor B |
VTA | Ventral tegmental area |
WHO | World Health Organisation |
References
- World Health Organization. WHO Report on the Global Tobacco Epidemic, 2023: Protect People from Tobacco Smoke; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Tattan-Birch, H.; Brown, J.; Shahab, L.; Beard, E.; Jackson, S.E. Trends in Vaping and Smoking Following the Rise of Disposable E-Cigarettes: A Repeat Cross-Sectional Study in England between 2016 and 2023. Lancet Reg. Health-Eur. 2024, 42, 100924. [Google Scholar] [CrossRef]
- Samet, J.M. Tobacco Smoking: The Leading Cause of Preventable Disease Worldwide. Thorac. Surg. Clin. 2013, 23, 103–112. [Google Scholar] [CrossRef]
- Ambrose, J.A.; Barua, R.S. The Pathophysiology of Cigarette Smoking and Cardiovascular Disease: An Update. J. Am. Coll. Cardiol. 2004, 43, 1731–1737. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Wang, H.; d’Oleire Uquillas, F.; Wang, X.; Ding, J.; Chen, H. Definition of Substance and Non-Substance Addiction. Adv. Exp. Med. Biol. 2017, 1010, 21–41. [Google Scholar] [CrossRef] [PubMed]
- Sharp, B.M.; Chen, H. Neurogenetic Determinants and Mechanisms of Addiction to Nicotine and Smoked Tobacco. Eur. J. Neurosci. 2019, 50, 2164–2179. [Google Scholar] [CrossRef] [PubMed]
- Baraona, L.K.; Lovelace, D.; Daniels, J.L.; McDaniel, L. Tobacco Harms, Nicotine Pharmacology, and Pharmacologic Tobacco Cessation Interventions for Women. J. Midwifery Women’s Health 2017, 62, 253–269. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, D.; Qu, X.; Li, M.; Zou, J.; Tan, S. BDNF and Nicotine Dependence: Associations and Potential Mechanisms. Rev. Neurosci. 2020, 32, 79–91. [Google Scholar] [CrossRef]
- Palasz, E.; Wysocka, A.; Gasiorowska, A.; Chalimoniuk, M.; Niewiadomski, W.; Niewiadomska, G. BDNF as a Promising Therapeutic Agent in Parkinson’s Disease. Int. J. Mol. Sci. 2020, 21, 1170. [Google Scholar] [CrossRef]
- Björkholm, C.; Monteggia, L.M. BDNF—A Key Transducer of Antidepressant Effects. Neuropharmacology 2016, 102, 72–79. [Google Scholar] [CrossRef]
- Chao, M.V. Neurotrophins and Their Receptors: A Convergence Point for Many Signalling Pathways. Nat. Rev. Neurosci. 2003, 4, 299–309. [Google Scholar] [CrossRef]
- Machaalani, R.; Chen, H. Brain Derived Neurotrophic Factor (BDNF), Its Tyrosine Kinase Receptor B (TrkB) and Nicotine. Neurotoxicology 2018, 65, 186–195. [Google Scholar] [CrossRef]
- Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in Neuronal Development and Function. Annu. Rev. Neurosci. 2001, 24, 677–736. [Google Scholar] [CrossRef] [PubMed]
- Seroogy, K.B.; Lundgren, K.H.; Tran, T.M.D.; Guthrie, K.M.; Isackson, P.J.; Gall, C.M. Dopaminergic Neurons in Rat Ventral Midbrain Express Brain-derived Neurotrophic Factor and Neurotrophin-3 mRNAs. J. Comp. Neurol. 1994, 342, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Kowiański, P.; Lietzau, G.; Czuba, E.; Waśkow, M.; Steliga, A.; Moryś, J. BDNF: A Key Factor with Multipotent Impact on Brain Signaling and Synaptic Plasticity. Cell. Mol. Neurobiol. 2018, 38, 579–593. [Google Scholar] [CrossRef]
- Foll, B.L.; Goldberg, S.R. Effects of Nicotine in Experimental Animals and Humans: An Update on Addictive Properties. In Nicotine Psychopharmacology; Henningfield, J.E., London, E.D., Pogun, S., Eds.; Handbook of Experimental; Springer: Berlin/Heidelberg, Germany, 2009; Volume 192, pp. 335–367. ISBN 978-3-540-69246-1. [Google Scholar]
- Markou, A. Review. Neurobiology of Nicotine Dependence. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 3159–3168. [Google Scholar] [CrossRef]
- Benowitz, N.L. Pharmacology of Nicotine: Addiction, Smoking-Induced Disease, and Therapeutics. Annu. Rev. Pharmacol. Toxicol. 2009, 49, 57–71. [Google Scholar] [CrossRef]
- Koob, G.F.; Le Moal, M. Neurobiological Mechanisms for Opponent Motivational Processes in Addiction. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 3113–3123. [Google Scholar] [CrossRef]
- Kenny, P.J.; File, S.E.; Rattray, M. Acute Nicotine Decreases, and Chronic Nicotine Increases the Expression of Brain-Derived Neurotrophic Factor mRNA in Rat Hippocampus. Mol. Brain Res. 2000, 85, 234–238. [Google Scholar] [CrossRef]
- Le Foll, B.; Diaz, J.; Sokoloff, P. Increased Dopamine D3 Receptor Expression Accompanying Behavioral Sensitization to Nicotine in Rats. Synapse 2003, 47, 176–183. [Google Scholar] [CrossRef]
- Di Chiara, G. Role of Dopamine in the Behavioural Actions of Nicotine Related to Addiction. Eur. J. Pharmacol. 2000, 393, 295–314. [Google Scholar] [CrossRef]
- Picciotto, M.R.; Zoli, M.; Rimondini, R.; Léna, C.; Marubio, L.M.; Pich, E.M.; Fuxe, K.; Changeux, J.-P. Acetylcholine Receptors Containing the Β2 Subunit Are Involved in the Reinforcing Properties of Nicotine. Nature 1998, 391, 173–177. [Google Scholar] [CrossRef]
- Tapper, A.R.; McKinney, S.L.; Nashmi, R.; Schwarz, J.; Deshpande, P.; Labarca, C.; Whiteaker, P.; Marks, M.J.; Collins, A.C.; Lester, H.A. Nicotine Activation of A4* Receptors: Sufficient for Reward, Tolerance, and Sensitization. Science 2004, 306, 1029–1032. [Google Scholar] [CrossRef] [PubMed]
- Faure, P.; Tolu, S.; Valverde, S.; Naudé, J. Role of Nicotinic Acetylcholine Receptors in Regulating Dopamine Neuron Activity. Neuroscience 2014, 282, 86–100. [Google Scholar] [CrossRef] [PubMed]
- De Biasi, M.; Dani, J.A. Reward, Addiction, Withdrawal to Nicotine. Annu. Rev. Neurosci. 2011, 34, 105–130. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Yao, L.; Hopf, F.W.; Fan, P.; Jiang, Z.; Bonci, A.; Diamond, I. Nicotine and Ethanol Activate Protein Kinase A Synergistically via Gi Βγ Subunits in Nucleus Accumbens/Ventral Tegmental Cocultures: The Role of Dopamine D1/D2 and Adenosine A2A Receptors. J. Pharmacol. Exp. Ther. 2007, 322, 23–29. [Google Scholar] [CrossRef]
- Wilar, G.; Shinoda, Y.; Sasaoka, T.; Fukunaga, K. Crucial Role of Dopamine D2 Receptor Signaling in Nicotine-Induced Conditioned Place Preference. Mol. Neurobiol. 2019, 56, 7911–7928. [Google Scholar] [CrossRef]
- Fowler, C.D.; Turner, J.R.; Imad Damaj, M. Molecular Mechanisms Associated with Nicotine Pharmacology and Dependence. Handb. Exp. Pharmacol. 2020, 258, 373–393. [Google Scholar] [CrossRef]
- Bhang, S.-Y.; Choi, S.-W.; Ahn, J.-H. Changes in Plasma Brain-Derived Neurotrophic Factor Levels in Smokers after Smoking Cessation. Neurosci. Lett. 2010, 468, 7–11. [Google Scholar] [CrossRef]
- Jamal, M.; Van der Does, W.; Elzinga, B.M.; Molendijk, M.L.; Penninx, B.W.J.H. Association between Smoking, Nicotine Dependence, and BDNF Val66Met Polymorphism with BDNF Concentrations in Serum. Nicotine Tob. Res. 2015, 17, 323–329. [Google Scholar] [CrossRef]
- Kim, T.-S.; Kim, D.-J.; Lee, H.; Kim, Y.-K. Increased Plasma Brain-Derived Neurotrophic Factor Levels in Chronic Smokers Following Unaided Smoking Cessation. Neurosci. Lett. 2007, 423, 53–57. [Google Scholar] [CrossRef]
- Lang, U.E.; Sander, T.; Lohoff, F.W.; Hellweg, R.; Bajbouj, M.; Winterer, G.; Gallinat, J. Association of the Met66 Allele of Brain-Derived Neurotrophic Factor (BDNF) with Smoking. Psychopharmacology 2007, 190, 433–439. [Google Scholar] [CrossRef]
- Bath, K.G.; Lee, F.S. Variant BDNF (Val66Met) Impact on Brain Structure and Function. Cogn. Affect. Behav. Neurosci. 2006, 6, 79–85. [Google Scholar] [CrossRef]
- Rs6265 (SNP)-Explore This Variant-Homo_Sapiens-Ensembl Genome Browser 113. Available online: https://www.ensembl.org/Homo_sapiens/Variation/Explore?r=11:27657869-27658869;v=rs6265;vdb=variation;vf=706422091 (accessed on 21 October 2024).
- Sarchiapone, M.; Carli, V.; Roy, A.; Iacoviello, L.; Cuomo, C.; Latella, M.C.; di Giannantonio, M.; Janiri, L.; de Gaetano, M.; Janal, M.N. Association of Polymorphism (Val66Met) of Brain-Derived Neurotrophic Factor with Suicide Attempts in Depressed Patients. Neuropsychobiology 2008, 57, 139–145. [Google Scholar] [CrossRef]
- Jia, W.; Shi, J.G.; Wu, B.; Ao, L.; Zhang, R.; Zhu, Y.S. Polymorphisms of Brain-Derived Neurotrophic Factor Associated with Heroin Dependence. Neurosci. Lett. 2011, 495, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Giza, J.I.; Kim, J.; Meyer, H.C.; Anastasia, A.; Dincheva, I.; Zheng, C.I.; Lopez, K.; Bains, H.; Yang, J.; Bracken, C.; et al. The BDNF Val66Met Prodomain Disassembles Dendritic Spines Altering Fear Extinction Circuitry and Behavior. Neuron 2018, 99, 163–178.e6. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Fukui, K.; Takeuchi, H.; Yokota, S.; Kikuchi, Y.; Tomita, H.; Taki, Y.; Kawashima, R. Effects of the BDNF Val66Met Polymorphism on Gray Matter Volume in Typically Developing Children and Adolescents. Cereb. Cortex 2016, 26, 1795–1803. [Google Scholar] [CrossRef] [PubMed]
- Notaras, M.; Van Den Buuse, M. Neurobiology of BDNF in Fear Memory, Sensitivity to Stress, and Stress-Related Disorders. Mol. Psychiatry 2020, 25, 2251–2274. [Google Scholar] [CrossRef]
- Vaynman, S.; Ying, Z.; Gómez-Pinilla, F. Exercise Induces BDNF and Synapsin I to Specific Hippocampal Subfields. J. Neurosci. Res. 2004, 76, 356–362. [Google Scholar] [CrossRef]
- Vaynman, S.; Ying, Z.; Gomez-Pinilla, F. Hippocampal BDNF Mediates the Efficacy of Exercise on Synaptic Plasticity and Cognition. Eur. J. Neurosci. 2004, 20, 2580–2590. [Google Scholar] [CrossRef]
- Patki, G.; Li, L.; Allam, F.; Solanki, N.; Dao, A.T.; Alkadhi, K.; Salim, S. Moderate Treadmill Exercise Rescues Anxiety and Depression-like Behavior as Well as Memory Impairment in a Rat Model of Posttraumatic Stress Disorder. Physiol. Behav. 2014, 130, 47–53. [Google Scholar] [CrossRef]
- Chan, C.B.; Ye, K. Sex Differences in Brain-derived Neurotrophic Factor Signaling and Functions. J. Neurosci. Res. 2017, 95, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Rs2030323 RefSNP Report-dbSNP-NCBI. Available online: https://www.ncbi.nlm.nih.gov/snp/rs2030323 (accessed on 13 October 2024).
- Rs10767664 RefSNP Report-dbSNP-NCBI. Available online: https://www.ncbi.nlm.nih.gov/snp/rs10767664 (accessed on 13 October 2024).
- Liu, Y.-Q.; Su, G.-B.; Duan, C.-H.; Wang, J.-H.; Liu, H.-M.; Feng, N.; Wang, Q.-X.; Liu, X.-E.; Zhang, J. Brain-Derived Neurotrophic Factor Gene Polymorphisms Are Associated with Coronary Artery Disease-Related Depression and Antidepressant Response. Mol. Med. Rep. 2014, 10, 3247–3253. [Google Scholar] [CrossRef] [PubMed]
- Ropret, S.; Zupanc, T.; Komel, R.; Videtič Paska, A. Single Nucleotide Polymorphisms in the BDNF Gene and Suicide in the Slovenian Sample. Neurosci. Lett. 2015, 602, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Zhang, H.; Yang, Q.; Li, L.; Ouyang, Y.; Yang, M.; Wang, F.; Wang, Z.; Zhang, J.; Yuan, D. The Relationship between Polymorphisms of BDNFOS and BDNF Genes and Heroin Addiction in the Han Chinese Population. J. Gene Med. 2016, 18, 288–293. [Google Scholar] [CrossRef]
- Kazantseva, A.; Gaysina, D.; Kutlumbetova, Y.; Kanzafarova, R.; Malykh, S.; Lobaskova, M.; Khusnutdinova, E. Brain Derived Neurotrophic Factor Gene (BDNF) and Personality Traits: The Modifying Effect of Season of Birth and Sex. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2015, 56, 58–65. [Google Scholar] [CrossRef]
- Costa, P.T.; McCrae, R.R. The Revised NEO Personality Inventory (NEO-PI-R). In The SAGE Handbook of Personality Theory and Assessment: Volume 2—Personality Measurement and Testing; SAGE Publications Ltd.: London, UK, 2008; pp. 179–198. ISBN 978-1-4129-4652-0. [Google Scholar]
- McCrae, R.R.; John, O.P. An Introduction to the Five-Factor Model and Its Applications. J. Personal. 1992, 60, 175–215. [Google Scholar] [CrossRef]
- Kang, W. Big Five Personality Traits Predict Illegal Drug Use in Young People. Acta Psychol. 2022, 231, 103794. [Google Scholar] [CrossRef]
- Kircaburun, K.; Süral, İ.; March, E.; Balta, S.; Emirtekin, E.; Griffiths, M.D. Study Addiction and “dark” Personality Traits: A Cross-Sectional Survey Study among Emerging Adults. J. Addict. Dis. 2021, 39, 307–315. [Google Scholar] [CrossRef]
- Kotov, R.; Gamez, W.; Schmidt, F.; Watson, D. Linking “Big” Personality Traits to Anxiety, Depressive, and Substance Use Disorders: A Meta-Analysis. Psychol. Bull. 2010, 136, 768–821. [Google Scholar] [CrossRef]
- Munafò, M.R.; Zetteler, J.I.; Clark, T.G. Personality and Smoking Status: A Meta-Analysis. Nicotine Tob. Res. 2007, 9, 405–413. [Google Scholar] [CrossRef]
- Kubicka, L.; Matejcek, Z.; Dytrych, Z.; Roth, Z. IQ and Personality Traits Assessed in Childhood as Predictors of Drinking and Smoking Behaviour in Middle-Aged Adults: A 24-Year Follow-up Study. Addiction 2001, 96, 1615–1628. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gabaldón, E.; Martínez-Pérez, J.E. Personality Traits and Drug Use: A Longitudinal Study Using Data from the British Cohort Study. Eur. Addict. Res. 2024, 30, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Chmielowiec, J.; Chmielowiec, K.; Masiak, J.; Śmiarowska, M.; Strońska-Pluta, A.; Dziedziejko, V.; Grzywacz, A. Association between Polymorphism Rs1799732 of DRD2 Dopamine Receptor Gene and Personality Traits among Cannabis Dependency. Int. J. Environ. Res. Public Health 2022, 19, 10915. [Google Scholar] [CrossRef] [PubMed]
- Spielberger, C.; Sydeman, S.; Maruish, M. State-Trait Anxiety Inventory and State-Trait Anger Expression Inventory. In The Use of Psychological Testing for Treatment Planning and Outcome Assessment; Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, USA, 1994; pp. 292–321. [Google Scholar]
- Knowles, K.A.; Olatunji, B.O. Specificity of Trait Anxiety in Anxiety and Depression: Meta-Analysis of the State-Trait Anxiety Inventory. Clin. Psychol. Rev. 2020, 82, 101928. [Google Scholar] [CrossRef]
- Grzywacz, A.; Suchanecka, A.; Chmielowiec, J.; Chmielowiec, K.; Szumilas, K.; Masiak, J.; Balwicki, Ł.; Michałowska-Sawczyn, M.; Trybek, G. Personality Traits or Genetic Determinants-Which Strongly Influences E-Cigarette Users? Int. J. Environ. Res. Public Health 2020, 17, 365. [Google Scholar] [CrossRef]
- Cepeda-Benito, A.; Reynoso, J.T.; Erath, S. Meta-Analysis of the Efficacy of Nicotine Replacement Therapy for Smoking Cessation: Differences Between Men and Women. J. Consult. Clin. Psychol. 2004, 72, 712–722. [Google Scholar] [CrossRef]
- Perkins, K.A. Smoking Cessation in Women: Special Considerations. CNS Drugs 2001, 15, 391–411. [Google Scholar] [CrossRef]
- Perkins, K.; Scott, J. Sex Differences in Long-Term Smoking Cessation Rates Due to Nicotine Patch. Nicotine Tob. Res. 2008, 10, 1245–1250. [Google Scholar] [CrossRef]
- Piper, M.E.; Cook, J.W.; Schlam, T.R.; Jorenby, D.E.; Smith, S.S.; Bolt, D.M.; Loh, W.-Y. Gender, Race, and Education Differences in Abstinence Rates among Participants in Two Randomized Smoking Cessation Trials. Nicotine Tob. Res. 2010, 12, 647–657. [Google Scholar] [CrossRef]
- Dance, A. Health Impact: Breathless. Nature 2012, 489, S2–S3. [Google Scholar] [CrossRef]
- Kiyohara, C.; Ohno, Y. Sex Differences in Lung Cancer Susceptibility: A Review. Gend. Med. 2010, 7, 381–401. [Google Scholar] [CrossRef]
- Langhammer, A. Cigarette Smoking Gives More Respiratory Symptoms among Women than among Men The Nord-Trondelag Health Study (HUNT). J. Epidemiol. Community Health 2000, 54, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Langhammer, A.; Johnsen, R.; Gulsvik, A.; Holmen, T.L.; Bjermer, L. Sex Differences in Lung Vulnerability to Tobacco Smoking. Eur. Respir. J. 2003, 21, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Hankin, B.L.; Abramson, L.Y. Development of Gender Differences in Depression: An Elaborated Cognitive Vulnerability–Transactional Stress Theory. Psychol. Bull. 2001, 127, 773–796. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, K.A.; Xuan, Z.; Subramanian, S.V.; Koenen, K.C. State-Level Women’s Status and Psychiatric Disorders among US Women. Soc. Psychiatry Psychiatr. Epidemiol. 2011, 46, 1161–1171. [Google Scholar] [CrossRef]
- Pigott, T.A. Anxiety Disorders in Women. Psychiatr. Clin. N. Am. 2003, 26, 621–672. [Google Scholar] [CrossRef]
- Somers, J.M.; Goldner, E.M.; Waraich, P.; Hsu, L. Prevalence and Incidence Studies of Anxiety Disorders: A Systematic Review of the Literature. Can. J. Psychiatry-Rev. Can. Psychiatr. 2006, 51, 100–113. [Google Scholar] [CrossRef]
- Perkins, K.A.; Giedgowd, G.E.; Karelitz, J.L.; Conklin, C.A.; Lerman, C. Smoking in Response to Negative Mood in Men versus Women as a Function of Distress Tolerance. Nicotine Tob. Res. 2012, 14, 1418–1425. [Google Scholar] [CrossRef]
- Perkins, K.A.; Karelitz, J.L.; Giedgowd, G.E.; Conklin, C.A. Negative Mood Effects on Craving to Smoke in Women versus Men. Addict. Behav. 2013, 38, 1527–1531. [Google Scholar] [CrossRef]
- Perkins, K.A. Acute Responses to Nicotine and Smoking: Implications for Prevention and Treatment of Smoking in Lower SES Women. Drug Alcohol Depend. 2009, 104 (Suppl. S1), S79–S86. [Google Scholar] [CrossRef]
- Stewart, S.H.; Karp, J.; Pihl, R.O.; Peterson, R.A. Anxiety Sensitivity and Self-Reported Reasons for Drug Use. J. Subst. Abus. 1997, 9, 223–240. [Google Scholar] [CrossRef]
- al’Absi, M. Hypothalamic–Pituitary–Adrenocortical Responses to Psychological Stress and Risk for Smoking Relapse. Int. J. Psychophysiol. 2006, 59, 218–227. [Google Scholar] [CrossRef]
- Schnoll, R.A.; Patterson, F.; Lerman, C. Treating Tobacco Dependence in Women. J. Women’s Health 2007, 16, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Azizian, A.; Monterosso, J.; Domier, C.P.; Brody, A.L.; Fong, T.W.; London, E.D. Gender Effects on Mood and Cigarette Craving during Early Abstinence and Resumption of Smoking. Nicotine Tob. Res. 2008, 10, 1653–1661. [Google Scholar] [CrossRef] [PubMed]
- Torres, O.V.; Gentil, L.G.; Natividad, L.A.; Carcoba, L.M.; O’Dell, L.E. Behavioral, Biochemical, and Molecular Indices of Stress Are Enhanced in Female Versus Male Rats Experiencing Nicotine Withdrawal. Front. Psychiatry 2013, 4, 38. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.E.; Brown, J.; Notley, C.; Shahab, L.; Cox, S. Characterising Smoking and Nicotine Use Behaviours among Women of Reproductive Age: A 10-Year Population Study in England. BMC Med. 2024, 22, 99. [Google Scholar] [CrossRef]
- Graffelman, J.; Weir, B.S. The Transitivity of the Hardy-Weinberg Law. Forensic Sci. Int. Genet. 2022, 58, 102680. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Jing, D.; Bath, K.G.; Ieraci, A.; Khan, T.; Siao, C.-J.; Herrera, D.G.; Toth, M.; Yang, C.; McEwen, B.S.; et al. Genetic Variant BDNF (Val66Met) Polymorphism Alters Anxiety-Related Behavior. Science 2006, 314, 140–143. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Patel, P.D.; Sant, G.; Meng, C.-X.; Teng, K.K.; Hempstead, B.L.; Lee, F.S. Variant Brain-Derived Neurotrophic Factor (BDNF) (Met66) Alters the Intracellular Trafficking and Activity-Dependent Secretion of Wild-Type BDNF in Neurosecretory Cells and Cortical Neurons. J. Neurosci. 2004, 24, 4401–4411. [Google Scholar] [CrossRef]
- Bueller, J.A.; Aftab, M.; Sen, S.; Gomez-Hassan, D.; Burmeister, M.; Zubieta, J.-K. BDNF Val66Met Allele Is Associated with Reduced Hippocampal Volume in Healthy Subjects. Biol. Psychiatry 2006, 59, 812–815. [Google Scholar] [CrossRef]
- Pezawas, L.; Verchinski, B.A.; Mattay, V.S.; Callicott, J.H.; Kolachana, B.S.; Straub, R.E.; Egan, M.F.; Meyer-Lindenberg, A.; Weinberger, D.R. The Brain-Derived Neurotrophic Factor Val66met Polymorphism and Variation in Human Cortical Morphology. J. Neurosci. 2004, 24, 10099–10102. [Google Scholar] [CrossRef]
- Egan, M.F.; Kojima, M.; Callicott, J.H.; Goldberg, T.E.; Kolachana, B.S.; Bertolino, A.; Zaitsev, E.; Gold, B.; Goldman, D.; Dean, M.; et al. The BDNF Val66met Polymorphism Affects Activity-Dependent Secretion of BDNF and Human Memory and Hippocampal Function. Cell 2003, 112, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Enoch, M.-A.; White, K.V.; Waheed, J.; Goldman, D. Neurophysiological and Genetic Distinctions between Pure and Comorbid Anxiety Disorders. Depress Anxiety 2008, 25, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Shimizu, E.; Iyo, M. Critical Role of Brain-Derived Neurotrophic Factor in Mood Disorders. Brain Res. Rev. 2004, 45, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-P.; Tsai, S.-J.; Hong, C.-J.; Yang, C.-H.; Lirng, J.-F.; Yang, Y.-M. The Val66Met Polymorphism of the Brain-Derived Neurotrophic-Factor Gene Is Associated with Geriatric Depression. Neurobiol. Aging 2006, 27, 1834–1837. [Google Scholar] [CrossRef]
- Iga, J.; Ueno, S.; Yamauchi, K.; Numata, S.; Tayoshi-Shibuya, S.; Kinouchi, S.; Nakataki, M.; Song, H.; Hokoishi, K.; Tanabe, H.; et al. The Val66Met Polymorphism of the Brain-derived Neurotrophic Factor Gene Is Associated with Psychotic Feature and Suicidal Behavior in Japanese Major Depressive Patients. Am. J. Med. Genet. 2007, 144B, 1003–1006. [Google Scholar] [CrossRef]
- Abdelkhalek, K.; Rhein, M.; Deest, M.; Buchholz, V.; Bleich, S.; Lichtinghagen, R.; Vyssoki, B.; Frieling, H.; Muschler, M.; Proskynitopoulos, P.J.; et al. Dysregulated Methylation Patterns in Exon IV of the Brain-Derived Neurotrophic Factor (BDNF) Gene in Nicotine Dependence and Changes in BDNF Plasma Levels During Smoking Cessation. Front. Psychiatry 2022, 13, 897801. [Google Scholar] [CrossRef]
- Wook Koo, J.; Labonté, B.; Engmann, O.; Calipari, E.S.; Juarez, B.; Lorsch, Z.; Walsh, J.J.; Friedman, A.K.; Yorgason, J.T.; Han, M.-H.; et al. Essential Role of Mesolimbic Brain-Derived Neurotrophic Factor in Chronic Social Stress–Induced Depressive Behaviors. Biol. Psychiatry 2016, 80, 469–478. [Google Scholar] [CrossRef]
- Beuten, J.; Ma, J.Z.; Payne, T.J.; Dupont, R.T.; Quezada, P.; Huang, W.; Crews, K.M.; Li, M.D. Significant Association of BDNF Haplotypes in European-American Male Smokers but Not in European-American Female or African-American Smokers. Am. J. Med. Genet. 2005, 139B, 73–80. [Google Scholar] [CrossRef]
- The Tobacco and Genetics Consortium Genome-Wide Meta-Analyses Identify Multiple Loci Associated with Smoking Behavior. Nat. Genet. 2010, 42, 441–447. [CrossRef]
- Breetvelt, E.J.; Numans, M.E.; Aukes, M.F.; Hoeben, W.; Strengman, E.; Luykx, J.J.; Bakker, S.C.; Kahn, R.S.; Ophoff, R.A.; Boks, M.P.M. The Association of the Alpha-5 Subunit of the Nicotinic Acetylcholine Receptor Gene and the Brain-Derived Neurotrophic Factor Gene with Different Aspects of Smoking Behavior. Psychiatr. Genet. 2012, 22, 96–98. [Google Scholar] [CrossRef]
- Bus, B.A.A.; Tendolkar, I.; Franke, B.; De Graaf, J.; Heijer, M.D.; Buitelaar, J.K.; Oude Voshaar, R.C. Serum Brain-Derived Neurotrophic Factor: Determinants and Relationship with Depressive Symptoms in a Community Population of Middle-Aged and Elderly People. World J. Biol. Psychiatry 2012, 13, 39–47. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Xiu, M.H.; Chen, D.C.; De Yang, F.; Wu, G.Y.; Lu, L.; Kosten, T.A.; Kosten, T.R. Nicotine Dependence and Serum BDNF Levels in Male Patients with Schizophrenia. Psychopharmacology 2010, 212, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, T.; Loukola, A.; Hällfors, J.; Salomaa, V.; Kaprio, J. Is Brain-Derived Neurotrophic Factor (Bdnf) Associated With Smoking Initiation? Replication Using a Large Finnish Population Sample. Nicotine Tob. Res. 2020, 22, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Chen, D.C.; Xiu, M.H.; Luo, X.; Zuo, L.; Haile, C.N.; Kosten, T.A.; Kosten, T.R. BDNF Val66Met Variant and Smoking in a Chinese Population. PLoS ONE 2012, 7, e53295. [Google Scholar] [CrossRef] [PubMed]
- Suriyaprom, K.; Tungtrongchitr, R.; Thawnashom, K.; Pimainog, Y. BDNF Val66Met Polymorphism and Serum Concentrations of BDNF with Smoking in Thai Males. Genet. Mol. Res. 2013, 12, 4925–4933. [Google Scholar] [CrossRef]
- Xia, H.; Du, X.; Yin, G.; Zhang, Y.; Li, X.; Cai, J.; Huang, X.; Ning, Y.; Soares, J.C.; Wu, F.; et al. Effects of Smoking on Cognition and BDNF Levels in a Male Chinese Population: Relationship with BDNF Val66Met Polymorphism. Sci. Rep. 2019, 9, 217. [Google Scholar] [CrossRef]
- Nedic, G.; Perkovic, M.N.; Sviglin, K.N.; Muck-Seler, D.; Borovecki, F.; Pivac, N. Brain-Derived Neurotrophic Factor Val66Met Polymorphism and Alcohol-Related Phenotypes. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 40, 193–198. [Google Scholar] [CrossRef]
- Novak, G.; LeBlanc, M.; Zai, C.; Shaikh, S.; Renou, J.; DeLuca, V.; Bulgin, N.; Kennedy, J.L.; Le Foll, B. Association of Polymorphisms in the BDNF, DRD1 and DRD3 Genes with Tobacco Smoking in Schizophrenia. Ann. Hum. Genet. 2010, 74, 291–298. [Google Scholar] [CrossRef]
- Meng, C.; Lan, J.; Wang, Y.; Song, M.; Gao, X.; Ran, L.; Moira, S.; Wang, W. Influence of Brain-Derived Neurotrophic Factor Genetic Polymorphisms on the Ages of Onset for Heroin Dependence in a Chinese Population. Genet. Test. Mol. Biomark. 2012, 16, 1044–1050. [Google Scholar] [CrossRef]
- Strońska-Pluta, A.; Suchanecka, A.; Chmielowiec, K.; Chmielowiec, J.; Boroń, A.; Masiak, J.; Sipak-Szmigiel, O.; Recław, R.; Grzywacz, A. The Relationship between the Brain-Derived Neurotrophic Factor Gene Polymorphism (Val66Met) and Substance Use Disorder and Relapse. Int. J. Mol. Sci. 2024, 25, 788. [Google Scholar] [CrossRef]
- Boroń, A.; Suchanecka, A.; Chmielowiec, K.; Chmielowiec, J.; Masiak, J.; Trybek, G.; Strońska-Pluta, A.; Rychel, M.; Grzywacz, A. Analysis of the BDNF Gene Rs6265 Polymorphism in a Group of Women with Alcohol Use Disorder, Taking into Account Personality Traits. Int. J. Mol. Sci. 2024, 25, 6448. [Google Scholar] [CrossRef]
- McEwan, A.R.; Hing, B.; Erickson, J.C.; Hutchings, G.; Urama, C.; Norton-Hughes, E.; D’Ippolito, M.; Berry, S.; Delibegovic, M.; Grassmann, F.; et al. An Ancient Polymorphic Regulatory Region within the BDNF Gene Associated with Obesity Modulates Anxiety-like Behaviour in Mice and Humans. Mol. Psychiatry 2024, 29, 660–670. [Google Scholar] [CrossRef]
- Niewczas, M.; Król, P.; Czarny, W.; Bajorek, W.; Rzepko, M.; Drozd, S.; Płonka, A.; Drozd, M.; Czaja, R.; Błach, W.; et al. Association Analysis of Polymorphic Variants of the BDNF Gene in Athletes. Genes 2021, 12, 1340. [Google Scholar] [CrossRef]
- de Luis, D.A.; Aller, R.; Izaola, O.; Primo, D.; Romero, E. Rs10767664 Gene Variant in Brain-Derived Neurotrophic Factor Is Associated with Diabetes Mellitus Type 2 in Caucasian Females with Obesity. Ann. Nutr. Metab. 2017, 70, 286–292. [Google Scholar] [CrossRef] [PubMed]
- de Luis, D.A.; Romero, E.; Izaola, O.; Primo, D.; Aller, R. Cardiovascular Risk Factors and Insulin Resistance after Two Hypocaloric Diets with Different Fat Distribution in Obese Subjects: Effect of the Rs10767664 Gene Variant in Brain-Derived Neurotrophic Factor. J. Nutr. Nutr. 2017, 10, 163–171. [Google Scholar] [CrossRef] [PubMed]
- McCaffery, J.M.; Jablonski, K.A.; Franks, P.W.; Delahanty, L.M.; Aroda, V.; Marrero, D.; Hamman, R.F.; Horton, E.S.; Dagogo-Jack, S.; Wylie-Rosett, J.; et al. Replication of the Association of BDNF and MC4R Variants With Dietary Intake in the Diabetes Prevention Program. Psychosom Med. 2017, 79, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Terracciano, A.; Löckenhoff, C.E.; Crum, R.M.; Bienvenu, O.J.; Costa, P.T. Five-Factor Model Personality Profiles of Drug Users. BMC Psychiatry 2008, 8, 22. [Google Scholar] [CrossRef]
- Suchanecka, A.; Boroń, A.; Chmielowiec, K.; Strońska-Pluta, A.; Masiak, J.; Lachowicz, M.; Chmielowiec, J.; Grzywacz, A. Association of the Rs3864283 Polymorphism Located in the HINT1 Gene with Cigarette Use and Personality Traits. Int. J. Mol. Sci. 2023, 24, 10244. [Google Scholar] [CrossRef]
- Suchanecka, A.; Chmielowiec, J.; Chmielowiec, K.; Trybek, G.; Jaroń, A.; Czarny, W.; Król, P.; Masiak, J.; Grzywacz, A. Serotonin Receptor HTR3A Gene Polymorphisms Rs1985242 and Rs1062613, E-Cigarette Use and Personality. Int. J. Environ. Res. Public Health 2022, 19, 4746. [Google Scholar] [CrossRef]
- Rass, O.; Ahn, W.-Y.; O’Donnell, B.F. Resting-State EEG, Impulsiveness, and Personality in Daily and Nondaily Smokers. Clin. Neurophysiol. 2016, 127, 409–418. [Google Scholar] [CrossRef]
- Waga, C.; Iwahashi, K. CYP2A6 Gene Polymorphism and Personality Traits for NEO-FFI on the Smoking Behavior of Youths. Drug Chem. Toxicol. 2007, 30, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, P.S.; Parkar, S.R.; Kate, N.; Ninawe, K.; Limbachiya, R. Role of Personality in Tobacco Smoking Behavior in Corporate Sector: A Cross-Sectional Study. Ind. Psychiatry J. 2018, 27, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Benotsch, E.G.; Jeffers, A.J.; Snipes, D.J.; Martin, A.M.; Koester, S. The Five Factor Model of Personality and the Non-Medical Use of Prescription Drugs: Associations in a Young Adult Sample. Personal. Individ. Differ. 2013, 55, 852–855. [Google Scholar] [CrossRef]
- Müller, K.W.; Beutel, M.E.; Egloff, B.; Wölfling, K. Investigating Risk Factors for Internet Gaming Disorder: A Comparison of Patients with Addictive Gaming, Pathological Gamblers and Healthy Controls Regarding the Big Five Personality Traits. Eur. Addict. Res. 2014, 20, 129–136. [Google Scholar] [CrossRef]
- Bagby, R.M.; Vachon, D.D.; Bulmash, E.L.; Toneatto, T.; Quilty, L.C.; Costa, P.T. Pathological Gambling and the Five-Factor Model of Personality. Personal. Individ. Differ. 2007, 43, 873–880. [Google Scholar] [CrossRef]
- Khantzian, E.J. The Self-Medication Hypothesis of Addictive Disorders: Focus on Heroin and Cocaine Dependence. In The Cocaine Crisis; Allen, D.F., Ed.; Springer: Boston, MA, USA, 1987; pp. 65–74. ISBN 978-1-4612-9026-1. [Google Scholar]
- Khantzian, E.J. The Self-Medication Hypothesis of Substance Use Disorders: A Reconsideration and Recent Applications. Harv. Rev. Psychiatry 1997, 4, 231–244. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Choi, J.-S.; Gwak, A.R.; Jung, D.; Choi, S.-W.; Lee, J.; Lee, J.-Y.; Jung, H.Y.; Kim, D.J. Shared Psychological Characteristics That Are Linked to Aggression between Patients with Internet Addiction and Those with Alcohol Dependence. Ann. Gen. Psychiatry 2014, 13, 6. [Google Scholar] [CrossRef]
- Grekin, E.R.; Sher, K.J.; Wood, P.K. Personality and Substance Dependence Symptoms: Modeling Substance-Specific Traits. Psychol. Addict. Behav. 2006, 20, 415–424. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Shin, Y.-C.; Lim, S.-W.; Park, H.Y.; Shin, N.Y.; Jang, J.H.; Park, H.-Y.; Kwon, J.S. Multidimensional Comparison of Personality Characteristics of the Big Five Model, Impulsiveness, and Affect in Pathological Gambling and Obsessive–Compulsive Disorder. J. Gambl. Stud. 2012, 28, 351–362. [Google Scholar] [CrossRef]
- Kornør, H.; Nordvik, H. Five-Factor Model Personality Traits in Opioid Dependence. BMC Psychiatry 2007, 7, 37. [Google Scholar] [CrossRef]
- Suchanecka, A.; Chmielowiec, J.; Chmielowiec, K.; Masiak, J.; Sipak-Szmigiel, O.; Sznabowicz, M.; Czarny, W.; Michałowska-Sawczyn, M.; Trybek, G.; Grzywacz, A. Dopamine Receptor DRD2 Gene Rs1076560, Personality Traits and Anxiety in the Polysubstance Use Disorder. Brain Sci. 2020, 10, 262. [Google Scholar] [CrossRef]
- Grzywacz, A.; Chmielowiec, J.; Chmielowiec, K.; Mroczek, B.; Masiak, J.; Suchanecka, A.; Sipak-Szmigiel, O.; Szumilas, K.; Trybek, G. The Ankyrin Repeat and Kinase Domain Containing 1 Gene Polymorphism (ANKK1Taq1A) and Personality Traits in Addicted Subjects. Int. J. Environ. Res. Public Health 2019, 16, 2687. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz, M.; Chmielowiec, J.; Chmielowiec, K.; Suchanecka, A.; Michałowska-Sawczyn, M.; Mierzecki, A.; Mroczek, B.; Grzywacz, A. Psychological Factors and Genetic Characteristics of Rural Cannabis Users. Ann. Agric. Environ. Med. 2020, 27, 260–268. [Google Scholar] [CrossRef]
- Pietras, T.; Witusik, A.; Panek, M.; Szemraj, J.; Górski, P. Anxiety, Depression and Methods of Stress Coping in Patients with Nicotine Dependence Syndrome. Med. Sci. Monit. 2011, 17, CR272-276. [Google Scholar] [CrossRef] [PubMed]
- Rajikin, M.H.; Latif, E.S.; Mar, M.R.; Mat Top, A.G.; Mokhtar, N.M. Deleterious Effects of Nicotine on the Ultrastructure of Oocytes: Role of Gamma-Tocotrienol. Med. Sci. Monit. 2009, 15, BR378–BR383. [Google Scholar] [PubMed]
- Ziedonis, D.; Hitsman, B.; Beckham, J.C.; Zvolensky, M.; Adler, L.E.; Audrain-McGovern, J.; Breslau, N.; Brown, R.A.; George, T.P.; Williams, J.; et al. Tobacco Use and Cessation in Psychiatric Disorders: National Institute of Mental Health Report. Nicotine Tob. Res. 2008, 10, 1691–1715. [Google Scholar] [CrossRef]
- Merikangas, K.R.; Swendsen, J.D.; Preisig, M.A.; Chazan, R.Z. Psychopathology and Temperament in Parents and Offspring: Results of a Family Study. J. Affect. Disord. 1998, 51, 63–74. [Google Scholar] [CrossRef]
- Szeszko, P.R.; Lipsky, R.; Mentschel, C.; Robinson, D.; Gunduz-Bruce, H.; Sevy, S.; Ashtari, M.; Napolitano, B.; Bilder, R.M.; Kane, J.M.; et al. Brain-Derived Neurotrophic Factor Val66met Polymorphism and Volume of the Hippocampal Formation. Mol. Psychiatry 2005, 10, 631–636. [Google Scholar] [CrossRef]
- Hariri, A.R.; Goldberg, T.E.; Mattay, V.S.; Kolachana, B.S.; Callicott, J.H.; Egan, M.F.; Weinberger, D.R. Brain-Derived Neurotrophic Factor Val66 Met Polymorphism Affects Human Memory-Related Hippocampal Activity and Predicts Memory Performance. J. Neurosci. 2003, 23, 6690–6694. [Google Scholar] [CrossRef]
- Grzegorzewska, I.; Pastwa-Wojciechowska, B. Czy Uzależnienie Ma Płeć–Analiza Różnic Międzypłciowych i Ich Znaczenie Dla Profilaktyki. Pol. Forum Psychol. 2022, 27, 221–239. [Google Scholar] [CrossRef]
- al’Absi, M.; Nakajima, M.; Allen, S.; Lemieux, A.; Hatsukami, D. Sex Differences in Hormonal Responses to Stress and Smoking Relapse: A Prospective Examination. Nicotine Tob. Res. 2015, 17, 382–389. [Google Scholar] [CrossRef]
- Komiyama, M.; Yamakage, H.; Satoh-Asahara, N.; Ozaki, Y.; Morimoto, T.; Shimatsu, A.; Takahashi, Y.; Hasegawa, K. Sex Differences in Nicotine Dependency and Depressive Tendency among Smokers. Psychiatry Res. 2018, 267, 154–159. [Google Scholar] [CrossRef]
- Sieminska, A.; Jassem, E. The Many Faces of Tobacco Use among Women. Med. Sci. Monit. 2014, 20, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Rahmanian, S.D.; Diaz, P.T.; Wewers, M.E. Tobacco Use and Cessation among Women: Research and Treatment-Related Issues. J. Women’s Health 2011, 20, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Motyka, M.; Haligowska, A.; Al-Imam, A. Leczenie, Resocjalizacja i Readaptacja Kobiet Zmagających Się z Uzależnieniem Od Narkotyków: Bariery i Wyzwania. Resocjal. Pol. 2023, 24, 327–346. [Google Scholar]
- Solum, D.T.; Handa, R.J. Estrogen Regulates the Development of Brain-Derived Neurotrophic Factor mRNA and Protein in the Rat Hippocampus. J. Neurosci. 2002, 22, 2650–2659. [Google Scholar] [CrossRef]
- Su, C.; Cunningham, R.L.; Rybalchenko, N.; Singh, M. Progesterone Increases the Release of Brain-Derived Neurotrophic Factor from Glia via Progesterone Receptor Membrane Component 1 (Pgrmc1)-Dependent ERK5 Signaling. Endocrinology 2012, 153, 4389–4400. [Google Scholar] [CrossRef]
- Zawadzki, B.; Strelau, J.; Szczepaniak, P.; Śliwińska, M. Inwentarz Osobowości; Costa, P.T., Jr., McCrae, R.R., Eds.; Pracownia Testów Psychologicznych Polskiego Towarzystwa Psychologicznego: Warsaw, Poland, 1998. [Google Scholar]
- BDNF Brain Derived Neurotrophic Factor [Homo Sapiens (Human)]-Gene-NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene/627 (accessed on 26 May 2025).
Genotype | Observed | Expected | A Allele Frequency | G Allele Frequency | p-Value | |
---|---|---|---|---|---|---|
Cigarette users n = 112 | AA | 1 | 1.63 | 27 | 197 | 0.5761 |
AG | 25 | 23.75 | ||||
GG | 86 | 86.63 | ||||
Never- smokers n = 127 | AA | 1 | 2.14 | 33 | 221 | 0.3693 |
AG | 31 | 28.71 | ||||
GG | 95 | 96.14 |
Genotype | Observed | Expected | A Allele Frequency | T Allele Frequency | p-Value | |
---|---|---|---|---|---|---|
Cigarette users n = 111 | AA | 1 | 2.31 | 32 | 190 | 0.3149 |
AT | 30 | 27.39 | ||||
TT | 80 | 81.31 | ||||
Never- smokers n = 121 | AA | 2 | 3.64 | 42 | 200 | 0.2972 |
AT | 38 | 34.71 | ||||
TT | 81 | 82.64 |
Genotype | Observed | Expected | G Allele Frequency | T Allele Frequency | p-Value | |
---|---|---|---|---|---|---|
Cigarette users n = 110 | GG | 79 | 80.33 | 188 | 32 | 0.3086 |
GT | 30 | 27.35 | ||||
TT | 1 | 2.33 | ||||
Never- smokers n = 121 | GG | 79 | 78.56 | 195 | 47 | 0.8001 |
GT | 37 | 37.87 | ||||
TT | 5 | 4.56 |
Genotypes | Alleles | ||||
---|---|---|---|---|---|
AA n (%) | AG n (%) | GG n (%) | A n (%) | G n (%) | |
Cigarette users n = 112 | 1 (0.89%) | 25 (22.32%) | 86 (76.79%) | 27 (12.05%) | 197 (87.95%) |
Never–smokers n = 127 | 1 (0.79%) | 31 (24.41%) | 95 (74.8%) | 33 (12.99%) | 221 (87.01%) |
χ2 (p-value) | 0.1495374 (0.92796) | 0.0955 (0.7573) |
Genotypes | Alleles | ||||
---|---|---|---|---|---|
AA n (%) | AT n (%) | TT n (%) | A n (%) | T n (%) | |
Cigarette users n = 111 | 1 (0.9%) | 30 (27.03%) | 80 (72.07%) | 32 (14.41%) | 190 (85.59%) |
Never–smokers n = 121 | 2 (1.65%) | 38 (31.4%) | 81 (66.94%) | 42 (17.36%) | 200 (82.64%) |
χ2 (p-value) | 0.8512681 (0.65336) | 0.7471 (0.3874) |
Genotypes | Alleles | ||||
---|---|---|---|---|---|
GG n (%) | GT n (%) | TT n (%) | G n (%) | T n (%) | |
Cigarette users n = 110 | 79 (71.82%) | 30 (27.27%) | 1 (0.91%) | 188 (85.45%) | 32 (14.55%) |
Never–smokers n =121 | 79 (65.29%) | 37 (30.58%) | 5 (4.13%) | 195 (80.58%) | 47 (19.42%) |
χ2 (p-value) | 2.880733 (0.23684) | 1.9328 (0.1644) |
NEO Five-Factor Inventory | Cigarette Users (n = 112) M ± SD | Never–Smokers (n = 127) M ± SD | p-Value | Eta Squared (η2) | dCohen |
---|---|---|---|---|---|
Neuroticism | 5.893 ± 2.072 | 5.622 ± 1.877 | 0.255490 | NA | NA |
Extraversion | 5.616 ± 2.085 | 5.299 ± 1.937 | 0.239026 | NA | NA |
Openness | 5.411 ± 2.029 | 5.457 ± 2.011 | 0.798012 | NA | NA |
Agreeableness | 5.446 ± 2.386 | 6.315 ± 2.329 | 0.005767 * | 0.032 | 0.363 |
Conscientiousness | 5.571 ± 2.061 | 6.882 ± 2.203 | 0.000012 * | 0.08 | 0.591 |
State-Trait Anxiety Inventory | Cigarette Users (n = 112) M ± SD | Never–Smokers (n = 127) M ± SD | p-Value |
---|---|---|---|
Trait anxiety | 5.902 ± 2.352 | 5.606 ± 2.116 | 0.174650 |
State anxiety | 5.598 ± 2.244 | 5.512 ± 2.243 | 0.653407 |
rs10767664 | rs2030323 | ||
---|---|---|---|
rs6265 | D | 0.1098 | 0.1092 |
D′ | 0.9995 | 0.9995 | |
X2 | 357.9278 | 346.6917 | |
p-value | <2.2204 × 10−16 | <2.2204 × 10−16 | |
N | 229 | 229 | |
rs10767664 | D | 0.1326 | |
D′ | 0.9838 | ||
X2 | 429.3814 | ||
p-value | <2.2204 × 10−16 | ||
n | 229 |
Haplotype | Never–Smokers (n = 119) | Cigarette Users (n = 110) | p-Value |
---|---|---|---|
G A T | 0.03356 | 0.02273 | 0.47669 |
A A T | 0.13866 | 0.12273 | 0.59990 |
G T G | 0.81087 | 0.85455 | 0.20167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowy, D.; Boroń, A.; Chmielowiec, J.; Chmielowiec, K.; Lachowicz, M.; Masiak, J.; Grzywacz, A.; Suchanecka, A. Exploring the Relationship Between Brain-Derived Neurotrophic Factor Haplotype Variants, Personality, and Nicotine Usage in Women. Int. J. Mol. Sci. 2025, 26, 7109. https://doi.org/10.3390/ijms26157109
Borowy D, Boroń A, Chmielowiec J, Chmielowiec K, Lachowicz M, Masiak J, Grzywacz A, Suchanecka A. Exploring the Relationship Between Brain-Derived Neurotrophic Factor Haplotype Variants, Personality, and Nicotine Usage in Women. International Journal of Molecular Sciences. 2025; 26(15):7109. https://doi.org/10.3390/ijms26157109
Chicago/Turabian StyleBorowy, Dominika, Agnieszka Boroń, Jolanta Chmielowiec, Krzysztof Chmielowiec, Milena Lachowicz, Jolanta Masiak, Anna Grzywacz, and Aleksandra Suchanecka. 2025. "Exploring the Relationship Between Brain-Derived Neurotrophic Factor Haplotype Variants, Personality, and Nicotine Usage in Women" International Journal of Molecular Sciences 26, no. 15: 7109. https://doi.org/10.3390/ijms26157109
APA StyleBorowy, D., Boroń, A., Chmielowiec, J., Chmielowiec, K., Lachowicz, M., Masiak, J., Grzywacz, A., & Suchanecka, A. (2025). Exploring the Relationship Between Brain-Derived Neurotrophic Factor Haplotype Variants, Personality, and Nicotine Usage in Women. International Journal of Molecular Sciences, 26(15), 7109. https://doi.org/10.3390/ijms26157109